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Introduction

Composite particle in external EM field

α, β electric and magnetic dipole polarizabilities

α >> βin NR case:

H atom: αH ∼ 3.8Å3 VH = 0.6Å3

Nucleons

αN ∼ 11× 10−4 fm3 βN ∼ 3× 10−4 fm VN ∼ 2.5 fm3

H = H0(A) + 2πα E
2 + 2πβ B

2 + · · ·



Pion polarizabilities

• very challenging to measure/extract from 
measurements

• important tests of chiral dynamics
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Current status
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1 INTRODUCTION

In classical physics the polarizability of a medium
or a composite system is the well!known characteristic
related to the response of the system to the presence of
an external electromagnetic field. If we consider a
dipole, the electric polarizability α is the proportion!
ality constant between the electric field and the elec!
tric dipole moment, while β is related to the magnetic
field and the magnetic dipole moment.

This concept can be extended to the case of com!
posite particles, like pions, kaons and others. In the
case of pion, the electric (α

π
) and magnetic (β

π
) polar!

izabilities characterize the response of the quark sub!
structure to the presence of an external electromag!
netic field in the πγ Compton!like scattering. These
parameters are fundamental ones for any theory
describing the pion structure.

The prediction of various theoretical models like
chiral perturbation theory, dispersion sum rules, QCD
sum rule and quark confinement models for polariz!
abilities of charged pions are presented in Table 1 (see
[1–6]). Different models predict that the α

π
 + β

π
 is

close to zero while the values for α
π
 – β

π
 are in a range

(6–14) × 10–4 fm3.
Several attempts to measure these quantities were

already done using different approaches (see Table 2,
[15]). The obtained results are affected by large uncer!
tainties and cannot be used for critic tests of theoreti!
cal predictions. New more precise measurements are
needed.

1. PRIMAKOFF REACTION

The Primakoff reaction π– + (A, Z)  π– + (A, Z) +
γ can be treated as Compton scattering of the pion off a
virtual photon, provided by the nucleus (see Fig. 1). The

1 The article is published in the original.

momentum transferred to the nucleus in the Primakoff

reaction is very small (Q2 ! /c2).

In the anti!laboratory system the differential cross
section is described by the formula

(1)

where  = (m
π
ω1/pbeam)2, m

π
 is the pion mass; ω1 is

the energy of the virtual photon; θ is the angle between
the real photon and the virtual photon directions;
FA(Q2) is the electromagnetic form factor of the
nucleus (FA(Q2) ≈ 1 for Q ! m

π
/c); α is the fine structure

constant;  [17] is the differentia] Compton cross
section for the scattering of photons on a point!like
spin!0 particle. The cross section depends on α

π
 + β

π
 at

forward angles and on α
π
 – β

π
 at backward angles. So,

via measurements of the cross section (Eq. (1)) vs. the
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Table 1. Theoretical predictions for (α
π
 + β

π
) and (α

π
 – β

π
)

Model Parameter 10–4 fm3

χPT α
π
 – β

π
5.7 ± 1.0

α
π
 + β

π
0.16

QCM α
π
 – β

π
7.05

α
π
 + β

π
0.23

QCD sum rules α
π
 – β

π
11.2 ± 1.0

Dispersion sum rules α
π
 – β

π
13.60 ± 2.15

α
π
 + β

π
0.166 ± 0.024
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photon energy and the scattering angle, one can
extract both α

π
 and β

π
.

All the theoretical models mentioned above pre!
dict that

 ! (2)

and performed experiments (see Table 2) confirm it.
So, to begin with, one can perform the measurement
of the pion polarizabilities under assumption that

(3)

In this case to extract pion polarizability α
π
 it is

enough to compare the measured differential cross
section dσ/dω1 or dσ/d(cosθ) and theoretically pre!
dicted for the point!like (unstructured) pion. Due to
the small scattering angles in the laboratory system
(typical angles are ~m

π
/E0, where E0 is the energy of

incoming pion), the relative precision of angular mea!
surements is much lower than the relative precision of
photon energy measurement. Therefore, the study of
energy spectrum of scattered photons is preferable and
the laboratory system is more convenient for such kind
of studies.

Using the ω variable, which is the relative energy of
emitted photon in lab. system:

(4)

the ratio R of the differential cross section dσ/dω for
pion with polarizability α

π
 to the corresponding differ!

α
π

β
π

+ α
π

β
π

–

α
π

β
π

+ 0.=

ω E
γ
/E0,=

ential cross section for the point!like pion (Born cross
section) cart be approximately expressed as [20]

(5)

The ratios R for the different values of α
π
 are pre!

sented in Fig. 2, from which one can see that the most
visible effects of the polarization correspond to large
values of ω.

2. THE GENERAL REQUIREMENTS 
ON THE EXPERIMENTAL SETUP 

FOR PRIMAKOFF REACTION STUDIES

Peculiarities of the Primakoff reaction put the gen!
eral requirements for the experimental setup, strategy
of data taking and analysis.
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Table 2. Experimental values of α
π
, β

π
, (α

π
 + β

π
), (α

π
 – β

π
)

Data Reaction Parameter 10–4 fm3

Serpukhov (α
π
 + β

π
 = 0) [12] πZ  πZγ α

π
6.8 ± 1.4 ± 1.2

Serpukhov [13] α
π
 + β

π
1.4 ± 3.1 ± 2.8

β
π

–7.1 ± 2.8 ± 1.8

Lebedev [7] γN  γNπ α
π

20 ± 12

Mami A2 [14] γp  γπ+n α
π
 – β

π
11.6 ± 1.5 ± 3.0 ± 1.5

PLUTO [8] γγ  π+
π

–
α
π

19.1 ± 4.8 ± 5.7

DM1 [9] γγ  π+
π

–
α
π

17.2 ± 4.6

DM2 [10] γγ  π+
π

–
α
π

26.3 ± 7.4

Mark II [11] γγ  π+
π

–
α
π

2.2 ± 1.6

Blobal fit: MARK II, VENUS, ALEPH, TPC/2γ, 
CELLO, BELLE (L. Fil’kov, V. Kashevarov) [15] γγ  π+

π
–

α
π
 – β

π

α
π
 + β

π

Global fit: MARK II, Crystal ball 
(A. Kaloshin, V. Serebryakov [16] γγ  π+

π
–

α
π
 – β

π
5.2 ± 0.95

13.0 1.9–
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0.18 0.02–
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Fig. 1. The diagram of the Compton scattering in inverse
kinematics (Primakoff scattering).
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Figure 1: The total cross section of the reaction γγ → π0π0.

