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Abstract We reconsider Muskhelishvili–Omnès (MO) dis-
persive representations of photon–photon scattering to two
pions, motivated by the very high statistics results recently
released by the Belle collaboration for charged as well as
neutral pion pairs and also by recent progress in the determi-
nation of the low-energy ππ scattering amplitude. Applica-
bility of this formalism is extended beyond 1 GeV by taking
into account inelasticity due to KK̄ . A modified MO repre-
sentation is derived which has the advantage that all poly-
nomial ambiguities are collected into the subtraction con-
stants and have simple relations to pion polarizabilities. It
is obtained by treating differently the exactly known QED
Born term and the other components of the left-hand cut.
These components are approximated by a sum over reso-
nances. All resonances up to spin two and masses up to
�1.3 GeV are included. The tensor contributions to the left-
hand cut are found to be numerically important. We per-
form fits to the data imposing chiral constraints, in particu-
lar, using a model independent sum-rule result on the p6 chi-
ral coupling c34. Such theoretical constraints are necessary
because the experimental errors are dominantly systematic.
Results on further p6 couplings and pion dipole and quadru-
pole polarizabilities are then derived from the fit. The rele-
vance of the new data for distinguishing between two pos-
sible scenarios of isospin breaking in the f0(980) region is
discussed.

1 Introduction

Photon–photon scattering into two pions is a process which
probes several aspects of QCD strong dynamics. In particu-
lar, as all participating particles are either massless or light,
it can probe the low-energy chiral effective theory of QCD.
This effective theory has now been worked out up to order
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p6 [1, 2]. There are indications that at this order, it can repre-
sent the exact dynamics to a very high precision in the two-
flavor expansion. This was shown, for instance, for the ππ

S-wave scattering lengths (see e.g. the review [3]). Unfortu-
nately, most of the coupling constants of the p6 chiral La-
grangian are still undetermined. The γ γ → ππ amplitude
is of particular interest in this respect because of its strong
sensitivity to several of these p6 couplings. Physically, these
couplings are associated with electric and magnetic dipole
and quadrupole polarizabilities of the pion. These are im-
portant observables associated with the structure of the pion.
They can be measured, in principle, in Primakov experi-
ments or in photoproduction experiments (apart from low-
energy photon–photon scattering). Such experiments have
been performed but the present situation is somewhat con-
fused, e.g. the result of MAMI [4] and the preliminary result
from COMPASS [5] are not in good agreement, to mention
only the most recent experiments.

This paper is motivated by the new experimental mea-
surements by the Belle collaboration of γ γ → ππ differ-
ential cross sections for charged pions [6, 7] and, very re-
cently, for neutral pions [8, 9]. It becomes thus possible
to combine these two complementary sets of measurements
in theoretical analysis. There has also been very significant
progress, recently, in measuring the ππ scattering amplitude
at low energies by the NA48/2 [10–12] the DIRAC [13] and
E865 [14] experiments. We will focus here on relating the
γ γ → ππ experimental results and the low-energy sector
of QCD. We will argue that using chiral constraints is useful
in analyzing the data and that, in return, chiral information
can be extracted from the data. This might appear puzzling
at first sight, because Belle’s data do not cover the very low-
energy region: the π0π0 data cover the range E � 0.6 GeV
and the π+π− data the range E � 0.8 GeV. Extrapolation
is possible due to theoretical properties of scattering ampli-
tudes in the standard model, in particular, the property of an-
alyticity of partial-wave amplitudes as a function of energy.
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This property, we recall, is a proved consequence of confine-
ment in QCD [15]. Combining with unitarity of the S-matrix
enables one to disentangle the effects of the final-state inter-
action by the Muskhelishvili–Omnès (MO) method [16, 17].
Application to γ γ → ππ amplitudes was discussed for the
first time in Ref. [18]. Explicit results for γ γ → π+π− tak-
ing into account current algebra constraints were obtained
in [19, 20]. This was reconsidered a few years later [21–23]
after the first reliable experimental results in the low-energy
region became available. References [22, 23] also discuss
how the MO dispersive representation matches with the chi-
ral one-loop representation, which had been computed in
Refs. [24, 25] and eventually lead to a parameter free pre-
diction in the low-energy region.

A simplifying feature of low energy is that ππ scattering
can be considered elastic. If one is interested in the 1 GeV
region or slightly above, it becomes necessary to take in-
elasticity into account. This is feasible due to a specific fea-
ture of ππ scattering: the fact that inelastic scattering to 4π

or 6π states (which are not treatable by MO methods) are
suppressed in practice and can be neglected up to E � 1.2–
1.3 GeV. The remaining relevant inelastic channels, KK̄ or
ηη, are two-body channels which are perfectly treatable, in
principle, by MO methods. In this paper, we take into ac-
count ππ → KK̄ scattering, which is particularly impor-
tant in the I = 0 S-wave near 1 GeV. This amplitude suf-
fers from a long lasting unresolved experimental discrep-
ancy very near the KK̄ threshold which limits the determi-
nation of the properties of the f0(980) scalar meson. It is
interesting that this discrepancy can be interpreted in terms
of two different scenarios for isospin breaking. We will dis-
cuss the relevance of Belle’s results near 1 GeV in eventually
clarifying this issue.

Application of the multichannel MO method to γ γ →
ππ has been attempted first in Ref. [26] and then dis-
cussed in some detail in Ref. [27]. More recently, it was
applied to Belle’s data on π+π− in Ref. [28]. These au-
thors have considered the extrapolation of the amplitude in
the complex plane, so as to define, and then extract, the
couplings of the scalar mesons σ(600) and f0(980) to two
photons. Determination of these couplings has aroused sus-
tained interest in the literature (e.g. [29–33], a more com-
plete list can be found in [28]). One motivation is to probe
the structure of scalar mesons and identify the glueballs.
There is some scatter in the results obtained. In the present
paper, we concentrate on extrapolating on the real axis, to-
ward the low-energy region. This brings constraints on the
amplitude which should prove useful also for extrapolat-
ing away from the real axis. This will be discussed else-
where.

The plan of the paper is as follows. After introducing no-
tation for the amplitudes and their partial-wave expansions
we write the unitarity equations in the one- and two-channel

approximations. Next, we formulate the MO-type dispersive
representations. Concerning the left-hand cut, we find it ad-
vantageous to treat differently the QED Born term and the
multipion contributions in the MO representations. The lat-
ter are kept in the form of a subtracted left-cut spectral in-
tegral. We then implement the (usual) approximation of re-
taining only resonance contributions. All resonances with
mass up to ≈1.3 GeV are included and we show that a cer-
tain regulation operates between resonances of different spin
and different parity depending on the helicity states. Sub-
tractions at s = 0 are introduced in the MO dispersive rep-
resentations in order to suppress higher energy regions in
the integrands where our truncated unitarity equations no
longer apply. The subtraction constants have simple rela-
tions to dipole and quadrupole pion polarizabilities and are
to be determined from fits to the data. Chiral constraints may
be applied to the fit. This is necessary because the errors in
Belle’s data are completely dominated by systematics and
the usual statistical interpretation of the χ2 does not apply,
strictly speaking. Only one of the relevant p6 chiral cou-
pling constants is known in a model independent way from
a chiral sum rule. We show that this information implies a
relation between dipole and quadrupole polarizabilities of
the neutral pion which we implement in the fit. Then, we
describe our inputs for the ππ → ππ , KK̄ T -matrix el-
ements. Our subtracted dispersive integrals emphasize the
low-energy part of the integrands. We employ a parametriza-
tion which allow for some freedom near the KK̄ threshold
since the Belle data probe this region in some detail. Fi-
nally, we display comparisons between the fitted MO am-
plitudes and the experimental data and discuss the implica-
tion for the pion polarizabilities and the p6 chiral coupling
constants.

2 Kinematics, unitarity relations

We consider the processes γ (q1, λ)γ (q2, λ
′) →

π+(p1)π
−(p2) or π0(p1)π

0(p2) where λ(λ′) = ±1 are
the photons helicities. We will also consider γ (q1, λ) ×
γ (q2, λ

′) → K(p1)K̄(p2) with I = 0 which plays a role
in the S-wave via coupled channel unitarity. We take the
Mandelstam invariants as

s = (q1 +q2)
2, t = (q1 −p1)

2, u = (q1 −p2)
2 (1)

which satisfy s + t + u = 2m2
π . The physical regions in

the Mandelstam plane for γ γ → 2π and for the crossed-
channel amplitude γπ → γπ are shown in Fig. 1. The scat-
tering angle θ in the two photon center-of-mass system is
related as follows to s, t , u:

cos θ = t − u
√

s(s − 4m2
π )

. (2)
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Fig. 1 Mandelstam plane showing the physical regions for γ γ → 2π

and γπ → γπ processes

We write the S-matrix element for γ γ → π+π− as
〈
outπ

+(p1)π
−(p2)|γ (q1, λ)γ (q2, λ

′)
〉
in

= ie2(2π)4δ4(Pf − Pi)e
i(λ−λ′)φHc

λλ′(s, t) (3)

factoring out e2 as well as the explicit dependence on the
azimuthal angle φ. With this convention, Hc

λλ′ is a func-
tion of the Mandelstam variables. Similarly, in the case of
γ γ → π0π0 we denote the scattering amplitude by Hn

λλ′ .
In the case of γ γ → KK̄ scattering we denote the charged
and neutral amplitudes by Kc

λλ′ and Kn
λλ′ respectively. We

assume that isospin is exactly conserved by the strong in-
teraction. It is then useful to consider the amplitudes which
correspond to ππ or KK̄ final states with definite isospin I .
We will label them as HI

λλ′ and KI
λλ′ . Because of parity

conservation, only final states with even values of the an-
gular momentum J are allowed, J = 0,2,4, . . . . Invoking
also charge conjugation invariance the isospin values must
be I = 0 or I = 2 in the case of ππ , while in the case of
KK̄ both I = 0 and I = 1 can couple to γ γ . The relations
between the amplitudes γ γ → π+π−, π0π0 and the isospin
ones γ γ → (ππ)I=0,2 read

(√
2Hc

λλ′

Hn
λλ′

)

=
⎛

⎝
−

√
2
3 −

√
1
3

−
√

1
3

√
2
3

⎞

⎠
(

H 0
λλ′

H 2
λλ′

)

. (4)

In the case of kaons, the analogous relations read,

(
Kc

λλ′

Kn
λλ′

)

=
⎛

⎝
−

√
1
2 −

√
1
2

−
√

1
2

√
1
2

⎞

⎠
(

K0
λλ′

K1
λλ′

)

. (5)

It is useful to carry out a tensorial decomposition of the
photon–photon scattering amplitudes. Writing

Hλλ′(qi,pi) = ε
μ
1 (λ)εν

2 (λ′)Wμν(pi, qi) (6)

where εi are the polarization vectors of the photons. Wμν

can be decomposed as

Wμν = A(s, t, u)T1μν + B(s, t, u)T2μν (7)

where

T1μν = 1

2
s gμν − q1νq2μ,

T2μν = 2sΔμΔν − (t − u)2gμν (8)

− 2(t − u)(q1νΔμ − q2μΔν)

where Δ = (p1 − p2). In this manner, the Ward identities
are satisfied as follows:

q
μ
1 Wμν = qν

2 Wμν = 0. (9)

The functions A and B satisfy analyticity properties as a
function of s, t , u and they are symmetric under cross-
ing (t, u) → (u, t) (because of Bose symmetry of the two
photon system). One can express the helicity amplitudes in
terms of A and B as follows:1

H++ = H−− = 1

2
sA − s

(
s − 4m2

π

)
B,

H+− = H−+ = 4
(
tu − m4

π

)
B.

