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Abstract Previous representations of pion-pair production
amplitudes by two real photons at low energy, which com-
bine dispersion theoretical constraints with elastic unitar-
ity, chiral symmetry and soft-photon constraints are gen-
eralised to the case where one photon is virtual. The con-
structed amplitudes display explicitly the dependence on the
ππ phase-shifts, on pion form factors and on pion polaris-
abilities. They apply both for space-like and time-like virtu-
alities despite the apparent overlap of the left- and right-hand
cuts, by implementing a definition of resonance exchange
amplitudes complying with analyticity and consistent limit-
ing prescriptions for the energy variables. Applications are
made to the pion generalised polarisabilies, to vector-meson
radiative decays, and to the σγ electromagnetic form fac-
tor. Finally, an evaluation of the contribution of γππ states
in the hadronic vacuum polarisation to the muon g − 2 is
given, which should be less model dependent than previous
estimates.

1 Introduction

A precise knowledge of the amplitudes for producing a
small number of pions from a pair of real or virtual photons
is needed for a reliable evaluation of the hadronic light-by-
light contribution to the muon g − 2. Recently, the contri-
bution which involves the ππ intermediate states was eval-
uated to NNLO in the chiral expansion [1]. The conver-
gence of the chiral expansion is somewhat slowed down, in
this context, by the strong attraction of the ππ pair in the
isoscalar S-wave and work is in progress [2] aimed at going
beyond the chiral regime, by making use of relations, via
unitarity, with the amplitudes γ γ ∗ → ππ , γ ∗γ ∗ → ππ .

From an experimental point of view, such amplitudes are
measurable at e+e− colliders from e+e− → e+e−ππ . If no
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tagging is performed, the cross section is dominated by the
scattering of two quasi-real photons. By tagging one of the
final state leptons (see [3] for a detailed discussion of this
situation) it becomes possible to access the scattering am-
plitude between one real and one virtual photon in the kine-
matical region where the virtuality is negative. Alternatively,
from e+e− annihilation, one may generate the amplitude
γ ∗ → γππ via final-state radiation (FSR), which probes
positive virtualities, q2 > 4m2

π . In the case of a pair of neu-
tral pions, FSR is the only possible mechanism. Experimen-
tal measurements of the cross section for e+e− → γπ0π0

have recently been performed by several collaborations [4–
6]. In the case of charged pions, the e+e− → γπ+π− cross
section receives contributions from both the initial-state ra-
diation (ISR) and from the FSR amplitudes. Interference
effects are sensitive to both the modulus and the phase of
the FSR amplitude but no model independent extraction has
been attempted yet. Instead, theoretical modelling of the
FSR amplitudes may be used to improve the precision of the
determination of the ISR one and the related measurement
of the pion form factor [7, 8].

In the present paper, we discuss the generalisation of the
application of complex plane methods, which were used to
describe pion-pair production by two real photons, to the
case where one photon is virtual. Unitarity of the S-matrix
is the basis for a model independent treatment of the final-
state interaction and leads to the Fermi–Watson theorem
(e.g. [9]) in the elastic scattering regime. From this point
of view it would seem that γ γ ∗(q2) scattering could be in-
trinsically different from γ γ since, in the former case, the
Fermi–Watson theorem may not apply even at low ππ en-
ergy1 depending on the value of q2. However, as shown by
Omnès [11] a more powerful result obtains by combining

1Indeed, if q2 > 4m2
π , the virtual photon can decay into two pions

and the unitarity relation involves two terms instead of just one in
the elastic scattering regime: Im 〈γ γ ∗|ππ〉 = 〈γ γ ∗|ππ〉〈ππ |ππ〉 +
〈γ ∗|ππ〉〈γππ |ππ〉. This was pointed out in Ref. [10].
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unitarity with analyticity properties of the S-matrix, which
leads, for partial waves, to integral equations of the Muskhe-
lishvili type [12]. We restrict ourselves here to an energy
range where inelasticity may be neglected in ππ scattering
(i.e. sππ