Table 1: The dipole and quadrupole polarizabilities of the π0 meson
fit DSRs [2] ChPT

(α1 − β1)π0 −1.6 ± 2.2 [3] −3.49 ± 2.13 −1.9 ± 0.2 [11]
−0.6 ± 1.8 [9]

(α1 + β1)π0 0.98 ± 0.03 [3] 0.802 ± 0.035 1.1 ± 0.3 [11]
1.00 ± 0.05 [10]

(α2 − β2)π0 39.70 ± 0.02 [2] 39.72 ± 8.01 37.6 ± 3.3 [12]
(α2 + β2)π0 −0.181 ± 0.004 [2] −0.171 ± 0.067 0.04 [12]

use of the value of Γσ→γγ = (3.8 ± 1.5) keV in the analysis [2] leads to a strong deviation
from the experimental data on the total cross section of the process under consideration.

The values of the dipole and quadrupole polarizabilities found in the fits [2,3] are listed in
Table 1 together with results obtained in Refs. [9,10] and prediction of DSRs [2] and two loop
calculations in the frame of ChPT [11,12]. The obtained values of the sum and difference of
the dipole polarizabilities of π0 and the difference of its quadrupole polarizabilities do not
conflict within the errors with the predictions of DSRs and ChPT. However, there are very big
errors in the experimental values for the difference of the dipole polarizabilities. Therefore,
it is difficult to do a more unambiguous conclusion. As for the sum of the quadrupole
polarizabilities of π0, the DSR result agrees well with the experimental value, but the ChPT
predicts a positive value in contrast to experimental result. However, as it was noted in
Ref. [12], this quantity was obtained in a two-loop approximation, which is a leading order
result for this sum, and one expects substantial corrections to it from three-loop calculations.

It should be noted that the values of the difference and the sum of the quadrupole
polarizabilities found from the fit have very small errors. They are the errors of the fitting.
This is a result of a very high sensitivity of the total cross section of the process γγ → π0π0

at
√

t > 1500 MeV to values of these parameters. In order to estimate real values of errors
of these difference and sum, model errors should be added.

3

COMPASS preliminary απ± − βπ± = 3.8± 2.1



Compton amplitude @ low energy

Lab frame amplitude

T = − e2

Mπ
Q2

π ��1 · ��2
∗ + 4π(ᾱπω1ω2 �1 · ��2

∗ + β̄π �1 × �k1 · ��2
∗ × �k2) +O(ω4)

Dispersion relation: Baldin-Lapidus sum rule

ᾱ+ β̄ =
1

2π2

� ∞

ωth

dω
σ(γπ → X)

ω2
≥ 0

gives fundamental constraint



Polarizabilities in ChPT
originate at order     in chiral expansion p4

predicted at this order: ᾱπ + β̄π = 0

ᾱπ0 − β̄π0 = − α

48π2F 2
πMπ

∼ −1.0 [Bijnens & Cornet]

ᾱπ+ − β̄π+ =
α

24π2F 2
πMπ

(�6 − �5) ∼ 5.6

LECs from                      and< r2 >π+ π+ → e+νγ

[Teren’tev; Donoghue & Holstein]

�6 − �5 = 3.0± 0.3



γγ → ππ

ᾱπ − β̄π S− wave

ᾱπ + β̄π D− wave

ᾱπ ± β̄π =
1

2πMπ
(M+∓ −MBorn)|s=0,t=M2

π

M̄++(s, t = 0) = 2π
√
s(ᾱπ − β̄π)

M̄+−(s, t = 0) = 2π
√
s(ᾱπ + β̄π)



Problem with 
need for higher order in ChPT

γγ → π0π0

206 J.A. Oller et al. / Physics Letters B 659 (2008) 201–208

Fig. 5. Final results for the γ γ → π0π0 cross section. Experimental data are
from the Crystal Ball Collaboration. [1], scaled by 1/0.8, as | cos θ | < 0.8 is
measured and S-wave dominates. The solid line corresponds to CGL and the
dashed one to PY. The dot-dot-dashed line results after removing the axial vec-
tor exchange contributions. The band along each line represents the theoretical
uncertainty. The dotted line is the one loop χPT result [4,5] and the dot-dashed
one the two loop calculation [6].

T I=0
I (s − iε) = T I=0

II (s + iε). Then, Eq. (3.6) can be rewrit-
ten as

(3.7)F̃0(s) = F0(s)
(
1 + 2iρ(s)T I=0

II (s)
)
.

Around the σ pole, sσ ,

(3.8)T I=0
II = g2

σππ

sσ − s
, F̃0(s) =

√
2
gσγ γ gσππ

sσ − s
,

with gσππ the σ coupling to two pions such that Γ =
|gσππ |2β/16πM , for a narrow enough scalar resonance of
mass M . Notice as well the

√
2 factor in F̃0(s) to match with

the gσππ normalization used (the so-called unitary normaliza-
tion [42–44]). Then from Eqs. (3.7) and (3.8) it follows that

(3.9)
g2

σγ γ

g2
σππ

= −1
2

(
β(sσ )

8π

)2

F0(sσ )2.

Let us stress that this equation gives the ratio between the
residua of the S-wave I = 0 γ γ → ππ and ππ → ππ am-
plitudes at the σ pole position.

In order to derive specific numbers for the previous ratio in
terms of our dispersive approach one needs to introduce sσ . We
take two different values for sσ = (Mσ − iΓσ /2)2. From the
studies of unitary χPT [42–45] one has Mσ and Γσ around the
interval 425–440 MeV. The other values that we will use are
from Ref. [46], Mccl

σ = 441+16
−8 MeV and Γ ccl

σ = 544+18
−25 MeV,

where the superscript ccl indicates, in the following, values that
employ the σ pole position of Ref. [46]. The corresponding ra-
tios of the residua given in Eq. (3.9) are:
∣∣∣∣
gσγ γ

gσππ

∣∣∣∣ = (2.10 ± 0.25) × 10−3, sσ from Ref. [45],

(3.10)
∣∣∣∣
gσγ γ

gσππ

∣∣∣∣ = (2.06 ± 0.14) × 10−3, sσ from Ref. [46].