(10)

Finally, the differential cross section for γ γ → ππ has the
following expression:

dσ

dΩ
= α2

8s
βπ (s)

(|H++|2 + |H+−|2) (11)

with

βπ(s) =
√

1 − 4m2
π

s
. (12)

2.1 Partial-wave expansions

In order to perform the partial-wave expansion for helicity
amplitudes we use the Jacob and Wick [35] formulas,

〈θφλcλd |T |0,0, λaλb〉
= N

∑

J

(2J + 1)D∗J
λa−λb,λc−λd

(θ,φ)〈λcλd |TJ |λaλb〉
(13)

where N is a normalization factor which can be chosen arbi-
trarily. Let us list below the partial-wave expansions for all

1The polarization vectors are chosen in accordance with the phase con-
vention of Edmonds [34] for spherical tensors.
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the scattering amplitudes which are relevant in our work,

γ γ → ππ : HI
λλ′ =

∑
(2J + 1)hI

J,λλ′(s)dJ
λ−λ′,0(θ),

γ γ → KK̄: KI
λλ′ = 1√

2

∑
(2J + 1)kI

J,λλ′(s)

× dJ
λ−λ′,0(θ),

ππ → ππ : FI = 32π
∑

(2J + 1)f I
J (s)dJ

00(θ),

ππ → KK̄: GI = 16
√

2π
∑

(2J + 1)gI
J (s)dJ

00(θ),

KK̄ → KK̄: R0 = 16π
∑

(2J + 1)r0
J (s) dJ

00(θ).

(14)

The different normalization factors are chosen such as to en-
sure simple formulas for the unitarity relations satisfied by
the partial-wave amplitudes. The general unitarity relation
reads, for a given T -matrix element

Tf i − T ∗
if = i

∑

n

T ∗
nf Tni . (15)

If the energy is sufficiently small, the sum over intermediate
states is limited to just one state, ππ (elastic unitarity). We
will consider this to be a reasonably good approximation for
our purposes except in the I = 0, J = 0 case (see Sect. 3).
At the level of the partial waves, if J 
= 0 or I 
= 0 we then
have

ImhI
J,λλ′(s) = θ

(
s − 4m2

π

)
βπ(s)f I

J (s)h∗I
J,λλ′(s). (16)

For I = 0 J = 0 we also include KK̄ in the sum (15). The
unitarity relation can be written in matrix form

(
Imh0

0,++(s)

Im k0
0,++(s)

)

= T Σ

(
h∗0

0,++(s)

k∗0
0,++(s)

)

(17)

with

T =
(

f 0
0 (s) g0

0(s)

g0
0(s) r0

0 (s)

)

,

(18)

Σ =
(

θ(s − 4m2
π )βπ (s) 0

0 θ(s − 4m2
K)βK(s)

)

.

3 (Modified) Omnès–Muskhelishvili representations

The partial-wave photon–photon scattering amplitudes
hI

J,λλ′(s) are analytic functions of the variable s with two
cuts on the real axis: (1) a right-hand cut extending from
4m2

π to ∞ and (2) a left-hand cut extending from −∞ to 0.

The discontinuity along the right-hand cut is given by the
unitarity relations (16), (17). These properties are the ba-
sis of the Muskhelishvili–Omnès (MO) method for treating
the final-state interaction problem, which has been applied
for the first time to the γ γ → ππ scattering amplitudes by
Gourdin and Martin [18]. The usual method [16] is based on
writing a dispersion relation for the function,

F̃ (s) ≡ Ω−1(s)
[
F(s) − FL(s)

]
(19)

where F is the amplitude of interest, FL the part of this
amplitude which has a left-hand cut and Ω is the Omnès
function. The function F̃ (s), by construction, has only a
right-hand cut. We will use a slightly modified version here,
which treats on a different footing the part of the left-hand
cut associated with the QED Born term (which is known
exactly) and the remaining part, which we will associate
with resonance exchanges. Instead of (19), we will con-
sider

F̃mod(s) ≡ Ω−1(s)
[
F(s) − F Born

L (s)
]

(20)

i.e. we subtract only the Born term piece such that the func-
tion F̃mod(s) has both a right-hand cut and a left-hand cut.
A simplification arising in this modified approach is that all
polynomial terms are absorbed into the subtraction constants
of the dispersive representation.

In practice, in order to evaluate the imaginary part of
F̃ (s′) (or F̃mod(s

′)) on the right-hand cut, which is needed
in the dispersion relation, one sets Im[Ω−1(s′)F (s′)] equal
to zero in (19), (20). This is exact in the energy region
where scattering is elastic but becomes inaccurate at higher
energies. The influence of this inaccuracy can be reduced
by writing down over-subtracted dispersion relations, so as
to suppress the integrand in the inelastic region. With this
in mind, it also makes sense to define the Omnès func-
tion over an infinite range, making a plausible guess2 con-
cerning the behavior of the phase-shift as s′ → ∞. Alter-
natively, one could perform all the dispersive integrations
over a finite range s′ ≤ sc and approximate the contributions
from the range s′ > sc by polynomials with unknown coeffi-
cients. This should be practically equivalent to the procedure
adopted here. In the end, the sensitivity of the results on the
higher energy ranges of the various integrals would have to
be included in the errors.

Let us now consider the MO representations in more de-
tail.

• S-wave I = 0

2To be more specific, we assume that I = 2 phase-shifts tend
to zero. For I = 0 and J = 0 we take: lims→∞ δππ (s) = 2π ,
lims→∞ δKK(s) = 0 and lims→∞ |Tππ→KK̄(s)| = 0 while for I = 0
and J = 2 we assumed that the phase-shift goes to π .
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For the I = 0 S-wave, it is necessary to generalize the
MO representation to two channels in order to properly de-
scribe the f0(980) resonance energy region. The Omnès
function must be replaced by a 2 × 2 Omnès matrix

Ω(s) =
(

Ω11(s) Ω12(s)

Ω21(s) Ω22(s)

)

. (21)

The matrix elements of the Omnès matrix are analytic func-
tions of s with only a right-hand cut as in the one-channel
case. The discontinuities along this cut are given, in terms
of the 2 × 2 T -matrix, by equations analogous to (17) that
read,

ImΩ(s) = T ΣΩ
∗
(s). (22)

Unlike the one-channel case, the MO equations have no
known analytic solutions for two or more channels [17], but
accurate numerical solutions can be constructed [36, 37].
The MO representation couples γ γ → (ππ)I=0 S-wave
amplitude and the γ γ → (KK̄)I=0 S-wave amplitude. We
write, a priori, a representation which involves four subtrac-
tion parameters

(
h0

0,++(s)

k0
0,++(s)

)

=
⎛

⎝
h̄

0,Born
0,++ (s)

k̄
0,Born
0,++ (s)

⎞

⎠ + Ω(s)

⎡

⎣

⎛

⎝
b(0)s + b

′(0)s2

b
(0)
K s + b

′(0)
K s2

⎞

⎠

+ s3

π

∫ −s0

−∞
ds′

(s′)3(s′ − s)
Ω

−1
(s′) Im

⎛

⎝
h̄

0,Res
0,++(s′)

k̄
0,Res
0,++(s′)

⎞

⎠

− s3

π

∫ ∞

4m2
π

ds′

(s′)3(s′ − s)
ImΩ

−1
(s′)

⎛

⎝
h̄

0,Born
0,++ (s′)

k̄
0,Born
0,++ (s′)

⎞

⎠

⎤

⎦ .

(23)

As usual, subtraction constants have been set equal to zero in
order to comply with the soft-photon theorem [38–40] near
s = 0 e.g.

h0
0,++(s) − h̄

0,Born
0,++ (s) = O(s). (24)

The left-cut functions h̄
0,Born
0,++ (s′), k̄

0,Born
0,++ (s′), h̄

0,Res
0,++(s′) and

k̄
0,Res
0,++(s′) which enter into this representation will be given

explicitly in Sect. 4.
Due to the property of real analyticity the discontinuity

of the amplitude h0
0,++(s) across the right-hand cut is ex-

pressed in terms of a phase φ00

h0
0,++(s + iε) = e2iφ00(s)h0

0,++(s − iε),
(
s ≥ 4m2

π

)
(25)

This phase is equal (modulo π ) to the ππ phase-shift be-
low the KK̄ threshold by Watson’s theorem. The representa-
tion given above provides a modeling of φ00 above the KK̄

threshold (depending on the polynomial parameters) which
is plausible below the effective onset of 4π inelasticity. The
amplitude h0

0,++(s) satisfies a one-channel Omnès represen-
tation in terms of the Omnès function associated with φ00

and two polynomial parameters. We have verified this prop-
erty as a check of our numerical calculations.

• S-wave I = 2
In this case, KK̄ inelasticity is not allowed. We will then

disregard inelasticity in the energy region of interest. We
write an MO representation with two subtraction constants

h2
0,++(s) = h̄

2,Born
0,++ (s) + Ω2

0 (s)

[
b(2)s + b

′(2)s2

+ s3

π

∫ −s0

−∞
Im h̄

2,Res
0,++(s′)

Ω2
0 (s′)(s′)3(s′ − s)

ds′

+ s3

π

∫ ∞

4m2
π

sin δ2
0(s′) h̄

2,Born
0,++ (s′)

|Ω2
0 (s′)|(s′)3(s′ − s)

ds′
]
. (26)

Here δ2
0(s) is the I = 2 ππ phase-shift and the Omnès func-

tion is given in terms of δ2
0(s) by

Ω2
0 (s) = exp

(
s

π

∫ ∞

4m2
π

δ2
0(s′)

s′(s′ − s)
ds′

)
. (27)

• D-waves I = 0 and I = 2
In the I = 0 case, the partial-wave analysis performed by

Hyams et al. [41] found the inelasticity around the f2(1270)

peak to be of the order of 30%. The PDG [42] now quotes a
smaller value, approximately 15%, of which only 5% is due
to KK̄ , the remaining part being due to 4π . We will there-
fore not attempt a coupled channel description in this case
and essentially ignore the inelasticity. In the I = 2 case, the
final-state interaction is very small and will also ignore the
inelasticity. The Omnès method differs from that discussed
above only by the fact that we must account properly for
centrifugal barrier factors. At small energies, indeed, it is
not difficult to see that the amplitudes with J = 2 should
behave as follows:

hI
2,++(s) − h̄

I,Born
2,++ (s) ∼ s2

(
s − 4m2

π

)
,

hI
2,+−(s) − h̄

I,Born
2,+− (s) ∼ s

(
s − 4m2

π

)
.