<∼ 1 GeV2) in which case the Muskhelishvili equa-
tion is solvable in closed form in terms of the final-state
rescattering phase-shifts and the left-hand cut part of the
amplitude. Application of the Muskhelishvili–Omnès (MO)
formalism to the case of real photon-photon scattering was
discussed a long time ago [13–15]. This was reconsidered
in Refs. [16, 17] who showed how to implement theoretical
constraints from the chiral symmetry of QCD by matching
with the calculations of chiral perturbation theory (ChPT)
at NLO [18, 19]. The pion electric and magnetic polaris-
abilities are specific observables involved in these ampli-
tudes at low energy. The phenomenological inputs in the
work [16, 17] are restricted to the description of the left-
hand cut in terms of light vector as well as axial-vector res-
onances. They achieved a fair description of the available
experimental data. Recently, a set of hyperbolic dispersion
relations was developed for γ γ → ππ [20] which, in prin-
ciple, allows for a more fundamental description of the left-
hand cut if experimental data on γπ → ππ , γπ → πππ

were available.
The widths of the resonances can safely be ignored in the

computation of the left-hand cut for γ γ scattering, but this
is no longer the case if one (or two) photons are virtual and
q2 > 0 since, for large enough values, the resonances may be
produced on shell. The main issue, however, which we dis-
cuss in some detail is whether the MO method is applicable
at all in this regime. This is because the left- and right-hand
cuts of the amplitude γ γ ∗(q2) → ππ when q2 > 4m2

π are
no longer well separated. The left-hand cut extends into the
complex plane and intersects and overlaps with the unitar-
ity cut. We will show that this problem is resolved using a
proper description for the propagator of a finite width reso-
nance as well as a consistent application of limiting iε pre-
scriptions for the energy variables.

The couplings of off-shell photons to hadrons involve
form factors. For this reason, we will consider here only
the contributions to the left-hand cut generated by the vec-
tor mesons ρ, ω (in addition to the pion pole contribution).
In this manner we have to deal with form factors for which
some experimental information is available. As usual with
dispersive representations, it is necessary to introduce poly-
nomial subtraction parameters and we assume that the con-
tributions from heavier resonances can be represented in
this way in a restricted energy region. In the present case,
these parameters are actually functions of the photon virtu-
ality, q2. We discuss the constraints arising from the soft-
photon as well as the soft-pion limits. Our main result is an
expression for the helicity amplitudes γ γ ∗(q2) → ππ (or
γ ∗(q2) → γππ ) obeying these constraints and in which the

dependence on the S-wave ππ phase-shifts, is displayed ex-
plicitly, as well as the dependence on the ππ , ωπ and ρπ

electromagnetic form factors. This expression is valid for
negative as well as vanishing or positive values of q2 and
involves two unknown functions, bI (q2). Because of the re-
striction to the elastic ππ rescattering region, the range of
applicability is |q2| < 1 GeV2. Comparing with the exper-
imental results of Refs. [4, 5] a determination of bI (q2) in
terms of the pion polarisabilites and simply two real param-
eters is obtained.

The plan of the paper is as follows. After introduc-
ing some notation and useful kinematic formulae (Sect. 2),
we address the problem of generalizing the left-hand cut
structure arising from resonance exchange contributions
(Sect. 3). In Sect. 4 we establish the dispersive MO repre-
sentation for the J = 0 γ γ ∗ partial wave (which is the most
relevant in the energy region considered). Then, (Sect. 5) we
compare the resulting amplitudes with the available experi-
mental data, which determines the amplitudes completely. A
few applications of these amplitudes are presented, finally,
in Sect. 6: we calculate, in particular, the generalised pion
polarisabilities, as introduced in Refs. [21, 22]. Concern-
ing the g − 2 of the muon, we provide an evaluation of the
contributions from the hadronic vacuum polarisation (HVP)
associated with the state γπ+π− (which goes beyond the
usual scalar QED approximation) and from γπ0π0.

2 Basic formulae and notation

Let us consider the final-state radiation annihilation ampli-
tude, e+(k2) e−(k1) → γ ∗(q2) → γ (q1)π(p1)π(p2). It can
be expressed as follows:

T = e3v̄(k2)γλu(k1)

(
gλν + (ξ − 1)

qλ
2 qν

2

q2

)

× 1

q2
Wμν(qi,pi)ε

∗μ
1 (q1, λ1), (1)

where ε1 is the polarisation vector of the photon and we have
denoted q2

2 = (k1 +k2)
2 ≡ q2. An arbitrary gauge parameter

ξ was introduced in the propagator of the off-shell photon.
The tensor Wμν is defined from the following matrix ele-
ment involving the T-product of two electromagnetic cur-
rents:

e2Wμν(qi,pi)

= i

∫
d4xe−iq1x

〈
π(p1)π(p2)

∣∣T (jμ(x)jν(0)
)|0〉. (2)