Both numbers are very similar despite that the imaginary parts
of the two s

1/2
σ differ by ∼ 20%. The result of [17], with which

we shall compare our results later, corresponds to the ratio in
Eq. (3.10) being 20% bigger at (2.53 ± 0.09)× 10−3 with sσ of
Ref. [46].

These ratios of residua at the σ pole position are the well
defined predictions that follow from our improved dispersive
treatment of γ γ → (ππ)I . However, the radiative width to γ γ

for a wide resonance like the σ , though more intuitive, has ex-
perimental determinations that are parameterization dependent.
This is due to the non-trivial interplay between background and
the broad resonant signal. An unambiguous definition is then
required [17,19]. We employ, as in Ref. [17], the standard nar-
row resonance width formula in terms of gσγ γ determined from
Eq. (3.9) by calculating the residue at sσ ,

(3.11)Γ (σ → γ γ ) = |gσγ γ |2
16πMσ

.

Nevertheless, the determinations of the radiative widths from
this expression and those from common experimental analyses
can differ substantially. The following example makes this point
clear.

From Ref. [45] one obtains |gσππ | = 2.97–3.01 GeV, corre-
sponding to the square root of the residua of the I = 0 S-wave
ππ amplitude, as in Eq. (3.8). If similarly to Eq. (3.11), one
uses the formula,

(3.12)Γσ = |gσππ |2β(Mσ )

16πMσ
,

the resulting width lies in the range 309–319 MeV, that is
around a 30% smaller than Γσ & 430 MeV from the pole po-
sition of Ref. [45]. This is due to the large width of the σ

meson which makes the |gσππ | extracted from the residue of
T I=0

II , Eq. (3.8), be smaller by around a 15% than the value
needed in Eq. (3.12) to obtain Γσ & 430 MeV. Similar effects
are then also expected in order to extract Γ (σ → γ γ ) from
the Eq. (3.11). Equations similar to this are usually employed
in phenomenological fits to data, e.g. see Ref. [47], but with
|gσγ γ | determined along the real axis. As a result of this dis-
cussion, one should allow a (20–30)% variation between the
results obtained from Eq. (3.11) and those from standard exper-
imental analyses that still could deliver a γ γ → ππ amplitude
in agreement with our more theoretical treatment for physical
values of s.

We shall employ the following values for |gσππ |. First we
take |gσππ | = 2.97–3.01 GeV [42–45]. With this value the re-
sulting two photon width from Eqs. (3.10) and (3.11) is

(3.13)Γ (σ → γ γ ) = (1.8 ± 0.4) KeV.

We also consider a larger value for |gσππ | since Γ ccl
σ [46] is

larger by a factor ∼ 1.3 than Γσ from Ref. [45]. One value is

|gσππ |ccl(1) & |gσππ |
(

Γ ccl(σ → ππ)

Γ (σ → ππ)

)1/2

= (1.127 ± 0.022)|gσππ |
(3.14)= (3.35 ± 0.08) GeV.
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where the increase in uncertainty compared to (113) is due to
the ChPT uncertainty in (α2 −β2)

π0
. In the remainder of the

paper we will make use of the improved value (114) when
referring to the ChPT predictions for pion polarizabilities.
Note that, as expected given the results of Table 6, our sum-
rule value of (α2 − β2)

π±
is consistent with the first ChPT

number quoted in Table 4, but it is not consistent with the
larger number found when the LECs of [68] are taken as
input.

8.2 Total cross section

Before performing the analytic continuation to the σ pole,
we wish to make sure that the amplitude on the real axis
is reasonably well described—at least up to

√
t = 1 GeV,

which we assess to be the region which will influence the
analytic continuation to the σ pole. The results for the cross
section are depicted in Figs. 5 and 6. Below the matching
point, the results for the once- and twice-subtracted formu-
lation are provided for both ChPT and GMM polarizabil-
ities. The uncertainty due to ππ input, represented by the
grey band, is estimated by the variation between CCL and
GKPRY phases and proves to be very small. The low-energy
region is totally dominated by the Born terms in the charged
process, but it is very sensitive to the σ in the neutral reac-
tion. The prediction of the twice-subtracted dispersion rela-
tion is in especially good agreement with γ γ → π0π0 data
(see Fig. 6), with the level of agreement comparable to that
obtained in the coupled-channel fit of [32].

Above the matching point, we exploit the fact that the
cross section is dominated by the f2(1270), and thus can be
well approximated by employing a Breit–Wigner descrip-
tion of this resonance in hI=0

2,− (t) and putting all other partial
waves to zero. In this way, (108) alone yields a good descrip-
tion of the neutral cross section above the matching point.
In contrast, in the charged case an additional background
is necessary. As observed in [26], this can be most easily
achieved by adding the Born terms and the off-shell contri-
butions dropped in the transition from (107) to (108) back
into the charged-channel amplitude for h2,−(t). Moreover,
after the transition to the isospin basis, we add a constant
background phase to ensure matching with the ππ phase
below the matching point. However, if Cπ

f2
C

γ
f2

is chosen to
be negative, the mismatch of the phases is very small: we
find a correction of δcorr = −0.09 and δcorr = −0.04 in or-
der to obtain agreement with the CCL and GKPRY phases,
respectively.