(28)

This is implemented by multiplying the Omnès function by
(s − 4m2

π ) and by setting the appropriate subtraction con-
stants to zero in the dispersive representation. One then ob-
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tains,

hI
2,++(s)

= h̄
I,Born
2,++ (s) + ΩI

2 (s)s2(s − 4m2
π

)

×
[
c(I) + s

π

∫ −s0

−∞
Im h̄

I,Res
2,++(s′)

ΩI
2 (s′)(s′)3(s′ − 4m2

π )(s′ − s)
ds′

+ s

π

∫ ∞

4m2
π

sin δI
2 (s′) h̄

I,Born
2,++ (s′)

|ΩI
2 (s′)|(s′)3(s′ − 4m2

π )(s′ − s)
ds′

]
(29)

and

hI
2,+−(s)

= h̄
I,Born
2,+− (s) + ΩI

2 (s)s
(
s − 4m2

π

)

×
[
d(I) + s

π

∫ −s0

−∞
Im h̄

I,Res
2,+−(s′)

ΩI
2 (s′)(s′)2(s′ − 4m2

π )(s′ − s)
ds′

+ s

π

∫ ∞

4m2
π

sin δI
2 (s′)h̄I,Born

2,+− (s′)
|ΩI

2 (s′)|(s′)2(s′ − 4m2
π )(s′ − s)

ds′
]

. (30)

These representations involve four subtraction constants
c(I) and d(I).

Let us finally remark that polynomials can be introduced
in MO representations in different ways (for instance mul-
tiplying the Omnès functions). It is easy to show that any
representation can always be recast in the form given above.
These are convenient because the relations between the
polynomial coefficients and the pion polarizabilities are now
particularly simple.

3.1 Sum rules

Above, we have written over-subtracted dispersion relations
in order to suppress the contributions from large values of
|s′| in the integrands. Such representations can be valid
only in a finite energy domain since, in general, they lead
to diverging amplitudes3 when s → ∞. A priori, the ex-
act asymptotic behavior of the partial-wave amplitudes is
not known, but S-matrix unitarity provides the following
bound:

∣∣hI
J,λλ′(s)

∣∣ ≤ 16π√
βπ(s)

(31)

which implies that one could write representations with
fewer subtraction constants if one assumes that the inte-
grands are known sufficiently well. This amounts to express-
ing some of the subtraction constants as sum rules. Such

3The asymptotic conditions implemented in the T matrices imply that
the I = 0 and I = 2 Omnès functions behave respectively as s−1 and
s0 at large s.

sum rules are very simply obtained from the representations
written above by requiring that the most singular terms as
s → ∞ are cancelled. For example, the D-wave constants
c(I), d(I) get expressed as

c(I)
∣∣
SR = L

(I)
3,++ + R

(I)
3,++,

d(I)
∣∣
SR = L

(I)
2,+− + R

(I)
2,+−

(32)

with

L
(I)

n,λλ′ = 1

π

∫ −s0

−∞

Im h̄
I,Res
2,λλ′ (s′)

ΩI
2 (s′)(s′)n(s′ − 4m2

π )
ds′,

(33)

R
(I)

n,λλ′ = 1

π

∫ ∞

4m2
π

sin δI
2 (s′)h̄I,Born

2,λλ′ (s′)
|ΩI

2 (s′)|(s′)n(s′ − 4m2
π )

ds′.

A useful test (which we will perform) of the validity of the
integrands, in particular of the modeling of the left-hand cut,
is to verify that the values of the subtraction constants ob-
tained from such sum rules are not significantly different
from those obtained from fitting to the experimental data.

4 Left-hand cut

In order to proceed with the previous formulas we need to
specify the left-hand cut pieces of the γ γ → ππ amplitudes
(as well as the analogous contributions to γ γ → KK̄ in the
case I = 0, J = 0). Quite generally, the left-hand cut can
be associated with singularities in the crossed-channel (i.e.
γπ → γπ ) partial waves. A derivation based on the Man-
delstam double-spectral representation can be found in ref.
[18]. The first cross-channel singularity is the pion pole, fol-
lowed by the unitarity cuts due to 2π , 3π etc. Here, the
pion pole contribution will be exactly taken into account.
The discontinuities ρnπ(s) associated with the unitarity cuts
are calculable from ChPT at small s, but they are strongly
suppressed in this region: ρ3π has chiral order p6 while
ρ2π is even more suppressed and has chiral order p8. Here,
due to the lack of detailed experimental information on the
γπ → γπ partial waves, we will content ourselves with
simple resonance approximations.

4.1 QED Born amplitudes

Let us first consider the QED Born term contribution to
γ γ → π+π− (and γ γ → K+K−). The standard result for
the helicity amplitudes reads

H
c,Born
++ = 2sm2

π

(t − m2
π )(u − m2

π )
,

H
c,Born
+− = 2(tu − m4

π )

(t − m2
π )(u − m2

π )
.

(34)
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The corresponding Born amplitudes for γ γ → K+K− are,
of course, the same, with mπ replaced by mK . Performing
the partial-wave projection according to (14), one obtains
for J = 0 and J = 2,

h̄
c,Born
0,++ (s) = 4m2

π

s
Lπ(s),

h̄
c,Born
2,++ (s) = −2m2

π

s

[(
1 − 3

β2
π (s)

)
Lπ(s) + 6

β2
π (s)

]
,

(35)

h̄
c,Born
2,+− (s) =

√
6

4

[(
1 − 1

β2
π (s)

)2

β2
π (s)Lπ(s)

− 2

β2
π (s)

+ 10

3

]

with

Lπ(s) = 1

βπ(s)
log

1 + βπ(s)

1 − βπ(s)
. (36)

We will also need the J = 0 partial-wave amplitude for
γ γ → K+K− which, as a result of the normalization (14)
reads

k̄
c,Born
0,++ (s) = 4

√
2m2

K

s
LK(s), (37)

and the isospin I = 0 and I = 2 projections which are easily
deduced from (4), (5).

4.2 Resonance contributions

Let us review below the modeling of the left-hand cut as a
sum of resonance pole contributions. Resonances which can
contribute must have spin larger than or equal to 1. We will
consider vector, axial-vector, tensor and axial-tensor contri-
butions. We start by determining the form of the amplitudes
and the relation of the coupling constants to the radiative
decay widths. We will then discuss the phenomenological
determination of the coupling constants.

• Vector resonances
We can start with a Lagrangian coupling a vector meson

V a pseudo-scalar meson P (a pion or a Kaon) and a photon
field of the form,

LV Pγ = eCV εμναβFμν∂αPVβ. (38)

After a small calculation we reproduce the result first ob-
tained by Ko [43],

W
μν
V = C̃V

m2
V − t

[(
s − 4m2

P − 4t
)
T

μν
1 + 1

2
T

μν
2

]

+ (t ↔ u), C̃V = 1

2
C2

V . (39)

The relation between the coupling C̃V and the decay width
of the resonance reads,

ΓV →Pγ = αC̃V

(m2
V − m2

P )3

3m3
V

. (40)

Performing the partial-wave projections of these amplitudes
one finds for J = 0 and J = 2

h̄V
0,++(s) = 4C̃V

[
− m2

V

βπ(s)
LV (s) + s

]
,

h̄V
2,++(s) = C̃V

2m2
V

βπ(s)

[(
1 − 3X2

V (s)
)
LV (s) + 6XV (s)

]
,

(41)

h̄V
2,+−(s) = C̃V

√
6

4
sβπ (s)

[(
1 − X2

V (s)
)2

LV (s)

+ 2

3
XV (s)

(
5 − 3X2

V (s)
)]

where the logarithmic function LV reads

LV (s) = log
XV (s) + 1

XV (s) − 1
,

(42)

XV (s) = 2m2
V − 2m2

π + s

sβπ (s)
.

One remarks here that a term linear in s appears in the ex-
pression for the amplitude h̄V

0,++. This is an illustration of
possible polynomial ambiguities. Indeed, if one uses an an-
tisymmetric tensor description of a vector particle (e.g. [44])
this term would appear with the opposite sign. In the modi-
fied MO representation we need only the imaginary parts of
the partial-wave amplitudes along the cut, which are free of
any ambiguity. The left-hand cut is contained in the function
LV (s). Rewriting XV as

X2
V (s) = 1 + 4m2

V (s + sV )

s(s − 4m2
π )

,

sV = (m2
V − m2

π )2

m2
V

(43)

one deduces that the cut extends from −∞ to −sV . One then
derives the imaginary parts of the amplitudes

1

π
Im h̄V

0,++(s) = − 4C̃V

m2
V

βπ(s)
θ(−s − sV ),

1

π
Im h̄V

2,++(s) = − 2C̃V

m2
V

βπ(s)

(
3X2

V (s) − 1
)
θ(−s − sV ),

1

π
Im h̄V

2,+−(s) =
√

6

4
C̃V sβπ (s)

(
X2

V (s) − 1
)2

θ(−s − sV ).

(44)
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We remark that the sharp cutoff θ(−s − sV ) which appears
in the imaginary parts is associated with the narrow width
approximation. Introducing a finite width smooths the cut-
off in the region s = −sV . The corresponding contributions
to γ γ → KK̄ partial-wave amplitudes (i.e. k̄V

0,++, k̄V
2,++

k̄V
0,+−) are obtained by replacing in (41) mπ by mK and C̃V

by
√

2C̃V (in accordance with the normalizations defined in
(14)).

• Axial-vector resonances
We will designate generically the C-odd axial-vectors as

B and the C-even ones by A. The following Lagrangian de-
scribes B → Pγ coupling:

LB→Pγ = eCBFμν∂
μBνP, (45)

from which we easily deduce the amplitude γ γ → PP am-
plitude corresponding to B exchange,

W
μν
B = C̃B

m2
A − t

[(
s − 4m2

P + 4t
)
T

μν
1 + 1

2
T

μν
2

]

+ (t ↔ u), C̃B = 1

8
C2

B. (46)

As before, the couplings C̃B must be deduced from experi-
mental data on B → Pγ decay using

ΓB→Pγ = αC̃B

(m2
B − m2

P )3

3m3
B

. (47)

Working out the helicity amplitudes corresponding to (46),
one sees that they are simply related to the helicity ampli-
tudes associated with vector resonances:

HB++(C̃B,mB, s, t) = −HV++(C̃V → C̃B,mV → mB, s, t),

HB+−(C̃B,mB, s, t) = HV+−(C̃V → C̃B,mV → mB, s, t)

(48)

from which one easily deduces the imaginary parts of the
partial-wave projections from (44).

• Tensor resonances
The Lagrangian coupling a tensor meson (quantum num-

bers 2++) to a photon and a pseudo-scalar meson must have
the following form:

LT Pγ = eCT εμναβFμνT
λ
α ∂λ∂βP . (49)

From this, we can first deduce the relation between the decay
width and the coupling constant

ΓT →Pγ = αC̃T

(m2
T − m2

P )5

5m5
T

, C̃T = C2
T

16
. (50)

After a small calculation we can obtain the form of the
γ γ → PP amplitude generated by tensor meson exchange

W
μν
T = AT (s, t)T

μν
1 + BT (s, t)T

μν
2 + (t ↔ u) (51)

with

BT (s, t) = C̃T [(t + m2
π )2 + 4m2

T (s − m2
π )]

2m2
T (m2

T − t)
,

(52)

AT (s, t) = 2
(
s − 4m2

π − 4t
)
BT (s, t) − 8C̃T (t − m2

π )2

m2
T − t

.