Current conservation, i.e. ∂μjμ(x) = 0, leads to the two
Ward identities

q
μ
1 Wμν = 0, qν

2 Wμν = 0. (3)
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2.1 Tensorial decomposition

The Ward identities (3) imply that Wμν can be expanded, a
priori, in terms of five independent tensors [24] Tiμν made
from the three independent momenta q1, q2, Δ ≡ p1 − p2

and which satisfy the conditions (3). Two of these tensors
give a vanishing contribution when contracted with the pho-
ton polarisation vector ε1 using q2

1 = 0 and can be ignored,
such that one can write

Wμν(qi,pi) = A
(
s, t, u, q2)T1μν

+ B
(
s, t, u, q2)T2μν + C

(
s, t, u, q2)T3μν

(4)

where s, t , u are the Mandelstam variables

s = (p1 + p2)
2, t = (p1 + q1)

2, u = (p2 + q1)
2

(5)

satisfying

s + t + u = 2m2
π + q2. (6)

The three relevant tensors can be taken as2

T1μν = q1 · q2 gμν − q1νq2μ

T2μν = 4Δμ(q1 · q2 Δν − q2 · Δq1ν)

− 4q1 · Δ(q2μΔν − q2 · Δgμν) (7)

T3μν = 2Δμ

(
q1 · q2 q2ν − q2 q1ν

)
− 2q1 · Δ(q2μq2ν − q2 gμν

)
.

We note here that because of Bose symmetry of the ππ sys-
tem with I = 0,2, the amplitudes must be invariant under
interchange of the two pion momenta p1, p2. The two ten-
sors T1μν and T2μν are even when p1 ↔ p2 while the third
tensor T3μν is odd. This implies that the two functions A

and B must be even under interchange of the two Mandel-
stam variables t , u while the function C must be odd.

2.2 Expressions in terms of helicity amplitudes

Let us introduce a polarisation vector ε2(q2, λ2) associated
with the virtual photon. We may then define a helicity ampli-
tude Hλ1,λ2 by contracting the tensor Wμν(qi,pi) with the
two polarisation vectors,

ei(λ2−λ1)φ Hλ1,λ2

(
s, q2, θ

)

2The first two tensors are the same as used in ChPT calculations of
γ γ → ππ [25, 26]. The correspondence with the tensors used in
Ref. [7] is as follows: T

μν
1 = −τ

νμ
1 , T

μν
2 = −4τ

νμ
2 , T

μν
3 = 2τ

νμ
3 .

≡ −Wμν(qi,pi)ε
∗μ
1 (q1, λ1)ε

ν
2 (q2, λ2). (8)

A minus sign is introduced here such that the limit q2 = 0
corresponds to the γ γ → ππ amplitude as usually defined.
The angles φ and θ are defined in the ππ center-of-mass
system (see Fig. 1) and we have factored out explicitly the
dependence on the azimuthal angle φ.

The second Ward identity (3) shows that the e+e− anni-
hilation amplitude (1) is independent of the gauge parameter
ξ . Taking ξ = 0 and using the identity

qα
2 qν

2

q2
− gαν =

∑
λ2

ε∗α
2 (q2, λ2)ε

ν
2 (q2, λ2) (9)

we find that the e+e− amplitude (1) can be expressed very
simply in terms of the helicity amplitude Hλ1λ2 introduced
above (8)

T = e3v̄(k2) /ε∗
2 (q2, λ2)u(k1)

1

q2
ei(λ2−λ1)φ

× Hλ1λ2

(
s, q2, θ

)
. (10)

Helicity amplitudes are convenient for performing the
partial-wave expansion [27]. In the present case, it reads

HI
λ1λ2

(
s, q2, θ

)=∑
J

(2J + 1)hI
J,λ1λ2

(
s, q2)dJ

λ1−λ2,0
(θ)

(11)

where we have introduced a superscript I which labels the
isospin state of the ππ system. The relation between the
isospin amplitudes and the amplitudes corresponding to a
charged or neutral pion pair is

(
H 0

λλ′

H 2
λλ′

)
= C

(√
2Hc

λλ′
Hn

λλ′

)
,

C = C−1 =
⎛
⎝−

√
2
3 −

√
1
3

−
√

1
3

√
2
3

⎞
⎠ .