Finally, we comment on the analyticity properties of the
partial waves at the matching point. As shown in the ap-
pendix of [52], the solutions in terms of Omnès functions
automatically fulfill continuity at the matching point, but
the derivative at tm is not determined. Therefore, in general,
strong cusps can occur at the matching point. For example, if

Fig. 5 (Color online) Total cross section for γ γ → π0π0 [6, 11] and
γ γ → π+π− [7–9] for |cos θ | ≤ 0.8 and |cos θ | ≤ 0.6, respectively

Fig. 6 (Color online) Total cross section for γ γ → π0π0 for
|cos θ | ≤ 0.8 in the low-energy region

the background in the charged reaction is dropped, the neu-
tral cross section above tm is still correctly reproduced, but
the input for the I = 0 component changes, which affects
the neutral cross section below tm: the result for |hI=0

2,− (t)|
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the background in the charged reaction is dropped, the neu-
tral cross section above tm is still correctly reproduced, but
the input for the I = 0 component changes, which affects
the neutral cross section below tm: the result for |hI=0
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leading order poor even near threshold

need polarizabilities @ 2 loops
[Bellucci, Gasser & Sainio; Gasser, Ivanov & Sainio]
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ᾱπ0 ± β̄π0 =
α

16π2F 2
πMπ

(c± +
M2

π

16π2F 2
π

d±) c+ = 0 c− = −1/3 d+ ∼ 1.4 d− ∼ −1.1

ᾱπ0 + β̄π0 = 1.15± 0.30

ᾱπ0 − β̄π0 = −1.90± 0.20

large NLO corrections required by data at low energy 
and predicted by resonance saturation

β̄π0 > 0 π0 is paramagnetic

S. Bettucci et al/Nuclear Physics B 423 (1994) 80—122 95

Table 1
Phenomenological values 14,31] and source for the renormalized coupling constants i, i = 1 6. The
quantities 8, in the fourth column determine the scaledependence of the l~(is) according to Eq. (6.2). In the
text we also use = 16 — 15, see Eq. (6.3).

Source 16ir28,

—0.8±1.2 Ke4,iriririr 1/3
2 5.8 ±0.7 K,4, irir —÷mr 2/3
3 2.9 ±2.4 SU(3) mass formulae —1/2
4 4.3 ±0.9 FK/FIT 2
5 13.8±1.3 ir—~evy —1/6
6 16.5±1.1 (r

2)~ —1/3

Table 2
Resonance contributions to the coupling constants a, a and bt. Column 6 contains the sums of those
contributions which have a definite sign. The calculation is presented in Appendix D.

1R 1R

jr w p
0 /‘ A(l~) ~RIR S(0~) f2

a —33.2 —6.1 —0.1 0.0 —39 ±0.8 +4.1
12.5 2.3 ~0 —1.3 13 ±1.3 ±1.0
2.1 0.4 0 0.7 3 0.0 ±0.5

Their values are displayed in column 2 of Table I. We note that 1~and 16 in the present
application always appear in the combination

lAl6l52.7. (6.3)
[Theconstant IA is related to the low-energy couplings L~and L

0 which occur in
the SU(3)L x SU(3)R version of the one-loop amplitude yy —f IT~Ir [1]by

1A =

192172 (L~+ L
0) .1 Next we observe that we may absorb l~‘s into the low-energy

constants at order E
6, because they contribute a polynomial piece only. We are therefore

left with a, a~and b~as the only new unknowns. We estimate these in the standard
manner [4,30], replacing them at a scale ~s= 500 MeV ... 1 GeV by the contribution
from resonance exchange. Let

Ir(,i)>
1R+Ir(,i) l=a1,a2,b, (6.4)

where the sum denotes contributions from scalar, (axial-) vector and tensor exchange.
Our estimate for F(M~)consists in setting I’~(M~) = 0.
The quantities I~are evaluated in Appendix D. The results of the calculation are dis-

played in Table 2, where the individual resonance contributions 1R are listed. Column 6
contains the sums of those contributions which have a definite sign.

To estimate the effects of the systematic uncertainties in the values of these couplings,
it is useful to furthermore consider the helicity amplitudes ~ and H~.. and the
corresponding low-energy constants h~and h,

3 LECs @             resonance saturation estimates [Bellucci et al]S. Bellucci et al. /Nuclear Physics B423 (1994) 80—122 107

Table 3
Neutral pion polarizabilities to two loops in units of iO~ fm3. The contribution due to chiral logarithms,listed in the fifth column with bracketed numbers, is included in the two-loop result quoted in column four.

0(E’) 0(E)

I loop h’~ 2 loops chiral logs Total Uncertainty

(a+$)” 0.00 1.00 0.17 [0.21] 1.15 ±0.30
(a —

13)N —1.01 —0.58 —0.31 [—0.18] —1.90 ±0.20
a,,.0 —0.50 0.21 —0.07 [0.01] —0.35 ±0.10

0.50 0.79 0.24 [0.20] 1.50 +0.20

d+=8h’i—~{144l[l+212]+96l+28812+113+1i+},

d=h’~+~{l44l(3i~—1)+36[8I1—3i3—1214+12I~]+43+4L.}

(8.14)
The quantities zl~(generated by the contributions from liA,B in (7.3, 7.8)) are pure
numbers, independent of I and of 1,. The numerical results are displayed in Table 3. The
second column contains the contribution at order E~, and the third to fifth columns
display the terms of order E. The total values are given in column 6. (The two-loop
contribution (a+/3)” = 0.18 reported earlier [48] and quoted in Ref. [39] corresponds
to slightly different values of 1~and 12.) Finally, our estimate of the errors is shown in
the last column. These are obtained in the same manner as the ones for the couplings h~
and h~in Eq. (6.6). We have not considered correlations in these uncertainties, which
do also not contain effects from higher orders in the quark mass expansion.
The contribution from the chiral logarithms present in the low-energy expansion of the

polarizabilities deserves a comment. As we discussed earlier, the 1n
2M~/,u2terms occur

in a particular combination which is dictated by the general structure of the renormalized
amplitude,

(a±/3)~
00~~=C±L~+...,

a IT 2 2 2 2 —L~= (l6ir
2F,~)2 1nMIT/IL {1nMIT/I.L + 212}

Here the ellipsis denotes further single logarithms and terms of order MIT, and C+ are
Clebsch-Gordan coefficients. These terms are potentially very large,

= —1.14 x i0~ fm3

at ,a = M~.It turns out that C~ is small, whereas C even vanishes, see (8.13), (8.14).
We have listed the sum of the In2M~/,a2 and ln M~./,a2terms at the scale

1a = M,,
in the fifth column of Table 3—these contributions are included in the two-loop result
quoted in column four.
The low-energy constants determined in Ref. [35] give for the contributions from h~

O(p6)

[Bellucci, Gasser & Sainio]
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O(p6)
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s ∼ 1 GeV
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Figure 1: The total cross section of the reaction γγ → π0π0.