From here, we can construct the helicity amplitudes and
their projections. We quote below the imaginary parts of
these along the left-hand cut

1

π
Im h̄T

0,++(s) = −4C̃T

m2
T

βπ(s)
[4s + 3sT ]θ(−s − sT ),

1

π
Im h̄T

2,++(s) = −2C̃T

m2
T

βπ(s)

(
3X2

T (s) − 1
)

× [4s + 3sT ]θ(−s − sT ),

1

π
Im h̄T

2,+−(s) =
√

6

4
C̃T sβπ (s)

(
X2

T (s) − 1
)2

× [4s + sT )]θ(−s − sT ). (53)

• Axial-tensor resonances
For illustrative purposes, finally, let us consider axial-

tensor (i.e. with quantum number JP = 2−) resonances. The
relevant Lagrangian has the following form:

LTAPγ = eCTA
FμνT

νλ
A ∂μ∂λP (54)

and we deduce the following relation with the radiative de-
cay width:

ΓTA→Pγ = αC̃TA

(m2
TA

− m2
P )5

5m5
TA

, C̃TA
= C2

TA

64
. (55)

Next, one computes the diagrams contributing to γ γ → PP

and one finds the result

BTA
(s, t) = C̃TA

[(t + m2
π )2 + 4m2

TA
(s − m2

π )]
2m2

TA
(m2

TA
− t)

,

ATA
(s, t) = 2

(
s − 4m2

π + 4t
)
BTA

(s, t) (56)

+ 8C̃TA
(t − m2

π )

(m2
TA

− t)
.

Constructing the helicity amplitudes, one notices the follow-
ing simple relations between the tensor and the axial-tensor
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amplitudes:

H
TA++(C̃TA

,mTA
, s, t)

= −HT++(C̃T → C̃TA
,mT → mTA

, s, t),
(57)

H
TA+−(C̃TA

,mTA
, s, t)

= HT+−(C̃T → C̃TA
,mT → mTA

, s, t).

Alternative expressions can be derived for the resonance
exchanges, which are somewhat more transparent physi-
cally and easier to generalize to arbitrary spin S. They in-
volve rotation functions dS

λ,λ′(zR) where zR is the center-
of-mass scattering angle for the crossed-channel amplitude
γπ → γπ at the resonance mass,

zR = 1 + 2st

(t − m2
π )2

∣∣∣∣
t=m2

R

= 1 + 2s

sR
(58)

(using (43)) and generalized Legendre polynomials
P m

J (XR). The vector-exchange partial-wave helicity ampli-
tudes can be expressed as

1

π
Im h̄V

0,++(s) = −4C̃V

m2
V sV√

s(s − 4m2
π )

P 0
0 (XV )

× d1
1,−1(zV )θ(−s − sV ),

1

π
Im h̄V

2,++(s) = −4C̃V

m2
V sV√

s(s − 4m2
π )

P 0
2 (XV )

(59)
× d1

1,−1(zV )θ(−s − sV ),

1

π
Im h̄V

2,+−(s) = −
√

6

3
C̃V

m2
V sV√

s(s − 4m2
π )

P 2
2 (XV )

× d1
1,1(zV )θ(−s − sV ).

Analogously, the tensor exchange amplitudes involve the ro-
tation functions d2

λ,λ′(zT )

1

π
Im h̄T

0,++(s) = −4C̃T

m2
T s2

T√
s(s − 4m2

π )
P 0

0 (XT )

× d2
1,−1(zT )θ(−s − sT ),

1

π
Im h̄T

2,++(s) = −4C̃T

m2
T s2

T√
s(s − 4m2

π )
P 0

2 (XT )

(60)
× d2

1,−1(zT )θ(−s − sT ),

1

π
Im h̄T

2,+−(s) = −
√

6

3
C̃T

m2
T s2

T√
s(s − 4m2

π )
P 2

2 (XT )

× d2
1,1(zT )θ(−s − sT ).

From these expressions, it is easy to guess the form of the
amplitudes for an arbitrary angular momentum J , or gener-

Table 1 Signs of the imaginary parts of the helicity amplitudes as gen-
erated from various resonance exchanges

λλ′ V A T TA

++ − + + −
+− − − + +

ated by the exchange of a meson of arbitrary spin S. Because
of the polynomial functions dS

λ,λ′(1 + 2s/sR), the behavior
of the amplitudes as a function of s becomes worse as the
spin S of the exchanged resonance increases. As usual, one
expects that a Regge-type regularization will occur upon in-
cluding an infinite set of resonances. In practice, one can
simulate this by introducing a cutoff on the left-cut integra-
tion.

Let us make a remark on the signs of these resonance am-
plitudes. Varying s from −∞ to −sR , the quantity XR(s)

varies from −1 to 1. The Legendre polynomial P2(XR)

passes through a zero, implying that Im h̄R
2,++ changes sign

while the amplitudes Im h̄R
2,+− and Im h̄R

0,++ do not. This
feature partly explains why, upon integration over s, the +−
D-wave amplitude is larger than the ++ one. Furthermore,
there are alternating signs between the various resonance
contributions: see Table 1. The table illustrates that the signs
corresponding to a spin S and a spin S +1 resonance are op-
posite (this can be shown to be true for arbitrary S). Further-
more, for the ++ amplitudes, the signs alternate between
C-even and C-odd resonance contributions. The resulting
behavior of some of the integrands from which the left-cut
functions are computed is illustrated in Fig. 2. This figure il-
lustrates the numerical importance of the tensor contribution
in the helicity +− amplitude.

4.3 Phenomenological determination of the coupling
constants:

• Neutral resonances
The neutral resonances which can decay into a photon

and a π0 must be odd under charge conjugation. This is
the case of the vector mesons ρ0, ω and their properties are
rather well known experimentally. The results from the PDG
[42] and the corresponding values of the couplings C̃V are
collected in Table 2 below including also the result for the
K∗0(892).

The experimental information concerning the C-odd ax-
ial meson radiative decays is not as detailed as in the
case of the vector mesons. The PDG quotes a result for
b+

1 (1235) decay: Γ (b+
1 (1235) → π+γ ) = 240 ± 60 KeV,

whereas the corresponding radiative widths of the neutral
axials b0

1(1235) and h1(1170) have not yet been measured.
A rough estimate of these, using nonet symmetry, is:

C̃b0
1(1235) � C̃b+

1 (1235), C̃h0
1(1170) � 9C̃b+

1 (1235). (61)
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Fig. 2 Left-cut integrand for h0
0,++(0) (upper figure, see (23)) and

h0
2,+−(0) (lower figure, see (30)) illustrating the role of the various

contributing resonances

Table 2 Radiative widths of neutral vector mesons and of neutral C-
odd axial-vector mesons from the PDG [42] and the corresponding
couplings C̃R

Γ (keV) C̃R (GeV−2)

ω → π0γ 703 ± 25 0.66 ± 0.023

ρ0 → π0γ 89 ± 12 0.09 ± 0.01

φ → π0γ 5.4 ± 0.5 (0.2 ± 0.02)10−2

K∗0 → K0γ 117 ± 10 0.20 ± 0.02

h1(1170) → π0γ − �0.45

b1(1235) → π0γ − �0.05

K1(1270) → K0γ 73 ± 29 0.024 ± 0.010

K1(1400) → K0γ 280 ± 46 0.063 ± 0.010

Concerning the strange axials, we can use here the ex-
perimental results on the radiative decays of the neutral
K1(1270), K1(1400) which can be found in the PDG. We
collect this information and the results for the C̃B couplings
in the lower part of Table 2. Finally, both C-odd and C-even
axial-tensor mesons are expected to exist in the quark model
with a mass around 1.7 GeV [45]. Experimentally, the C-
even axial-tensor meson π2(1670) is mentioned in the PDG,

Table 3 Same as Table 2 for charged vectors, axial-vectors and tensor
resonances

Γ (keV) C̃R (GeV−2)

ρ+ → π+γ 68 ± 7 0.066 ± 0.007

K∗+ → K+γ 50 ± 5 0.085 ± 0.009

a+
1 (1260) → π+γ 640 ± 240 0.15 ± 0.06

b+
1 (1235) → π+γ 230 ± 60 0.05 ± 0.01

K+
1 (1270) → K+γ − � 0.20

K+
1 (1400) → K+γ − � 0.00

a+
2 (1320) → π+γ 287 ± 30 0.052 ± 0.005

K∗+
2 (1430) → K+γ 241 ± 50 0.053 ± 0.011

but not the C-odd. The decay width of the π2(1670) into γπ

is not known.

• Charged resonances
Here, we can have contributions from vector mesons

ρ+(770), K∗+(892) and from C-odd and C-even axial-
vector mesons a+

1 (1260), b+
1 (1235), K+

1 (1270), K+
1 (1400).

We have also considered the contributions from the tensor
mesons a+

2 (1320), K∗+
2 (1430) since their masses are com-

parable to those of the axial-vectors. The relevant couplings
C̃V for the vector mesons in the charged case can be deduced
from experiment and are collected in Table 3. In the case
of the axial-vectors, results are available for the b+

1 (1235)

[46] as well as for the a+
1 (1260) [47] from Primakoff ex-

periments. We must however keep in mind that results from
photoproduction experiments [48, 49] suggest that the ra-
diative width of the a+

1 (1260) could actually be smaller
than claimed in [47]. Concerning the charged strange axi-
als, K1(1270), K1(1400), unfortunately, no experimental in-
formation is available on their radiative widths. Rough esti-
mates can again be made using nonet symmetry, which leads
to the following relations:

C̃K0
1 (1270) + C̃K0

1 (1400) = 4C̃b+
1 (1235),

(62)
C̃K+

1 (1270) + C̃K+
1 (1400) = C̃b+

1 (1235) + C̃a+
1 (1260).

The first relation is obeyed by the experimental results
within a factor of two. In order to determine the couplings
C̃K+

1 (1270) and C̃K+
1 (1400) separately we note that one of

them should be enhanced relative to the other by the Lip-
kin mechanism [50]. It seems plausible that it should be
C̃K+

1 (1270) because its main decay mode is via K+ρ0 which

can produce K+γ via vector meson dominance.
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5 Pion polarizabilities and chiral symmetry constraints

5.1 Polarizabilities

Polarizabilities are important observables which probe the
structure of the pion. Using crossing symmetry and analyt-
icity one can relate the amplitudes γ γ → π+π−, π0π0 at
t = m2

π and small s to the electric and magnetic polariz-
abilities of the charged and the neutral pion respectively.
These pionic observables have been computed in Chiral per-
turbation theory at next to leading order [24, 25] and then
at next-to-next to leading order [51–54]. Some of these re-
sults which are relevant to our analysis will be recalled in the
next subsection. There are simple relations between the sub-
traction constants introduced in the dispersive relations for
the partial waves and the electric/magnetic polarizabilities
of the pion. From the partial waves with J = 0 and J = 2
which are involved in our analysis we can access the dipole
and the quadrupole polarizabilities. We list below the rel-
evant formulas. The polarizabilities of the neutral pion are
defined as follows from the expansions of Hn++ and Hn+−
around s = 0, t = m2

π (see e.g. [53]):

2α

mπ

Hn++(s, t = m2
π )

s

= (α1 − β1)π0 + s

12
(α2 − β2)π0 + · · · ,

(63)
−2α

mπ

Hn+−(s, t = m2
π )

s

= (α1 + β1)π0 + s

12
(α2 + β2)π0 + · · ·

(the minus sign in from of Hn+− is associated with our choice
for the photon polarization vectors). The charged pion po-
larizabilities are defined by the expansion of the ampli-
tudes after removing the Born term, i.e. defining Ĥ c

λλ′ =
Hc

λλ′ − H
c,Born
λλ′ ,

2α

mπ

Ĥ c++(s, t = m2
π )

s

= (α1 − β1)π+ + s

12
(α2 − β2)π+ + · · · ,

(64)
−2α

mπ

Ĥ c+−(s, t = m2
π )

s

= (α1 + β1)π+ + s

12
(α2 + β2)π+ + · · · .