(12)

Since a two-photon state is even under charge conjugation
so must be the ππ system which implies that the isospin
must be I = 0,2. Consequently, the sum in Eq. (11) runs

Fig. 1 ππ center-of-mass system
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over even values of the angular momentum J . Recalling the
action of the parity operator [27],

P |JMλ1λ2〉 = (−)J |JM − λ1 − λ2〉 (13)

and the property of the dJ functions

dJ
λ1−λ2,0

= (−)λ1−λ2dJ
−λ1+λ2,0

(14)

we find the following relations between the helicity ampli-
tudes:

HI++ = HI−−, HI+− = HI−+, HI+0 = −HI−0 (15)

such that only three of them are independent. In the ππ

CMS frame, the Mandelstam invariants read

t, u = m2
π + 1

2

(
q2 − s

)(
1 ∓ σπ(s) cos θ

)
(16)

with

σπ(s) =
√

1 − 4m2
π

s
. (17)

Using also the explicit expressions for the momenta and
the polarisation vectors in this frame, one can derive the
relations between the helicity amplitudes Hλ1λ2(s, q

2, θ)

and the three coefficient functions A(s, t, q2), B(s, t, q2),
C(s, t, q2), and one finds

H++ = (q2 − s
)[1

2
A
(
s, t, q2)

− (s − 4m2
π

)(
1 − q2

s
cos2 θ

)
B
(
s, t, q2)

− q2σπ(s) cos θ C
(
s, t, q2)]

H+− = (q2 − s
)(

s − 4m2
π

)
sin2 θ B

(
s, t, q2)

H+0 = (q2 − s
)√

q2
√

s − 4m2
π

sin θ√
2

× [2σπ(s) cos θ B
(
s, t, q2)− C

(
s, t, q2)].

(18)

Let us make a remark on the behaviour of the amplitudes
when the energy of the ππ system is close to the threshold.
Since C is an odd function of t − u we can denote

C
(
s, t, q2)≡ (t − u)C̃

(
s, t, q2). (19)

Using Eq. (16) shows that C(s, t, q2) should be proportional
to
√

s − 4m2
π . It then follows from the expressions for the

helicity amplitudes (18) that when s → 4m2
π , the amplitude

H++ remains finite while the other two helicity amplitudes
H+−, H+0 vanish as O(s − 4m2

π ). This reflects the fact that
in these amplitudes the ππ pair must be in a state of angu-
lar momentum J ≥ 2. H++ therefore dominates at low ππ

energies.

2.3 e+e− center-of-mass frame

Let us now consider the CMS system of the e+e− pair i.e.

−→
k 1 + −→

k 2 = −→
q 2 = 0 (20)

The momenta of the photon and that of the two pions sum

to zero −→
p1 + −→

p2 + −→
q 1 = 0 and therefore lie in a plane.

This plane is determined by two polar angles, which we call
θ ′, φ′ with respect to the e+e− beam axis

−→
k 1 − −→

k 2. This

is illustrated in Fig. 2. We can use −→
q 1 as z axis and write

k1 − k2 in terms of θ ′, φ′

k1 − k2 =
√

q2 − 4m2
e

⎛
⎜⎜⎝

0
cosφ′ sin θ ′
sinφ′ sin θ ′

cos θ ′

⎞
⎟⎟⎠ . (21)

The momenta and the polarisation vectors in this new frame

are obtained from those in the ππ CMS frame by acting

with the Lorentz transformation

L =

⎛
⎜⎜⎝

γ 0 0 −βγ

0 1 0 0
0 0 1 0

−βγ 0 0 γ

⎞
⎟⎟⎠

with γ = s + q2√
4sq2

, βγ = q2 − s√
4sq2

. (22)

Useful scalar products involving k1 − k2 are listed below

Fig. 2 e+e− center-of-mass system
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(k1 − k2) · ε2(λ2) =
√

q2 − 4m2
ee

−iλ2φ
′

×
(

λ2
sin θ ′
√

2
− δλ20 cos θ ′

)

(k1 − k2) · q2 = 0

(k1 − k2) · q1 = (s − q2)
√

q2 − 4m2
e

4q2
cos θ ′

(k1 − k2) · Δ = −
√(

s − 4m2
π

)(
q2 − 4m2

e

)

×
(

sin θ sin θ ′ cos
(
φ − φ′)

+ s + q2√
4sq2

cos θ cos θ ′
)

.