Table 1: The dipole and quadrupole polarizabilities of the π0 meson
fit DSRs [2] ChPT

(α1 − β1)π0 −1.6 ± 2.2 [3] −3.49 ± 2.13 −1.9 ± 0.2 [11]
−0.6 ± 1.8 [9]

(α1 + β1)π0 0.98 ± 0.03 [3] 0.802 ± 0.035 1.1 ± 0.3 [11]
1.00 ± 0.05 [10]

(α2 − β2)π0 39.70 ± 0.02 [2] 39.72 ± 8.01 37.6 ± 3.3 [12]
(α2 + β2)π0 −0.181 ± 0.004 [2] −0.171 ± 0.067 0.04 [12]

use of the value of Γσ→γγ = (3.8 ± 1.5) keV in the analysis [2] leads to a strong deviation
from the experimental data on the total cross section of the process under consideration.

The values of the dipole and quadrupole polarizabilities found in the fits [2,3] are listed in
Table 1 together with results obtained in Refs. [9,10] and prediction of DSRs [2] and two loop
calculations in the frame of ChPT [11,12]. The obtained values of the sum and difference of
the dipole polarizabilities of π0 and the difference of its quadrupole polarizabilities do not
conflict within the errors with the predictions of DSRs and ChPT. However, there are very big
errors in the experimental values for the difference of the dipole polarizabilities. Therefore,
it is difficult to do a more unambiguous conclusion. As for the sum of the quadrupole
polarizabilities of π0, the DSR result agrees well with the experimental value, but the ChPT
predicts a positive value in contrast to experimental result. However, as it was noted in
Ref. [12], this quantity was obtained in a two-loop approximation, which is a leading order
result for this sum, and one expects substantial corrections to it from three-loop calculations.

It should be noted that the values of the difference and the sum of the quadrupole
polarizabilities found from the fit have very small errors. They are the errors of the fitting.
This is a result of a very high sensitivity of the total cross section of the process γγ → π0π0

at
√

t > 1500 MeV to values of these parameters. In order to estimate real values of errors
of these difference and sum, model errors should be added.

3

[F&K]

Priority: improvement over the old XBall measurements at low energy 



which is in agreement with ChPT.

3 Previous Measurements of the Charged Pion
Polarizability

Previous measurements of απ − βπ are plotted in Fig. 1, grouped by experiment
type. The ChPT and dispersion model predictions are also shown in the figure. Three
different experimental techniques have been utilized to measure απ and βπ:
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Figure 1: Experimental data for απ − βπ grouped by experiment type, and theoretical pre-
dictions

• Radiative pion photoproduction, γp → γ�π+n, at very low momentum transfer
to the recoil nucleon. This reaction can be visualized as Compton scattering off
a virtual pion. At forward Compton angles the reaction is sensitive to απ + βπ,
and at backward angles, απ − βπ . The most recent measurement has been from

4

The             polarizabilities  AD 2013π±
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Fig. 6. The γ γ → π+π− cross section σ (s; | cos θ | ! Z = 0.6) as a function of
√

s. The experimental data are taken
from [25].

with the unitary part

(5.6)UB = 1
192π2sF 4

π

{
1
3

(
l̄1 − 4

3

)
+

(
l̄2 − 5

6

)}
H̄ (s) + ∆B(s, t, u).

For the polynomial part we find

PB = b

(16π2F 2
π )2 ,

(5.7)b = br − 1
18

{
l2 + l

(
1
2
l̄1 + 3

2
l̄2 − 53

24

)
− 1

12
l̄1 − 1

4
l̄2 + 7

2

}
.

The integrals ∆A,B(s, t, u) contain contributions from the two-loop box, vertex and acnode
graphs and also from the reducible diagrams. The explicit expressions for these quantities are
given in Appendices C and D. 1

As an application of the above, we plot the total cross section in Fig. 6, using the LECs from
Eqs. (3.8)–(3.10). The data are taken from [25]. It is seen that the two-loop corrections are tiny
in this kinematical region.

In order not to interrupt the argument, a detailed comparison of our result with the previous
calculation performed by Burgi [4] is relegated to Appendix A.

6. Pion polarizabilities: dipole and quadrupole

The dipole and quadrupole polarizabilities are defined [26,27] through the expansion of the
helicity amplitudes at fixed t = M2

π ,

(6.1)
α

Mπ
H+∓

(
s, t = M2

π

)
= (α1 ± β1)π+ + s

12
(α2 ± β2)π+ +O

(
s2),

1 The corresponding FORTRAN codes are available upon request from the authors.
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Fig. 9. The yy ---* lr+~ --  cross section o'(s; [cos01 ~< Z = 0.6) as a function of the center-of-mass energy 
E, together with the data from the Mark II collaboration [21]. We have added in quadrature the tabulated 
statistical and systematical errors. In addition, there is an overall normalization uncertainty of 7% in the data 
[21 ]. The solid line is the full two-loop result, the dashed line corresponds to the one-loop approximation 
[ 18] and the dotted line is the Born contribution. The dashed-double dotted line is the result of a dispersive 
calculation performed by Donoghue and Holstein (Fig. 7 in Ref. [ 11 ] ). 

o f  final state ~r~r interaction, enhances the cross section very close to threshold and 
then suppress it above E = 350 MeV, see Fig. 9. Finally, the dashed-double dotted line 
displays the result of  a dispersive analysis (Fig.  7 in Ref. [ 11 ] ). In that calculation, 
use was made of  a doubly subtracted dispersion relation with the subtraction constants 
determined in terms of  chiral counterterms, incorporating also heavy meson exchange. 

The two-loop result thus agrees very well with the data and shows furthermore a 
very good agreement for ~ / >  350 MeV with the dispersive analysis of  Donoghue and 
Holstein. 

In Fig. 10 the effect of  the low-energy constants is shown. The solid line corresponds 
to the two-loop result evaluated at AAC,B = 0 and without resonance exchange. (I t  turns 
out that the contributions from the resonances to the cross section are negligible below 
450 MeV.) The dashed line corresponds to [i = 0, and the dash-dotted line is obtained 
by setting il = 13 = 0. Therefore the increase in the cross section is due to 12,14 and 14, 
as was also shown in the neutral case [9] .  