Performing the partial-wave expansion, the J = 0 and
J = 2 partial waves are the only ones which contribute to
the dipole and quadrupole polarizabilities.

The polarizabilities are simply related to the subtraction
constants in the dispersive representations. Comparing with

those (23) (26) for h0
0,++ and h2

0,++ we obtain for the polar-
izability differences

(α1 − β1)π+ = − 1√
6

2α

mπ

(√
2b(0) + b(2)

)
,

(65)

(α1 − β1)π0 = − 1√
3

2α

mπ

(
b(0) − √

2b(2)
)
.

Similarly, the polarizability sums are obtained from the sub-
traction constants dI which appear in the J = 2 spin-flip
amplitudes hI

2,+− (see (29), (30))

(α1 + β1)π+ = −10αmπ

(√
2d(0) + d(2)

)
,

(66)
(α1 + β1)π0 = −10

√
2αmπ

(
d(0) − √

2d(2)
)
.

Considering the quadrupole polarizabilities now, we list be-
low the polarizabilities defined for I = 0 and I = 2 ampli-
tudes which can be easily combined using (4). For the po-
larizability differences, we get

(α2 − β2)
(0) =24α

mπ

(
Ω̇11b

(0) + Ω̇12b
(0)
K + b

′(0)

+ 10m2
πc(0)

)
, (67)

(α2 − β2)
(2) =24α

mπ

(
Ω̇2

0 b(2) + b
′(2) + 10m2

πc(2)
)
.

For the sum of the quadrupole polarizabilities, we get

(α2 + β2)
(0) = 120

√
6mπα

(
Ω̇0

2d(0) + d ′ (0)
)
,

(68)
(α2 + β2)

(2) = 120
√

6mπα
(
Ω̇2

2d(2) + d ′ (2)
)
.

In these formulas the derivatives of the Omnès functions at
s = 0 appear, denoted by, e.g. Ω̇11. In (68) the quantities
d ′ (0), d ′ (2) are given by sum rules:

d ′ (I ) = L
(I)
3,+− + R

(I)
3,+− (69)

where the integrals are defined in (33). Finally, the subtrac-
tion parameter b

(0)
K which appears in the analysis through

coupled channel unitarity is related to the I = 0 kaon polar-
izability as follows:

(α1 − β1)
(0)
K =

√
2α

mK

b
(0)
K . (70)

5.2 Constraints from chiral symmetry

Chiral symmetry constrains the amplitudes γ γ → π0π0,
π+π− for small values of the Mandelstam variables s, t .
Computations up to NNLO in the chiral expansion have
been performed [51–54]. At this order, the amplitudes in-
volve 13 coupling constants from the O(p6) chiral La-
grangian. More precisely, three combinations of such cou-
plings are involved which we will denote ar

1, ar
2, br for π0π0
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and ãr
1, ãr

2, b̃r for π+π−. Most of the O(p6) couplings are
as yet undetermined, but in the case of π0π0 we can make
use of a chiral sum rule for one coupling. We explain this
below. We also recall the chiral expressions for the pion po-
larizabilities which allows one to assess which chiral con-
straints can be used in the fits to the experimental data.

(a) π0π0:
The dipole polarizabilities of the neutral pion have the

following expressions in ChPT, in terms of the coupling
combinations ar

1, ar
2, br :

(α1 − β1)π0 = α

16π2F 2
πmπ

[
−1

3

+ m2
π

16π2F 2
π

(
ar

1 + 8br + X1−(μ)
)]

, (71)

(α1 + β1)π0 = αmπ

(16π2F 2
π )2

[
8br + X1+(μ)

]

where the quantities X1−(μ), X1+(μ) involve chiral loga-
rithms and known O(p4) couplings. Their detailed expres-
sions can be found in Ref. [53]. The chiral expressions for
the quadrupole polarizabilities read

(α2 − β2)π0 = α

16π2F 2
πm3

π

[
156

45

+ m2
π

16π2F 2
π

(
12

(
ar

2 − 2br
) + X2−(μ)

)]
,

(72)

(α2 + β2)π0 = α

(16π2F 2
π )2mπ

[
−5009

27

+ 13435π2

720
+ 16

45
l̄2

]
.

Based on resonance model estimates for the O(p6) cou-
plings, numerical values for the polarizability differences at
O(p6) were obtained [53]. We display them below together
with the O(p4) values, which illustrates that O(p6) effects
can be rather large for these observables:

O(p4) O(p6)

(α1 − β1)π0 = −1.0, −1.9 (10−4 fm3)

(α2 − β2)π0 = 20.7, 37.6 (10−4 fm5).

(73)

The reliability of naive resonance saturation models has not
been established for O(p6) couplings. Here, we will only
make use of a model independent estimate for the single
coupling cr

34. This estimate is based on a chiral sum rule [55,
56] associated with differences of correlators of two vec-
tor currents: 〈V 3V 3 − V 8V 8〉 or 〈V udV du −V usV su〉, from
which the SU(3) coupling Cr

61 can be determined. Using
three-flavor ChPT and matching to two-flavor ChPT it can
be turned into an evaluation of the coupling cr

34 (a simplified

version of this sum rule was used earlier in Ref. [57]). Such
matching relations have been obtained recently by Gasser et
al. [58] for the Lagrangian operators which do not vanish in
the limit mu = md = 0. We can obtain the matching relation
for cr

34 by going to this limit after taking a derivative with
respect to mu + md . Using the O(p6) ChPT calculations of
the 〈V 3V 3〉 correlator performed in Ref. [59], and taking the
derivative with respect to m2

π one finds the following match-
ing formula:

cr
34 = F 2

192 × 16π2m̄2
K

+ Cr
61 + 2Cr

62

− 1

4 × 32π2

(
log

m̄2
K

μ2
+ 1

)(
Lr

9 + Lr
10

)

+ O
(
m̄2

K

)
(74)

(where m̄2
K = limmu=md=0 m2

K ). This relation allows one to
evaluate cr

34 provided we further invoke a large Nc argument
which implies that Cr

62(μ) should be suppressed compared
with Cr

61(μ) when μ � 1 GeV. The authors of Ref. [56] have
determined that

�V 3(0) − �V K (0) = (1.92 ± 0.27)10−2 (75)

(using the notations of Ref. [59] for the 〈V V 〉 correlation
functions). Using further the explicit chiral formulas from
this work [59] and the matching relation (74) above, we find

cr
34(μ = mρ) = (1.19 ± 0.43)10−5. (76)

Let us note the relation between cr
34 and the combinations

which appear in the π0π0 amplitudes

(
ar

1 + 8br
) + 2

(
ar

2 − 2br
) = 4094π4cr

34 ≡ ceff
34 (μ). (77)

In other terms, the combination 6(α1 − β1)π0 + m2
π (α2 −

β2)π0 depends on the single O(p6) coupling, c34. Numeri-
cally, using μ = mρ in the ChPT expressions, the following
relation is obtained between the dipole and quadrupole po-
larizabilities:

6(α1 − β1)π0 + m2
π0(α2 − β2)π0

= [
6.20 + 0.25ceff

34 (mρ)
]
10−4 fm3 (78)

with ceff
34 (mρ) = 4.75 ± 1.71.

(b) π+π−:
In the case of the charged pion, the dipole polarizabili-

ties are given in terms of l̄6 − l̄5 at O(p4) and involve three
combinations of couplings ãr

1, ãr
2, b̃r at O(p6)

(α1 − β1)π+ = α

16π2F 2
πmπ

[
2

3
(l̄6 − l̄5)
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+ m2
π

16π2F 2
π

(
ãr

1 + 8b̃r + X̃1−(μ)
)]

, (79)

(α1 + β1)π+ = αmπ

(16π2F 2
π )2

[
8b̃r + X̃1+(μ)

]
.

The fully explicit expressions can be found in Refs. [52, 54].
The quadrupole polarizabilities are given as follows:

(α2 − β2)π+ = α

16π2F 2
πm3

π

[
2 + m2

π

16π2F 2
π

× (
12

(
ãr

2 − 2b̃r
) + X̃2−(μ)

)]
,

(α2 + β2)π+ = α

(16π2F 2
π )2mπ

[
−2062

27

+ 10817π2

1440
+ 8

45
l̄1 + 8

15
l̄2

]
. (80)

Unfortunately, for the charged pion, there is no known
model independent information4 on either of the three com-
binations ãr

1, ãr
2, b̃r . In this case, we will accept the estimates

of Ref. [54] stating that the polarizability difference should
lie in the range (α1 − β1)π+ ∈ [4.70,6.70] × 10−4 fm3.

6 Some details on the calculations

6.1 Inputs for the ππ T-matrix

We describe here our inputs for ππ scattering amplitudes
which are needed for the S and the D waves. At medium
energies ππ → ππ phase-shifts and inelasticities have been
measured in production experiments (see [61] for a re-
view). Considerable progress has been achieved recently in
measuring phase-shifts at very low energies as well as the
I = 0,2 S-wave scattering lengths [10–13]. In our analysis,
the low-energy region is emphasized in the integrals by the
s = 0 subtractions. Interpolating between the medium- and
low-energy regions is controlled by the set of Roy equations
[62].

I = 0
Let us consider the S-wave at first. As our main input,

we will use the Roy equations results from Ref. [63] for
the I = 0 S-waves in the energy range E ≤ 0.8 GeV. In the
range E > 0.8 GeV we perform fits to the experimental re-
sults of Ref. [41].5 Below 1 GeV, we will also make use of

4A soft pion theorem due to Terazawa [60] has sometimes been applied
to the γ γ → π+π− amplitude. The theorem, however, applies to the
amplitude γ ∗(q)γ ∗(−q) → π+(0)π−(0) which is unrelated to γ γ →
π+π−: it involves different chiral coupling constants.
5It is likely that the phase-shift determinations in the region E �
1.5 GeV must be updated [64, 65]. This region plays a minor role in
our analysis

Fig. 3 S-wave I = 0 ππ phase-shifts below 1 GeV: comparison of
two determinations [63, 67] used in our analysis

the phase-shift determinations of Refs. [66, 67]. These also
use the Roy equations as well as other dispersion relations as
constraints. The phase-shifts differs from [63] by a few de-
grees in the matching point region E � 0.8 GeV: see Fig. 3.
The differences in the results will serve us in estimating the
errors.