(23)

The differential cross section for e+e− → γ (p1, λ1)ππ , as-
suming unpolarised e+e− beams, can be expressed as fol-
lows in terms of the helicity amplitudes (using Eqs. (23)):

d4σλ1 = e6

4
√

q2(q2 − 4m2
e)

(
1

q2

)2

×
{
q2 (|Hλ1+|2 + |Hλ1−|2 + |Hλ10|2

)

− (q2 − 4m2
e

)∣∣∣∣ sin θ ′
√

2

× (Hλ1+ei(φ−φ′) − Hλ1−e−i(φ−φ′))

− cos θ ′Hλ10

∣∣∣∣
2}

dLips3. (24)

The three-body phase-space integration measure has the fol-
lowing expression in terms of the ππ energy s and the an-
gular variables θ , θ ′, φ − φ′:

dLips3 = (q2 − s)σπ (s)

4(4π)4 q2
ds d cos θ d cos θ ′ d

(
φ − φ′). (25)

In practice, the distribution over the Dalitz plot is obtained
after integrating over the variables θ ′, φ − φ′. This partly
integrated cross section, summed over the two photon helic-
ities, has the following expression:

d2σ

ds d cos θ
= α3(q2 + 2m2

e)(q
2 − s)σπ (s)

12
√

q2(q2 − 4m2
e)(q

2)3

× (|H++|2 + |H+−|2 + |H+0|2
)
. (26)

The cross section σ(q2) is obtained by integrating over θ

in the range [0,π] for charged pions ([0,π/2] for neutral
pions) and integrating over s in the range [4m2

π , q2].

3 A model for the (generalised) left-hand cut

In order to implement the MO method to the partial-wave
amplitudes hI

λλ′(s, q2) we must consider the analytical
structure as a function of the ππ energy variable s, and input
a model for the left-cut part of the amplitude. This left-hand
cut originates from singularities (poles, cuts) of the unpro-
jected amplitude as a function of the Mandelstam variables
t , u. A first contribution, essentially model independent,
arises from the charged pion pole. We will then consider
contributions associated with light vector resonances. At
first, we will ignore the widths of the resonances, such that
the contributions are also simple poles in the t , u variables.
Such an approximation is acceptable for γ γ but not for γ γ ∗
with q2 > 4m2

π . One problem which raises is that the left-
hand cut is no longer well separated from the unitarity cut.
As we will show below, a solution to this problem consis-
tent with expected general properties of the amplitude, is to
construct a resonance propagator which has a cut instead of
a pole.

3.1 One-pion exchange (Born) amplitudes

The diagrams for the charged pion pole amplitudes are
shown in Fig. 3. The blobs indicate that the vertex must take
into account that the photon is off-shell. The matrix element
of the electromagnetic current between two pions involves
the pion form factor function Fv

π (s),

〈
π+(p)

∣∣jμ(0)
∣∣π+(p′)〉= (p + p′)

μ
Fv

π

((
p − p′)2). (27)

We can use this matrix element to provide a definition of the
pion pole contributions (diagrams (a), (b) in Fig. 3). The de-
pendence of the vertex on the fact that one pion is off the
mass shell can absorbed into the non-pole contributions (di-
agram (c)). From diagrams (a), (b) one then obtains,

WBorn,a+b
μν = Fv

π

(
q2)[ (q2 − s) T1μν − 1

2T2μν

(t − m2
π )(u − m2

π )
− 2gμν

]

(28)

expressed in terms of the Tiμν tensors, which has exactly the
same expression as in the case of on-shell photons except

Fig. 3 Born diagrams (one-pion exchange) contributions to the
γ γ ∗ → π+π− amplitude



Page 6 of 25 Eur. Phys. J. C (2013) 73:2539

that it is multiplied by the form factor Fv
π (q2). Gauge in-

variance dictates that the contribution from the diagram (c)
must cancel the last term in Eq. (28). Of course, there can
be additional, gauge invariant contributions from this class
of diagrams. Some of them, which can be associated with
ρ, ω vector resonance exchanges will be considered below.
In a dispersive approach, further contributions are absorbed
into subtraction functions. The Born terms, finally, can be
defined as

WBorn
μν = ABorn(s, t, q2)T1μν + BBorn(s, t, q2)T2μν (29)

with

ABorn(s, t, q2)= Fv
π (q2)(q2 − s)

(t − m2
π )(u − m2

π )
,

BBorn(s, t, q2)= −Fv
π (q2)

2(t − m2
π )(u − m2

π )
.