9. Compton scattering and pion polarizability 

Compton scattering on pions 77r + --* 9,~r + is related to pion-pair  production by 
crossing (p l ,  ql )~ ~ - ( P l ,  qi )~, s ~ t. The corresponding scattering amplitudes may 
again be expressed in terms of  the amplitudes A c and B c as functions of  the Mandelstam 
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where the increase in uncertainty compared to (113) is due to
the ChPT uncertainty in (α2 −β2)

π0
. In the remainder of the

paper we will make use of the improved value (114) when
referring to the ChPT predictions for pion polarizabilities.
Note that, as expected given the results of Table 6, our sum-
rule value of (α2 − β2)

π±
is consistent with the first ChPT

number quoted in Table 4, but it is not consistent with the
larger number found when the LECs of [68] are taken as
input.

8.2 Total cross section

Before performing the analytic continuation to the σ pole,
we wish to make sure that the amplitude on the real axis
is reasonably well described—at least up to

√
t = 1 GeV,

which we assess to be the region which will influence the
analytic continuation to the σ pole. The results for the cross
section are depicted in Figs. 5 and 6. Below the matching
point, the results for the once- and twice-subtracted formu-
lation are provided for both ChPT and GMM polarizabil-
ities. The uncertainty due to ππ input, represented by the
grey band, is estimated by the variation between CCL and
GKPRY phases and proves to be very small. The low-energy
region is totally dominated by the Born terms in the charged
process, but it is very sensitive to the σ in the neutral reac-
tion. The prediction of the twice-subtracted dispersion rela-
tion is in especially good agreement with γ γ → π0π0 data
(see Fig. 6), with the level of agreement comparable to that
obtained in the coupled-channel fit of [32].

Above the matching point, we exploit the fact that the
cross section is dominated by the f2(1270), and thus can be
well approximated by employing a Breit–Wigner descrip-
tion of this resonance in hI=0

2,− (t) and putting all other partial
waves to zero. In this way, (108) alone yields a good descrip-
tion of the neutral cross section above the matching point.
In contrast, in the charged case an additional background
is necessary. As observed in [26], this can be most easily
achieved by adding the Born terms and the off-shell contri-
butions dropped in the transition from (107) to (108) back
into the charged-channel amplitude for h2,−(t). Moreover,
after the transition to the isospin basis, we add a constant
background phase to ensure matching with the ππ phase
below the matching point. However, if Cπ

f2
C

γ
f2

is chosen to
be negative, the mismatch of the phases is very small: we
find a correction of δcorr = −0.09 and δcorr = −0.04 in or-
der to obtain agreement with the CCL and GKPRY phases,
respectively.

Finally, we comment on the analyticity properties of the
partial waves at the matching point. As shown in the ap-
pendix of [52], the solutions in terms of Omnès functions
automatically fulfill continuity at the matching point, but
the derivative at tm is not determined. Therefore, in general,
strong cusps can occur at the matching point. For example, if

Fig. 5 (Color online) Total cross section for γ γ → π0π0 [6, 11] and
γ γ → π+π− [7–9] for |cos θ | ≤ 0.8 and |cos θ | ≤ 0.6, respectively

Fig. 6 (Color online) Total cross section for γ γ → π0π0 for
|cos θ | ≤ 0.8 in the low-energy region

the background in the charged reaction is dropped, the neu-
tral cross section above tm is still correctly reproduced, but
the input for the I = 0 component changes, which affects
the neutral cross section below tm: the result for |hI=0

2,− (t)|

Large contribution of Born term makes experimental access to polarizability effects more difficult

[Hoferichter et al]

γγ → π+π−
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Figure 30: Theory curves for two predicted values of απ − βπ, the dashed curve is for 5.7
(ChPT), the dotted curve is for 13.0 (Fil’kov). The black points are published data from
the MARK-II measurement. The red points indicate the anticipated statistical errors for
the proposed measurement. Error bars are taken from those for the Primakoff fits (red) in
Figure 29.
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ᾱπ+ , β̄π+ @ 2-loops     [Burgi ’96; Gasser, Ivanov & Sainio ’06]
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(22) (23) (24) 

(25) (26) (27) (28-30) (31-33) 

(40) (41) (42) (43) (44) 

(48-50) (51-53) ,-~ .., 

(66) (67) (68) 

( 8 3 ) ~  (84) (85) (82) 

( 8 6 ~ )  ~ ( 8 9 ~ }  + cr°ssecl (90-97) 
(87) (88) 

Fig. 3. Full set of two-loop diagrams generated by Z22. The vertex (22), box (36,37) and acnode (45) 
graphs are genuine two-loop diagrams, which do not have a representation in terms of one-loop functions. The 
dash-dotted boxes indicate subdiagrams which we have treated in the dispersive manner. We use symmetry 
arguments which relate the contributions from the reducible diagrams (47)-(97) to mass- and wave-function 
corrections at two-loop order. The hatched circles summarize self-energy contributions to the pion propagator 
(graphs (b)-(d) in Fig. 5). 

side is the d-dimensional  elastic 7rTr-scattering amplitude at one-loop accuracy, with two 
pions off shell. The loop integration over internal momenta with weight 

1 
[M~ - ( l + q l )  2] [ M ~ -  (q2 - l )  2 ] ' (6.1) 

is indicated by the symbol dal in the figure. M~ denotes the physical pion mass in 
one-loop approximation (Eq. (5 .3) )  and the momenta of  the pions running in the 
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(98) (99) (100) (101) 

(104) (105) (107) 

(lO2) (lO3) 

~ , ~  + crossed 
(109-113) 

(lOS) 

(114) (115) (116) (117) 

(120) (121) (123) 

(130) (131) (132) (133) 

(118) (119) 

+ crossed 
(125-129) 

(124) 

XX 
(134) (135) 

Fig. 6. One-loop order contributions generated by the lagrangians L2 -I-/]4 with one vertex from ~C4. The 
boxes denote/]4 couplings, whereas the numbers indicate the corresponding low-energy constant. 

contribute to the process 3"3" --~ 7r+~ --. The low-energy constants 13 and 14 enter the 
two-loop amplitude through mass and pion decay constant corrections. The diagrams 
(98), (99) and (114), (115) in Fig. 6 may be generated according to Fig. 4 where the 
/1-4 vertex is contained in the d-dimensional elastic 7rTr scattering amplitude at one-loop 
accuracy. These graphs remove the subdivergences indicated in Fig. 4 (enclosed by a 
dash-dotted line in graphs (22), (36)). The diagrams (100), (101) and (116), (117) 
may be included in the replacement Z,~® seagull and the graphs (104)-(113), (120)- 
(129) are included in the replacement M 2 ~ M 2 in the reducible Born diagrams. The 
remaining graphs require straightforward one-loop calculation. 