A well known feature of ππ scattering with I = J = 0
is the sharp onset of inelasticity when the energy passes
the KK̄ threshold, which is caused by the f0(980) reso-
nance. In the energy range which interest us here, it is a
good approximation to ignore other inelastic channels and
implement exact two-channel unitarity. We can deduce the
required T-matrix elements directly from experimental in-
puts on ππ → ππ and ππ → KK̄ scattering in the physi-
cal region and make use of analyticity in the unphysical re-
gion. Also, we work in the isospin limit and assume that this
limit can be taken smoothly near the KK̄ threshold. Then,
the phase of the T -matrix element T12(s) ≡ g0

0(s) should
be equal to the phase of T11(s) ≡ f 0

0 (s) (i.e. to the elas-
tic ππ phase-shift) when

√
s = 2mK . This threshold phase

is actually not very well known at present: for illustration,
the K-matrix fit of Hyams et al. [41] gives δ(2mK) � 175◦
while the GKPY [67] analysis gives δ(2mK) � 227◦. Con-
cerning T12, the two experiments by Cohen et al. [68] and
Etkin et al. [69] are in disagreement close to the threshold,
for both the phase and the modulus. The results of Cohen
et al. are in accord with a large value of the threshold phase
δ(2mK) � 220◦ while, on the contrary, Etkin et al. favor a
value smaller than 150◦. An alternative possibility associ-
ated with the results of Etkin et al., is that of a fast variation
of the phase in between the K0K̄0 and the K+K̄− thresh-
olds, as suggested in Ref. [70]. In that case, the isospin limit
would not be smooth.

In order to probe the sensitivity of the γ γ data to the
value of the threshold phase, we have performed our fits al-
lowing it to vary in the range 150◦ ≤ δ(2mK) ≤ 220◦. Fig-
ure 4 (upper plot) shows our fits of the ππ → KK̄ phase
compared to the two data sets. Below the inelastic threshold,
in the region 0.8 GeV ≤ E ≤ 2mK we adopt the following
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Fig. 4 Fits to the ππ → KK̄ phase (upper figure) and the ππ

phase-shifts corresponding to different input values of the KK̄ thresh-
old phase

simple description of the ππ phase-shift, involving a Breit–
Wigner term plus a linear background:

δππ (
√

s) = a + bs + arctan
m0Γ0

m2
0 − s

,

0.8 GeV ≤ √
s ≤ 2mK. (81)

Assuming given values for the phase-shift at E = 0.8 GeV
and E = 2mK fixes the parameters a, b in terms of m0, Γ0.
These two parameters are then fitted to the experimental data
in this region. A few values corresponding to different inputs
for the threshold phase δππ (2mK) are collected in Table 4.
The mass and width of the f0(980) resonance in this simple
parametrization are in reasonable agreement with the PDG
values. The width is seen to be rather sensitive to the in-
put threshold phase. The corresponding curves are shown
on Fig. 4. At energies above 2mK , we describe both the
ππ → ππ and ππ → KK̄ phase-shifts by piecewise poly-
nomial functions fitted to experiment.

The modulus of T12(s) it needed in the unitarity equa-
tions (17) in the unphysical region 4m2

π ≤ s ≤ 4m2
K . Using

analyticity and elastic unitarity it can be determined by the
MO method. Since the left-hand cut of T12(s) can be ex-
pressed in terms of πK → πK phase-shifts this MO equa-
tion is actually one component of the set of coupled Roy–
Steiner equations (see e.g. [71]). We will employ here a sim-

Table 4 Mass and width (in GeV) of the f0(980) resonance arising
from fitting the parametrization (81) to the data in the range 0.8 GeV ≤
E ≤ 2mK with different threshold phase inputs

δππ (2mK) 180° 200° 210° 220°

m0 (GeV) 0.987 0.984 0.983 0.981

Γ0 (GeV) 0.056 0.039 0.033 0.028

plified but reasonably accurate representation,

T12(s) = (
A0 + s

(
A + Bs + Cs2))

× exp

[
s

π

∫ ∞

4m2
π

ds′ δ12(s
′)

s′(s′ − s)

]
(82)

where the two parameters A and A0 are chosen so as
to reproduce the values T12(0) = 0.097 and its derivative
Ṫ12(0) = 1.126 GeV−1 obtained from the full Roy–Steiner
equations [71] and the two remaining parameters B and C

are fitted to the experimental data in the range [1–1.5] GeV.
The modulus of T12 displays a peak associated with the

f0(980) resonance. As one can expect from the formula
(82), the size of this peak is strongly correlated with the
value of the threshold phase δ12(mK) . This is illustrated
in Fig. 5. The incompatibility between the results of Cohen
et al. and of Etkin et al. below E � 1.2 GeV is also apparent
on this figure. Under the assumption of two-channel unitar-
ity, T12 is related to the inelasticity parameter ηππ in ππ

scattering by

T12(s) =
√

1 − η2(s)

2
√

σπ(s)σK(s)
(83)

with σP (s) =
√

1 − 4m2
P /s. The results of Hyams et al. [41]

on the ππ inelasticity which have relatively large error bars
are compatible with both Refs. [68, 69]. Once the 2 × 2 T -
matrix is defined, the corresponding 2×2 Omnès matrix can
be computed numerically (see [36, 37] for details).

For the D-wave, we have relied on the two-channel K-
matrix representation of Hyams et al. [41] for represent-
ing the ππ phase-shift, updating the mass and width of the
f2(1270) resonance to the PDG values. In this case the KK̄

inelastic channel is not the physically dominant one below
1.3 GeV but is used as an effective description of inelastic-
ity. Furthermore, the inelasticity quoted by the PDG at the
energy of the f2(1270) is significantly smaller than the one
obtained by Hyams et al. In practice, we have used a one-
channel Omnès representation using the T -matrix phase in-
stead of the S-matrix phase in the inelastic region.

I = 2:
In this case we have ignored inelasticity. For the S-wave,

we use the Roy parametrization of Ref. [63] below 0.8 GeV
and make a simple fit to the data of Refs. [72, 73] at higher
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Fig. 5 Modulus of the ππ → KK̄ S-wave T -matrix element using
the representation (82) fitted to the data, for several values of the KK̄

threshold phase-shift

Fig. 6 ππ → ππ isospin I = 2 phase-shifts: S-wave (upper curve)
and D-wave (lower curve)

energy. For the D wave we make a simple fit to the data
found in the same references in the whole energy region.
These fits are shown in Fig. 6.

6.2 Experimental data

The main body of experimental data which we used are de-
scribed in the publications [6, 7] (charged pions) and [8, 9]
(neutral pions) by the Belle collaboration. They have mea-
sured differential cross sections in the range cos θ ≤ 0.6 for
π+π− and cos θ ≤ 0.8 for π0π0. We have taken into ac-
count all their data in the energy range E ≤ 1.28 GeV i.e.
520 data points for π0π0 and 1152 data points for π+π−.
In addition we have taken into account earlier experimen-
tal measurements of cross sections integrated over cos θ (in
the same ranges as indicated above) from the Crystall Ball
collaboration [74] (π0π0) as well as MarkII and Cello [75,
76] (π+π−). We have assigned equal weights to all the data

points. Obviously then, the χ2 is completely dominated by
Belle’s results.

6.3 Parameters to be fitted

The dispersive representations for the partial-wave ampli-
tudes as written in Sect. 3 involve 10 subtraction parameters.
Not all of them will be determined from the fit.

1. For the I = 2 D-waves we have actually assumed an un-
subtracted dispersion relation (i.e. the corresponding pa-
rameters c(2) and d(2) are determined from sum rules, see
(32)).

2. We ave used some chiral constraints. Firstly, we have
fixed the parameter b

(0)
K to be equal to its ChPT expres-

sion at one loop,

b
(0)
K = − (Lr

9 + Lr
10)

F 2
π

+ O
(
p6). (84)

Taking L9 and L10 from Table 2 of Ref. [77] gives

b
(0)
K � −0.40 ± 0.30. (85)

As a further constraint we use the known value of the
O(p6) coupling cr

34, as discussed in Sect. 5.2. This pro-
vides one relation among the seven remaining parameters
and leaves six parameters to be fitted. Finally, we per-
form the fits also imposing that the dipole polarizability
difference of the charged pion lies in the range allowed
by ChPT [54].

7 Results of the fit

Differential cross sections for γ γ → π0π0 and γ γ →
π+π− are evaluated with the J = 0 and the J = 2 ampli-
tudes computed as explained in Sects. 3, 4, 6. For γ γ →
π+π− all the J ≥ 4 amplitudes corresponding to the Born
term are also included. The values of the χ2 results after
minimization, corresponding to the various data sets, and
adding the statistical and the systematic errors in quadra-
ture, are shown in Table 5. These numbers correspond to a
choice of left-cut cutoff ΛL = −5 GeV2 and KK̄ threshold
phase δ(2mK) = 200°. The values of the χ2 for the various
data sets are similar (which indicates compatibility) with the
exception of the Mark II data [75], which show some devia-
tion. This feature was observed also in some previous analy-
sis [78]. In more detail, the ability of our constrained dis-
persive representations to reproduce the experimental data
is illustrated on Fig. 7 (for π0π0) and Fig. 8 (for π+π−).

The π0π0 amplitude is somewhat simpler than the π+π−
one due to the absence of the direct Born contribution in that
case. This can be seen from the shapes of the differential
cross sections. In the energy region under consideration here
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Table 5 χ2 results from the constrained six parameters fit

Ndata χ2/Ndata

π0π0 Belle 520 1.26

π0π0 Crystal Ball 21 1.13

π+π− Belle 1152 1.39

π+π− Cello 23 1.23

π+π− Mark II 67 2.85

Fig. 7 Differential cross sections (systematic and statistical errors
added in quadrature) and integrated cross section (Belle’s systematic
errors are shown separately) for γ γ → π0π0. The solid line is the re-
sult of our constrained fit

only the S-wave and two D-waves effectively contribute
to the γ γ → π0π0 amplitude. In the energy region of the
f2(1280) a significant contribution from the S-wave back-
ground is needed for reproducing the experimental cross
section. Our S-wave amplitude based on two-channel uni-
tarity cannot be quantitatively trusted in this region. Figure 9

Fig. 8 Same as Fig. 7 for γ γ → π+π−

Fig. 9 Contributions from the S and the D partial waves to the
γ γ → π0π0 integrated cross section

illustrates the role of the various partial waves in the inte-
grated cross section.

The dispersive representations are based on over-sub-
tracted dispersion relations. Assuming reasonable high-
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Table 6 Comparison of the subtraction parameters as determined from
a fit of the experimental data and as determined from sum rules, as
a function of the cutoff ΛL on the left-cut integration. Units are in
appropriate powers of GeV

b
′(0) b

′(0)
K b

′(2) c0 d0

Fit −7.99 −7.16 3.47 0.22 −0.48

Sum Rule

ΛL = −5 −6.00 −5.61 3.29 0.19 −0.54

ΛL = −3 −7.62 −6.84 3.22 0.10 −0.57

energy behavior, five of the subtraction parameters could be
written as sum rules (see Sect. 3.1). In practice, the result of
such sum rules depend on the cutoff ΛL that one introduces
on the left-hand cut integration (since the precise behavior
of the integrand for large negative s is not known). Table 6
shows the numerical (central) values of these parameters, as
generated by the fit, and the sum-rule evaluations. The table
shows that, for physically reasonable values of the cutoff,
ΛL � −3,−5 GeV2, the fitted values are qualitatively in
agreement with the sum-rule ones.