(30)

Next, using the relations (18), the three helicity amplitudes
corresponding to the Born diagrams can be deduced. Us-
ing Eq. (11), we can compute the partial waves, the J = 0
partial-wave amplitude reads,

hBorn
0,++

(
s, q2)= Fv

π (q2)

s − q2

[
4m2

π Lπ(s) − 2q2],

Lπ(s) = 1

σπ(s)
log

1 + σπ(s)

1 − σπ(s)
.

(31)

The corresponding isospin I = 0, 2 amplitudes, using (12)
are given by

h
I,Born
0,++

(
s, q2)= −

√
4 − I

3
hBorn

0,++
(
s, q2). (32)

Let us examine the singularities of hBorn
0,++(s, q2) in the

complex plane of the variable s. The function Lπ(s) has a
singularity on the negative real axis s ∈ [−∞,0], which is
the expected left-hand cut. In addition, if q2 �= 0, there is a
pole singularity when s = q2. This value of s corresponds
to the kinematical situation where the real photon becomes
soft i.e. q1 → 0 as one can see from the relation

q2 − s = 2q1 · q2. (33)

When q2 > 4m2
π , this singularity overlaps with the unitarity

cut. However, as q2 is an energy variable (it is the invari-
ant energy of the e+e− pair) the amplitudes must be defined
with the iε limiting prescription i.e. q2 = limq2 + iε. This
prescription shifts the pole singularity away from the unitar-
ity cut.

3.2 Vector-meson exchange amplitudes in the zero-width
limit

The diagrams corresponding to charged and neutral vector
-meson exchanges are shown in Fig. 4. At first, let us ignore

the widths of the resonances. We start from the following
Lagrangian which describes the coupling of a real photon to
a vector meson and a pion:

LV Pγ = eCV εμναβFμν∂αPVβ (34)

(where P is either π0 or π± depending on the charge of V ).
Thanks to the derivative couplings the amplitude computed
from (34) should automatically vanish in the soft-photon
limit as well as in the soft pion limit. The coupling con-
stants CV are related directly to the decay widths of the vec-
tor mesons into Pγ ,

ΓV →Pγ = α C̃V

(m2
V − m2

P )3

3m3
V

(35)

with

C̃V = 1

2
C2

V . (36)

The following numerical values for the couplings C̃V can be
deduced from the PDG [28]:

Γ
(
ω → π0γ

)= 703 ± 25 KeV,

C̃ω = 0.66 ± 0.023 GeV−2,

Γ
(
ρ0 → π0γ

)= 89 ± 12 KeV,

C̃ρ0 = 0.09 ± 0.01 GeV−2,

Γ
(
ρ+ → π+γ

)= 68 ± 7 KeV,

C̃ρ+ = 0.07 ± 0.007 GeV−2.

(37)

When the photon is off-shell, the vertex is modified by a
form factor FV π which can be defined, in the zero-width
limit, from the matrix element

〈
V (λ,pV )

∣∣jμ(0)
∣∣π(pπ)

〉
= 2eCV FV π

(
q2) εμαβγ pα

V pβ
πε

∗γ

V (λ) (38)

and is normalised such that FV π(0) = 1. Computing the am-
plitude from the first two diagrams of Fig. 4 with this vertex,

Fig. 4 Vector-meson exchange diagrams and possible associated con-
tact term
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one finds

AV
(
s, t, q2)= C̃V FV π

(
q2)[ s − 4m2

π − 4t + q2

t − m2
V

+ s − 4m2
π − 4u + q2

u − m2
V

]
,

BV
(
s, t, q2)= C̃V FV π

(
q2)[ 1

2(t − m2
V )

+ 1

2(u − m2
V )

]
,

CV
(
s, t, q2)= C̃V FV π

(
q2)[ 1

t − m2
V

− 1

u − m2
V

]
.

(39)

We have used the fact that upon interchanging p1, p2 the
tensors T

μν
1 , T

μν
2 are left invariant while T

μν
3 → −T

μν
3 and

t, u are interchanged. We note that the expression of the
function AV involves a linear off-shell dependence in t , u

in the numerators of the pole. It is possible, in principle, to
replace t , u by m2

V by adding a contribution from the non-
pole diagram in Fig. 4. Doing this, however, would spoil the
correct soft pion limit. We can now compute the correspond-
ing vector-exchange helicity amplitudes and project on the
partial waves. We obtain for J = 0,

hV
0,++

(
s, q2,m2

V

)

= C̃V FV π

(
q2){LV (s, q2,m2

V )

σπ(s)

×
[
−4m2

V + 4q2
(

m2
V − m2

π

s − q2

)2]