6.4. Counterterrns with one vertex from ff~6 

The diagrams depicted in Fig. 7 and generated by the lagrangian /]6 contribute a 
polynomial piece only. The divergent parts of the couplings cancel the pole structure 
generated by the two-loop diagrams. We have estimated the finite parts of these couplings 
by resonance exchange (see below). 

This concludes the discussion of the diagrams which occur at two-loop order in 
9'3' ~ 7 r+~'-. For a complete mathematical treatment of all genuine graphs occurring in 
3"3' ~ 7r+~-- (3"3" ~ ¢r°Tr °) see Refs. [27,28]. 



Insights into the ChPT calculation [Burgi]

•              ChPT

• 3 LECs @ O(p6)

O(p6)

Table 2 
Low-energy 
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constants and sources. In the fourth column we have plotted the Yi evaluated in [2,29] 

411 

i [i Source yi 

1 - 1 . 7  4- 1.0 Ke4, Ir~r --~ Irlr 1/3 
2 6.1 + 0.5 Ke4, Irlr --~ Irlr 2/3  
3 2.9 4- 2.4 SU(3) mass formulae - 1 / 2  
4 4.3 4- 0.9 Fr/FTr 2 
5 13.8 4- 1.3 7r --~ evy - I / 6  
6 16.5 + 1.1 (r2)~ - 1 / 3  

Table 3 
r,c r,c and b r,c. The calculation is done in [27],  the uncertainties Resonance contributions to the constants a 1 , a 2 

are more generous than quoted in that reference. 

Ir  IR E R  IR 

p al bl 

r,c --3,28 0 0 --3.3 4- 1.65 a 1 
r,c 1.23 --0.35 --0.13 0.75 + 0.65 a 2 

b r'c 0.20 0.18 0.06 0.45 + 0.15 

Ic'r(tz) = E II~ + F ( t z ) '  l =al,a2, b, (8.12) 
R=p,al ,bl 

where the sum denotes contributions from vector ( J m  = 1 - - )  and axial-vector (jPC = 

1 ++, 1 + - )  exchange [11,12,32,33,13] with meson mass MR ~< 1.2 GeV. The non- 
resonance contribution of  these low-energy constants has to be chosen in such a way 
that the final result of  the amplitudes A c and B c is scale independent. Our estimate for 
l c ' r ( M p )  consists in setting [ r ( M p )  = 0. 

The quantities I R are evaluated in [27].  The results of  this calculation are displayed 
in Table 3 where the individual resonance contributions I R are listed. Column 5 contains 
the sums of  the several contributions provided with a systematic error. We associate a 
50% uncertainty to the contributions generated by (axial-) vector exchange. 

It is useful to consider furthermore the helicity amplitudes H+C+ and HC+_ and the 
corresponding low-energy constants h ~  c and  h r,c, 

r c  2 r c  /../C,2 loops_ h:~ M + h s' s 
(167r2F/)2 + . . . .  

/ ~ , 2 1 o o p s  8 (  M 4  --  tU ) h r c , 
+ -  = .  . . . .  

r,c r,c 8br , c  r,c r,c __ 2br , c  hr.c = br,c . h +  = a  I + , h s = a  2 , _ (8.13) 

Adding the errors quoted in Table 3 in quadrature, we find 

hr~C(Mp) =0 .3  q- 2 .0 ,  

ᾱπ+ + β̄π+ = 0.3± 0.1 (0)

ᾱπ+ − β̄π+ = 4.4± 1.0 (5.6± 0.8)

β̄π± < 0 π±is diamagnetic

NLO corrections of natural size



Table 2: The dipole and quadrupole polarizabilities of the charged pions.
ChPT [34]

fit [5] DSRs [2] to one-loop to two-loops
(α1 − β1)π± 13.0+2.6

−1.9 13.60 ± 2.15 6.0 5.7 [5.5]
(α1 + β1)π± 0.18+0.11

−0.02 0.166 ± 0.024 0 0.16 [0.16]
(α2 − β2)π± 25.0+0.8

−0.3 25.75 ± 7.03 11.9 16.2 [21.6]
(α2 + β2)π± 0.133 ± 0.015 0.121 ± 0.064 0 -0.001 [-0.001]

curves are close to calculations in Ref. [24] in the energy region up to 700 MeV, however
they differ strongly from all experimental data on the total cross section at higher energies.

The fits of the data to the total cross section for the separate works [28–31] were used to
estimate the errors of the values of charged pion polarizabilities found.

The angular distributions of the differential cross section of the process γγ → π+π−

at different energies are shown in Fig. 5. The solid and dashed curves are the results of
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Figure 5: Angular distributions of the differential cross sections for the following energy
intervals: (a) – 0.95–1.05 GeV, (b) – 1.05–1.15 GeV, (c) – 1.15–1.25 GeV, (d) – 1.25–1.35
GeV, (e) – 1.35–1.45 GeV, (f) – 1.45–1.55 GeV. The designations of the experimental data
are the same as in Fig. 4.

calculations using our and the ChPT fits (the latter when the values of the dipole polar-
izabilities are fixed by ChPT [36]) to the total cross sections in Fig. 4, respectively. This
figure demonstrates a good description of the angular distributions by the solid curves with
the polarizability values found in the present work. On the other hand, the calculations with
the dipole polarizabilities from ChPT [36] contradict these experimental data, particularly
at higher energies.
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TABLE VI. The backward polarizability α − β of the charged
and neutral pions in units of 10−4 fm3. The results are obtained
by unitarization of the t-channel Born amplitude as well as
the generalized Born amplitude and from the s- and u-channel
contributions of vector mesons in the narrow-width approximation.
The contributions of the isospins I = 0 and I = 2 are given
separately. The last column gives the sum of the vector meson and
dispersive contributions, as obtained from the generalized Born
amplitude.