• f0(980) region:
Our parametrization of the input ππ phase-shifts allows

for some freedom to vary the value of the phase-shift at
the KK̄ threshold. While the overall χ2 is hardly sensitive
to this small energy region, Belle’s data provide a detailed
picture of the f0(980) peak because of the large statistics.
A comparison of our results corresponding to different val-
ues of the threshold phase-shift δ(2mK), with Belle’s data,
is illustrated on Fig. 10. For clarity of the figure, the sys-
tematic errors are not shown, in this region they are of the
order of 12 nb for π+π− and 3.5 nb for π0π0. In the case of
π0π0, comparison with the data favors values of the thresh-
old phase δ(2mK) � 180◦: for smaller values the peak is too
flat and displaced to the right. The value δ(2mK) � 200◦
eventually provides the closest agreement with the exper-
imental peak. The shape of the f0(980) in π0π0 and in
π+π− is predicted to differ because of the different sign
of the interference between the I = 0 resonant amplitude
and I = 2 amplitude. There is some indication of this fea-
ture in the data. Comparing the MO results with the central
values of the data for π+π− one must keep in mind that the
systematics are larger than for π0π0. However, essentially
the same value of the threshold phase δ(2mK) � 200◦ also
provides the best agreement with the shape of the f0(980)

peak. When δ(2mK) gets smaller than �170◦ the structure
resembles a cusp rather than a peak. Belle’s statistics are
very high for π+π− and the energy bins ΔE = 5 MeV are
smaller than the spacing between the K0K̄0 and the K+K−
thresholds (�8 MeV, the two thresholds are indicated by ar-
rows in Fig. 10). Belle’s data are compatible with a small
isospin breaking at the KK̄ threshold since agreement with

Fig. 10 Integrated cross sections in the region of the f0(980) peak.
The solid, dashed and dotted curves are the result of our MO represen-
tation corresponding to three values of the ππ phase-shift at the KK̄

threshold. The long-dashed curves correspond to using the phase-shifts
of Ref. [67]. The experimental results of Belle [6, 8] are shown with
their statistical errors only

the MO amplitude (which has no isospin breaking) in this
region is not worse than elsewhere. A strong isospin break-
ing scenario has been proposed by Au et al. [70], according
to which the ππ → KK̄ phase drops very sharply in be-
tween the two thresholds. Such a scenario is also not ruled
out by Belle’s data. Isospin breaking near the KK̄ thresh-
old involves a0(980) − f0(980) mixing. Studies of how this
affects the shape of the a0(980) peak have been performed
(e.g. [79, 80]).

• Low-energy region, pion polarizabilities
Next, we consider the low-energy region. Figure 11

shows our result for the integrated cross sections in this re-
gion and also shows, for comparison, the result from ChPT
calculations at NLO and NNLO. As another comparison,
we show in Fig. 12 the amplitude H++(s)/s in the sub-
threshold region normalized as in Fig. 8 of Ref. [51] (above
the threshold the modulus is shown). In this region, the dis-
persive amplitude lies rather close to the chiral amplitudes.
In particular, it has an Adler zero close to s = m2

π as has
been anticipated in Ref. [22]. The differences between the
dispersive results and ChPT are to be attributed to effects of
chiral order O(p8) and also to some differences in O(p6)

coupling constants (see below).
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Fig. 11 Integrated γ γ cross sections at low energy. The experimental
results from [74, 75] are shown and also the results from ChPT calcu-
lations as given in [53, 54]. The solid line is the result from the MO
amplitudes

Fig. 12 Amplitude H++(s, t = u)/s in the sub-threshold region and
|H++(s, t = u)|/s above the threshold (as in Fig. 8 of Ref. [51]) com-
pared to ChPT results

Expanding the γ γ amplitudes around s = 0 with t = m2
π ,

one accesses pion polarizabilities (see Sect. 5 ). The results
for these quantities deduced from our fitted amplitudes are
collected in Table 7 and compared with the results from
ChPT at NNLO as given in [53, 54]. Our fit was performed
with the constraint that for the charged pion, the polariz-
ability difference (α1 − β1)π+ should lie within the range
of the ChPT calculation. The fit prefers the lowest value
in the allowed range. This trend differs from the result of
Fil’kov and Kashevarov [82] who fitted the charged ampli-
tude only. For the neutral pion, we have imposed a con-
straint between the dipole and the quadrupole polarizabil-

Table 7 Results for dipole and quadrupole polarizabilities (in units
of 10−4 fm3 and 10−4 fm5 respectively) of the π0 and π+ compared
with the values from ChPT at O(p6) associated with a model for the
LEC’s (from Ref. [53] for the π0, and [54] for the π+. The numbers
in brackets correspond to using the ENJL model [81] for the LEC’s).
The central values shown correspond to a fit with a left integration
cutoff ΛL = −5 GeV2. The first error corresponds to the variation of
the input parameters and the second error reflects the uncertainties in
the experimental γ γ data

π0 Fit ChPT

(α1 − β1)π0 −1.25 ± 0.08 ± 0.15 −1.9 ± 0.2

(α1 + β1)π0 1.22 ± 0.12 ± 0.03 1.1 ± 0.3

(α2 − β2)π0 32.1 ± 0.9 ± 1.9 37.6 ± 3.3

(α2 + β2)π0 −0.19 ± 0.02 ± 0.01 0.04

π+

(α1 − β1)π+ 4.7 5.7 ± 1.0

(α1 + β1)π+ 0.19 ± 0.09 ± 0.03 0.16[0.16]
(α2 − β2)π+ 14.7 ± 1.5 ± 1.4 16.2[21.6]
(α2 + β2)π+ 0.11 ± 0.03 ± 0.01 −0.001

ities (see (78)). The result for the polarizability difference
(α1 − β1)π0 is then in acceptable agreement with the ChPT
prediction. Our results for the dipole polarizability sums are
in agreement with ChPT. For the quadrupole polarizability
differences, our results are slightly smaller than ChPT. This
corresponds to somewhat different results for the chiral cou-
pling constant combinations ar

1, ar
2 and br for which simple

models have been used in Refs. [53, 54]. Table 8 shows the
values of these constants resulting from the fit and compared
with those from a resonance model and also from the ENJL
model [81]. We note that, in the NJL model, the dipole and
quadrupole polarizabilities can be calculated directly, e.g.
[83, 84]. Our predictions differ from O(p6) ChPT for the
sums of the quadrupole polarizabilities. The O(p6) chiral
couplings cancel out in the expressions of these observables.
As a consequence, they are expected to be sensitive to ef-
fects of chiral order p8 [54]. Let us also mention that our
results for (α2 − β2)π0,π+ are somewhat smaller than those
obtained in Refs. [82, 85],

(α2 − β2)π0 = (39.70 ± 0.02) × 10−4 fm5,
(86)

(α2 − β2)π+ = (
25.0+0.8

−0.3

) × 10−4 fm5

from fitting subtracted dispersive representations (they used
a combination of s-fixed and t-fixed dispersion relations) of
γ γ → π+π− (Ref. [82]), γ γ → π0π0 (Ref. [85]), ampli-
tudes to experimental data. This difference in the results is to
be attributed, we believe, to our combining π0π0 and π+π−
data in the fits as well as our using a more sophisticated treat-
ment of the final-state interaction in the S-wave, which plays
a crucial role for polarizability differences. Our results for
the quadrupole polarizability sums (α2 + β2)π0,π+ , which
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Table 8 Values of the three combinations of O(p6) coupling con-
stants at the scale μ = 0.77 GeV involved in the γ γ → π0π0 ampli-
tude (second and third row) and in the γ γ → π+π− amplitude (fourth

and fifth row). The values from a resonance model used in Refs. [53,
54] and from the ENJL model [81] are compared with the values de-
duced from our fitted dispersive amplitudes. Errors are as in Table 7

π0 ar
1 ar

2 br

Fit −25.9 ± 1.6 ± 3.7 8.6 ± 0.8 ± 1.8 3.4 ± 0.4 ± 0.1

Res. mod. [ENJL] −39 ± 4 [−23.3] 13 ± 2 [14.9] 3 ± 0.5 [1.7]
π+ ãr

1 ãr
2 b̃r

Fit −25.0 ± 2.2 1.4 ± 1.8 ± 1.4 0.2 ± 0.3 ± 0.1

Res. mod. [ENJL] −3.2 [−8.7] 0.7 [5.9] 0.4 [0.4]

are controlled by the D-waves, are in rather good agreement
with [82, 85].

• Errors
The errors quoted in Tables 7, 8 have been estimated as

follows. The uncertainties associated with the description of
the left-hand cut has been evaluated by varying all the in-
put coupling constants as well as the integration cutoff Λ

which was varied between −3 and −10 GeV2. Concerning
the final-state interaction, we have varied the ππ scatter-
ing lengths (a0

0 = 0.220 ± 0.005, a2
0 = −0.0444 ± 0.0010)

and used, below E = 1 GeV two different representations
for the I = 0 S-wave ππ phase-shift [63, 67]. We have also
varied the resonance parameters in the D-wave. Concerning
the errors in the fitted parameters, the usual criterion based
on increasing the χ2 by one unit is based on the assumption
that the experimental errors are statistical and that the corre-
lation matrix is known. These assumptions are not valid in
the present case. We have therefore adopted a more phenom-
enological criterion, considering the χ2 per point instead of
the total one and allowing it to increase by 0.5. The errors
associated with the fitted parameters and those associated
with the input data are quoted separately in Tables 7, 8. The
π+ polarizability difference (α1 − β1)π+ is not completely
determined by the fit as it lies at the boundary of the allowed
value. No error can be quoted in this case. Correspondingly,
we quote a single error for the LEC combination ãr

1 in Ta-
ble 8.

8 Conclusions

We have reconsidered the MO dispersive representations
of photon–photon scattering amplitudes and applied them
to the recent results of the Belle collaboration [6–9]. This
method is general and follows from the non-perturbative fea-
tures of QCD. Its range of applicability can be extended up
to slightly above 1 GeV by taking into account the main
source of inelasticity in ππ scattering. Our description of
the left-hand cut includes the contributions of the vector,

axial-vector as well as tensor resonances i.e. all relevant res-
onances with masses up to 1.3 GeV. We found that the tensor
resonances play a significant role in the left-hand cut. We
employ MO representations somewhat different from previ-
ous works, keeping the left-cut parts in the form of spectral
integrals. In this manner, one avoids polynomial ambiguities
associated with propagators of particles with non-zero spin.
Furthermore, the spectral function displays in a clear way
how a regularization occurs in exchanges of resonances of
different types.

We have also argued that chiral constraints can be im-
posed on the subtraction constants using model independent
information on p6 chiral couplings. We have shown that a
sum rule on a single p6 parameter for π0π0 provides a non
trivial constraint. Making use of all these theoretical con-
straints, one obtains an amplitude containing only six para-
meters. We introduce a cutoff on the left-cut spectral inte-
gration, accounting for a Regge-type regularization, but no
other cutoff. In contrast to e.g. Refs. [28, 32], the QED Born
term is used unmodified by form-factors.

We have fitted the subtraction parameters to a data set
containing 541 points on γ γ → π0π0 and 1242 points on
γ γ → π+π−. This set is largely dominated by Belle’s re-
sults. We find good compatibility between Belle data on
π0π0 and the lower energy data from the Crystal Ball col-
laboration. In the case of π+π− we find compatibility be-
tween the data from Belle and the data from Cello as well as
the data from MarkII below 0.4 GeV. The compatibility with
the MarkII data in the range 0.4–1.0 GeV is more marginal.

In the region of the KK̄ threshold and the f0(980) peak,
we find reasonable agreement between Belle’s data and our
parametrization which assumes a smooth isospin limit. The
charged channel, however, does not rule out the possibil-
ity of some isospin violating effects in the shape of the
peak. The cross sections around the peak in both the neutral
and charged channels are best reproduced for values of the
threshold phase δ(2mK) � 200◦±20◦. From our calculation
we also obtain the amplitude γ γ → KK̄ for I = J = 0. It
is unfortunately difficult to probe this part against the exper-
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imental data on γ γ → K+K̄−,K0K̄0 since the experimen-
tal amplitudes contain admixtures from isospin I = 1.