+ 2q2
(

1 − 2(m2
V − m2

π )

s − q2

)
+ 4
(
s − q2)} (40)

with

LV

(
s, q2,m2

V

) = log
(
m2

V − t+
(
s, q2))

− log
(
m2

V − t−
(
s, q2)) (41)

and

t±
(
s, q2)= m2

π + 1

2

(
q2 − s

)(
1 ± σπ(s)

)
. (42)

3.3 Complex singularity structure of the vector-meson
exchange amplitudes

Let us now consider the singularities of the partial-wave
amplitude (40). Contrary to the case of pion exchange,
the vector amplitude has no pole in the soft-photon limit
s = q2. In fact it is easy to verify that the partial-wave am-
plitude (40) vanishes at this point. The cuts now are con-
tained in the function LV (s, q2,m2

V )/σπ (s). Concerning the
branch points, in addition to the points s = 0, s = ∞ there

are two finite branch points:

s±
(
q2,m2

V

)

= q2 − m2
V − m2

π

2m2
V

×(q2 + m2
V − m2

π ∓ λ
1
2
(
q2,m2

V ,m2
π

))
(43)

with

λ
(
q2,m2

V ,m2
π

)= (q2 −m2−
)(

q2 −m2+
)
, m± = mV ±mπ.

(44)

An alternative useful expression for these branch points can
be derived,

s± = 4m2
π

(A ∓ B)2
, (45)

with

A = m+√
q2

√
1 − m2−

q2
, B = m−√

q2

√
1 − m2+

q2
. (46)

Depending on the value of q2 one has to consider three
cases

1. q2 < m2−: In this case, both A and B are imaginary, s±
are then real and lie on the negative axis. The real cut, in
this situation, is entirely situated on the negative real axis
and consists of the two pieces [−∞, s−], [s+,0].

2. m2− ≤ q2 ≤ m2+: in this case the branch points are com-
plex, the real cut consists of the entire negative axis
[−∞,0].

3. q2 > m2+: In this case, the branch points are again real
and since both m+√

q2
and m−√

q2
are smaller than one, we

can set

m+√
q2

≡ sina,
m−√
q2

≡ sinb (47)

such that one can express s± as

s± = 4m2
π

sin(a ∓ b)2
. (48)

This expression shows that both branch points are real
and larger than 4m2

π .

In addition to the cuts on the real axis, the meson exchange
amplitudes have a complex cut corresponding to complex s

solutions of the equations Im ((m2
V − t+)/(m2

V − t−)) = 0,
Re ((m2

V − t+)/(m2
V − t−)) ≤ 0. These complex cuts are il-

lustrated in Fig. 5. In the case when q2 > (mV + mπ)2 the
figure shows that the complex cut intersects the unitarity cut.
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Fig. 5 Real and complex cuts of the function LV (s, q2,m2
V ), with

mV = 0.77 GeV and q2 = 1 GeV2

3.4 Finite width resonance exchange amplitudes with
correct analyticity properties

Applicability of the MO method to the amplitudes of in-
terest relies on the ability to separate the amplitude (via a
Cauchy representation) into a piece having only a left-hand
cut and a piece having only a right-hand one. This, a priori,
is not the case if the left-hand cut is of the form illustrated
in Fig. 5. So far, however, we have ignored the width of the
resonances i.e. we have taken the propagator to be a simple
pole in the variables t , u. A naive way of trying to solve the
problem is to use a complex resonance mass, i.e. replace mV

by mV − iΓV /2, but this ansatz is not quite correct since the
resonance pole lies on the first sheet. A related issue is that
the propagator would be complex independently of the value
of t , u. The correct analyticity properties expected from a
resonance propagator are that the resonance poles should be
located on the second Riemann sheet and that the propaga-
tor be analytic as a function of its variable except for a right-
hand cut. Consider specifically the ρ meson, whose width
is dominated by two-particle decay. Propagators which are
currently used do not exactly satisfy these properties. For in-
stance, the Breit–Wigner propagator with a momentum de-
pendent width

BWV (t) = 1

m2
V − t − iγV σπ(t)(t − 4m2

π )
,

γV = mV ΓV

σπ(m2
V )(m2

V − 4m2
π )

(49)

has a left-hand cut. The propagator proposed by Gounaris
and Sakurai [29] has no left-hand cut but has an unphys-
ical pole singularity on the real axis.3 On rather general

3In the case of the ρ meson parameters, this is a formal rather than a
practical problem, as the singularity is located at a rather large negative
value t � −9.4 · 105 GeV2.