α − β Born Gen. Born Vector mesons Sum

I = 0 I = 2 I = 0 I = 2 I = 0 I = 2

π+ 5.65 −0.69 6.30 −0.54 −0.065 0 5.70
π 0 5.65 1.38 6.30 1.10 −0.30 −0.47 6.62

developed, for instance, in Refs. [25] and [26]. The large
model dependency for the neutral pion channel has also
been observed in the recent work of Oller and Roca [27].
Finally, we present our predictions for α − β in Table VI, as
obtained from unsubtracted DRs. The value for the charged
pion is in excellent agreement with ChPT, whereas we fail
to get close to the ChPT prediction for the neutral pion. In
view of the previous figures, this result is not too surprising.
Whereas our unitarized amplitude describes the π+ cross
section quite well up to energies of about 2 GeV (see the
solid lines in Figs. 5 and 6), the corresponding results for
the π0 cross section are unsatisfactory (see the solid lines
in Figs. 7 and 8). A comparison of the two latter figures
shows the large dependence on the background from meson
exchange. Furthermore, the results for the π0 cross section
from unsubtracted DRs do not describe the data for energies
above 500 MeV. A much better description of the data is
obtained by the subtracted DR with the subtraction constant
as predicted by ChPT at the two-loop level [28] (dashed line
in Fig. 7).

V. CONCLUSION

The polarizabilities of the pion are elementary structure
constants and therefore fundamental benchmarks for our
understanding of QCD in the confinement region. Moreover,
these polarizabilities have been calculated in ChPT to the
two-loop order with an estimated error of less than 20%. It
is therefore disturbing that predictions based on dispersion
theory [13] yield απ+ − βπ+ in the range of 11–15, whereas
ChPT [6] predicts 5.7 ± 1.0, all in units of 10−4 fm3. This
discrepancy originates from huge contributions of intermediate
meson states in the approach of Ref. [13]. In particular, the σ
exchange in the t channel provides about 10 units for both neu-
tral and charged pions. For neutral pions, this σ contribution
is canceled by vector mesons, notably ω exchange yielding a
value of −13, with the result of απ0 − βπ0 ≈ −3. The large
positive value for charged pions results because (i) the ω does
not contribute in this case and (ii) axial vector mesons provide
additional positive contributions of about 4 units. In ChPT,
on the other hand, the vector mesons enter only at O(p6)
through vector meson saturation of low-energy constants.

They are usually treated in the zero-width approximation and
estimated to yield a much smaller effect for the polarizability,
e.g., the ω contributes only about 1 unit to the neutral pion
polarizability [22,28]. The apparent discrepancy between the
two approaches can be attributed to the specific forms for
the imaginary part of the Compton amplitudes [12,13], which
serve as input for the dispersion integrals determining the
polarizability at the Compton threshold (s = m2, t = 0). To
quantify the strong model dependence of this procedure, we
studied six different analytical forms including the model of
Refs. [12] and [13]. We recall that all these models are fitted
to the same masses and widths of the exchanged mesons,
and in this sense they represent the experimentally known
information in the same way. Concentrating on the important
ω meson and the forward polarizability, we find from Table III
that the models A0, B0, and C0 (with a constant coupling
strength) predict a contribution of about 0.7 for the sum of
the s and u channels, in reasonable agreement with Refs. [22]
and [28]. The energy dependence of the coupling constant in
models A,B, and C leads to an unphysical left cut (see Fig. 3)
and increases the contribution to the real part by a factor
Mω/m ≈ 7. However, all the models agree if only the right cut
is accounted for. If we now turn to the backward polarizability,
we expect from Eq. (25) that the paramagnetic dipole transition
involved leads to a mere sign change compared to the forward
polarizability, as is indeed reproduced by the real part in
Table IV. However, the right-cut integral has increased to large
absolute values. As a consequence, the dispersion integral
over the right cut from two-pion threshold to infinity does
not converge to a (plausible) continuation of the real part to
the Compton threshold. The missing contributions to yield the
real part are provided by unphysical features of the models.
We conclude that the strong singularities in the form of poles
(e.g., photon-pion “bound states”) or unphysical cuts on the
first Riemann sheet are disturbing, because they violate the
basic prerequisites of dispersion theory. For this reason we do
not see any conflict between dispersion theory per se and
ChPT. Of course, this does not exclude the possibility of
unexpected higher-order corrections in ChPT. However, our
present knowledge on vector mesons and their coupling to the
electromagnetic field does not indicate such large higher-order
effects.

The arguments about the σ exchange in the t channel are
more subtle. In Sec. III we used the parameters of Ref. [11]
which put the pole position at Mσ = (0.547 − 0.602 i) GeV.
The more recent analyses of pion-pion scattering find such
a resonance at Mσ = (0.441 − 0.271 i) GeV [29] and Mσ =
(0.456 − 0.241 i) GeV [27]. Its large width of at least 500 MeV
and low mass (only about 300 MeV above the two-pion
threshold) lead to a complicated line shape. However, we
consider it dangerous to model this resonance with 1/

√
t

factors [11] because of the divergence exactly at the point t = 0
where the polarizability is determined. Instead we prefer the
method outlined in Sec. IV, which follows Ref. [22] and also
previous calculations using t-channel DRs to determine the
nucleon’s polarizability [19]. In this way the amplitudes are
directly constructed from the pion-pion phase shifts, at least in
the region below the four-pion threshold. Our numerical results
yield an S-wave contribution of about 6 units for both charged
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Summary

• Pion polarizabilities are rigorous ChPT predictions in chiral limit

• Significant corrections at NLO in ChPT for the neutral pion

• NLO corrections for charged pion are of natural size (modulo assumptions 

on NLO LECs)

• Experimental extractions of polarizabilities still open problem, in particular 

for charged pion due to conflicting results

• Hall D @ JLab 12: unique opportunity to measure  

for                                 to extract                            with unprecedented 

accuracy

• Similar experiment for neutral pion seems to be necessary and a natural 

future step with Primakoff production

• Impact in particle physics: Michael Ramsey-Musolf ’s talk

γγ → π+π−
√
s < 500 MeV ᾱπ± − β̄π±