We have shown that Belle’s data are compatible with the
pion polarizabilities predicted in ChPT. In the case of the π0

we have derived a refined value. We have also derived re-
sults for the quadrupole polarizabilities of both the charged
and neutral pion. Our results for the differences α2 − β2 are
somewhat smaller than those derived in Refs. [82, 85]. We
believe this to be due to our using more precise ππ phase-
shifts at low energies for the S-waves. It is clear, however,
that experimental data on photon–photon scattering at low
energies (i.e. below 0.5 GeV) are most efficient for deter-
mining pion polarizabilities with precision. It is hoped that
such experiments will be performed at facilities like KLOE2
or BESIII.

Acknowledgements The authors would like to thank the Belle col-
laboration and especially prof. S. Uehara for sending us their experi-
mental results and for correspondence. We also thank prof. B. Anantha-
narayan for carefully reading the manuscript and for comments. This
work is supported in part by the EU Contract No. MRTN-CT-2006-
035482 FLAVIAnet and by the EU project HadronPhysics2.

References

1. J. Bijnens, G. Colangelo, G. Ecker, Ann. Phys. 280, 100 (2000).
arXiv:hep-ph/9907333

2. J. Bijnens, G. Colangelo, G. Ecker, J. High Energy Phys. 9902,
020 (1999). arXiv:hep-ph/9902437

3. G. Colangelo, Nucl. Phys. A 827, 228C (2009)
4. J. Ahrens et al., Eur. Phys. J. A 23, 113 (2005). arXiv:nucl-ex/

0407011
5. A. Guskov (COMPASS Collaboration), Fizika B 17, 313 (2008)
6. T. Mori et al. (Belle Collaboration), J. Phys. Soc. Jpn. 76, 074102

(2007). arXiv:0704.3538 [hep-ex]
7. T. Mori et al. (Belle Collaboration), Phys. Rev. D 75, 051101

(2007). arXiv:hep-ex/0610038
8. S. Uehara et al. (Belle Collaboration), Phys. Rev. D 78, 052004

(2008). arXiv:0805.3387 [hep-ex]
9. S. Uehara et al. (BELLE Collaboration), Phys. Rev. D 79, 052009

(2009). arXiv:0903.3697 [hep-ex]
10. J.R. Batley et al. (NA48/2 Collaboration), Eur. Phys. J. C 54, 411

(2008)
11. J.R. Batley et al. (NA48/2 Collaboration), Phys. Lett. B 633, 173

(2006). arXiv:hep-ex/0511056
12. J.R. Batley et al. Eur. Phys. J. C 64, 589 (2009)
13. B. Adeva et al. (DIRAC Collaboration), Phys. Lett. B 619, 50

(2005). arXiv:hep-ex/0504044
14. S. Pislak et al. (BNL-E865 Collaboration), Phys. Rev. Lett. 87,

221801 (2001). arXiv:hep-ex/0106071
15. R. Oehme, Int. J. Mod. Phys. A 10, 1995 (1995). arXiv:hep-

th/9412040
16. R. Omnès, Nuovo Cimento 8, 316 (1958)
17. N.I. Muskhelishvili, Singular Integral Equations (Noordhof,

Groningen, 1953)
18. M. Gourdin, A. Martin, Nuovo Cimento 17, 224 (1960)
19. R.L. Goble, J.L. Rosner, Phys. Rev. D 5, 2345 (1972)
20. R.L. Goble, R. Rosenfeld, J.L. Rosner, Phys. Rev. D 39, 3264

(1989)
21. D. Morgan, M.R. Pennington, Phys. Lett. B 192, 207 (1987)
22. D. Morgan, M.R. Pennington, Phys. Lett. B 272, 134 (1991)

23. J.F. Donoghue, B.R. Holstein, Phys. Rev. D 48, 137 (1993).
arXiv:hep-ph/9302203

24. J.F. Donoghue, B.R. Holstein, Y.C. Lin, Phys. Rev. D 37, 2423
(1988)

25. J. Bijnens, F. Cornet, Nucl. Phys. B 296, 557 (1988)
26. K. Sundermeyer, A coupled channel analysis of the reactions

gamma + Gamma → Pi + Pi And Gamma + Gamma → K +
Anti-K. Preprint DESY 74/17

27. O. Babelon, J.L. Basdevant, D. Caillerie, M. Gourdin, G. Men-
nessier, Nucl. Phys. B 114, 252 (1976)

28. Y. Mao, X.G. Wang, O. Zhang, H.Q. Zheng, Z.Y. Zhou, Phys. Rev.
D 79, 116008 (2009). arXiv:0904.1445 [hep-ph]

29. G. Mennessier, Z. Phys. C 16, 241 (1983)
30. M. Boglione, M.R. Pennington, Eur. Phys. J. C 9, 11 (1999).

arXiv:hep-ph/9812258
31. J.A. Oller, L. Roca, C. Schat, Phys. Lett. B 659, 201 (2008).

arXiv:0708.1659 [hep-ph]
32. N.N. Achasov, G.N. Shestakov, Phys. Rev. D 77, 074020 (2008).

arXiv:0712.0885 [hep-ph]
33. G. Mennessier, S. Narison, W. Ochs, Phys. Lett. B 665, 205

(2008). arXiv:0804.4452 [hep-ph]
34. A.R. Edmonds, Angular Momentum in Quantum Mechanics

(Princeton University Press, Princeton, 1960)
35. M. Jacob, G.C. Wick, Ann. Phys. 7, 404 (1959) [Ann. Phys. 281,

774 (2000)]
36. J.F. Donoghue, J. Gasser, H. Leutwyler, Nucl. Phys. B 343, 341

(1990)
37. B. Moussallam, Eur. Phys. J. C 14, 111 (2000). arXiv:hep-ph/

9909292
38. F.E. Low, Phys. Rev. 96, 1428 (1954)
39. M. Gell-Mann, M.L. Goldberger, Phys. Rev. 96, 1433 (1954)
40. H.D.I. Abarbanel, M.L. Goldberger, Phys. Rev. 165, 1594 (1968)
41. B. Hyams et al., Nucl. Phys. B 64, 134 (1973). AIP Conf. Proc.

13, 206 (1973)
42. C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008)
43. P. Ko, Phys. Rev. D 41, 1531 (1990)
44. G. Ecker, J. Gasser, A. Pich, E. de Rafael, Nucl. Phys. B 321, 311

(1989)
45. S. Godfrey, N. Isgur, Phys. Rev. D 32, 189 (1985)
46. B. Collick et al., Phys. Rev. Lett. 53, 2374 (1984)
47. M. Zielinski et al., Phys. Rev. D 30, 1855 (1984)
48. G.T. Condo, T. Handler, W.M. Bugg, G.R. Blackett, M. Pisharody,

K.A. Danyo, Phys. Rev. D 48, 3045 (1993)
49. M. Nozar et al. (CLAS Collaboration), Phys. Rev. Lett. 102,

102002 (2009). arXiv:0805.4438 [hep-ex]
50. H.J. Lipkin, Phys. Lett. B 72, 249 (1977)
51. S. Bellucci, J. Gasser, M.E. Sainio, Nucl. Phys. B 423, 80 (1994)

[Erratum: Nucl. Phys. B 431, 413 (1994)]. arXiv:hep-ph/9401206
52. U. Bürgi, Nucl. Phys. B 479, 392 (1996). arXiv:hep-ph/9602429
53. J. Gasser, M.A. Ivanov, M.E. Sainio, Nucl. Phys. B 728, 31

(2005). arXiv:hep-ph/0506265
54. J. Gasser, M.A. Ivanov, M.E. Sainio, Nucl. Phys. B 745, 84

(2006). arXiv:hep-ph/0602234
55. K. Maltman, C.E. Wolfe, Phys. Rev. D 59, 096003 (1999).

arXiv:hep-ph/9810441
56. S. Dürr, J. Kambor, Phys. Rev. D 61, 114025 (2000). arXiv:

hep-ph/9907539
57. M. Knecht, B. Moussallam, J. Stern, Nucl. Phys. B 429, 125

(1994). arXiv:hep-ph/9402318
58. J. Gasser, C. Haefeli, M.A. Ivanov, M. Schmid, Phys. Lett. B 675,

49 (2009). arXiv:0903.0801 [hep-ph]
59. G. Amorós, J. Bijnens, P. Talavera, Nucl. Phys. B 568, 319 (2000).

arXiv:hep-ph/9907264
60. H. Terazawa, Phys. Rev. Lett. 26, 1207 (1971)
61. B.R. Martin, D. Morgan, G. Shaw, Pion–Pion Interactions in Par-

ticle Physics (Academic Press, London, 1976)

http://arxiv.org/abs/arXiv:hep-ph/9907333
http://arxiv.org/abs/arXiv:hep-ph/9902437
http://arxiv.org/abs/arXiv:nucl-ex/0407011
http://arxiv.org/abs/arXiv:nucl-ex/0407011
http://arxiv.org/abs/arXiv:0704.3538
http://arxiv.org/abs/arXiv:hep-ex/0610038
http://arxiv.org/abs/arXiv:0805.3387
http://arxiv.org/abs/arXiv:0903.3697
http://arxiv.org/abs/arXiv:hep-ex/0511056
http://arxiv.org/abs/arXiv:hep-ex/0504044
http://arxiv.org/abs/arXiv:hep-ex/0106071
http://arxiv.org/abs/arXiv:hep-th/9412040
http://arxiv.org/abs/arXiv:hep-th/9412040
http://arxiv.org/abs/arXiv:hep-ph/9302203
http://arxiv.org/abs/arXiv:0904.1445
http://arxiv.org/abs/arXiv:hep-ph/9812258
http://arxiv.org/abs/arXiv:0708.1659
http://arxiv.org/abs/arXiv:0712.0885
http://arxiv.org/abs/arXiv:0804.4452
http://arxiv.org/abs/arXiv:hep-ph/9909292
http://arxiv.org/abs/arXiv:hep-ph/9909292
http://arxiv.org/abs/arXiv:0805.4438
http://arxiv.org/abs/arXiv:hep-ph/9401206
http://arxiv.org/abs/arXiv:hep-ph/9602429
http://arxiv.org/abs/arXiv:hep-ph/0506265
http://arxiv.org/abs/arXiv:hep-ph/0602234
http://arxiv.org/abs/arXiv:hep-ph/9810441
http://arxiv.org/abs/arXiv:hep-ph/9907539
http://arxiv.org/abs/arXiv:hep-ph/9907539
http://arxiv.org/abs/arXiv:hep-ph/9402318
http://arxiv.org/abs/arXiv:0903.0801
http://arxiv.org/abs/arXiv:hep-ph/9907264


Eur. Phys. J. C (2010) 70: 155–175 175

62. S.M. Roy, Phys. Lett. B 36, 353 (1971)
63. B. Ananthanarayan, G. Colangelo, J. Gasser, H. Leutwyler, Phys.

Rep. 353, 207 (2001). arXiv:hep-ph/0005297
64. D.V. Bugg, B.S. Zou, A.V. Sarantsev, Nucl. Phys. B 471, 59

(1996)
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