grounds, one expects that a propagator should satisfy a
Källen–Lehmann dispersive representation [30, 31],

B̃WV (t) = 1

π

∫ ∞

4m2
π

dt ′ σ(t ′,mV ,ΓV )

(t ′ − t)
(50)

which automatically ensures the absence of singularity
in the complex plane except for a right-hand cut. This
propagator is well defined and real when t is real and
smaller than 4m2

π , unlike BWV (t). For the spectral func-
tion σ(t ′,mV ,ΓV ) we can use, for instance, the imaginary
part of the BW propagator

σ
(
t ′,mV ,ΓV

)= Im
[
BWV

(
t ′
)]

(51)

which is definite positive (this ansatz has been considered
before, e.g. [32]). In this case, B̃WV (t) and BWV (t) have the
same imaginary parts when t ≥ 4m2

π but they have (slightly)
different real parts (see Appendix A).

Let us then assume a phenomenological treatment of fi-
nite width effects in the vector-meson exchange amplitudes
restricted to a simple replacement of the propagators4

1

m2
V − z

−→ B̃WV (z), z = t, u (52)

in Eq. (39), where B̃WV (z) has the dispersive form given
in Eq. (50). The corresponding partial-wave amplitudes can
then be expressed in the form of spectral representations and
the cuts of the partial-wave amplitudes are contained in the
function L̃V which is given by

L̃V

(
s, q2,mV ,ΓV

)

=
∫ ∞

4m2
π

dt ′σ
(
t ′,mV ,ΓV

)

×[log
(
t ′ − t+

(
s, q2))− log

(
t ′ − t−

(
s, q2))]. (53)

The equations for the cuts, in the case of a representa-
tion (53) are given in parametric form by the locus of the
singularities of the logarithms i.e. s±(q2, t ′) with 4m2

π ≤
t ′ ≤ ∞. One obtains the same result as in a more general
derivation relying on the Mandelstam double spectral repre-
sentation of the amplitude [33]. It would seem that, again,
the cut intersects and overlaps the unitarity cut. However,
one must remember that q2 must be considered as a limiting
value of q2 + iε. Figure 6 shows the global shape of the cut
and a more detailed view of the vicinity of the unitarity cut
using the q2 + iε prescription. The figure shows that the cut
has two branches: the upper branch of the cut lies strictly
above the unitarity cut while the lower branch crosses the

4This ansatz preserves the correct soft-photon and soft-pion limits.
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Fig. 6 Real and complex cuts of a resonance exchange amplitude us-
ing a spectral representation of the propagator (see (50), (53)). The
lower figure illustrates how this cut avoids the unitarity cut

real axis close to 4m2
π . A simple calculation shows that this

crossing occurs at the point

sc = 4m2
π

(
1 − ε2

(q2 − 4m2
π )2

)
(54)

(corresponding to the parameter value t ′ = q2/2 − m2
π )

which is located strictly below 4m2
π . In conclusion, the cuts

of the resonance amplitude are now definitely separated
from the unitarity cut and this implies that the usual MO
method is applicable.

4 Dispersive Omnès representations

The discussion above justifies that the usual Omnès disper-
sive representation [11] applies to the partial-wave γ γ ∗ am-
plitudes hI

J,λλ′(s, q2) in terms of the (generalised) left-cut

part and the Omnès function ΩI
J (s). The form of this repre-

sentation, in which the dependence on the two variables s,
q2 is displayed explicitly, is given below (59). As a check of
its correctness, i.e. of the absence of an anomalous thresh-
old and that the real and imaginary parts are correctly com-
puted, we consider in Appendix B a toy model of rescatter-
ing, which leads to simple triangle diagrams which can be
computed in two different manners.

It is convenient to display explicitly the pole at s = q2 of
the Born term as well as the form factor Fv

π (q2)

h
I,Born
0,++

(
s, q2)≡ Fv

π (q2)

s − q2
h̄

I,π
0,++

(
s, q2). (55)

Similarly, the form factor FV π(q2) may be displayed in the
case of the vector-meson exchange amplitudes, in the zero-
width limit at first,

h
I,V
0,++

(
s, q2,m2

V

)≡ FV π

(
q2) h̄I,V

0,++
(
s, q2,m2

V

)
. (56)

In the finite width case, using Eq. (52), the following spectral
representation holds:5

h̃
I,V
0++

(
s, q2,mV ,ΓV

)

= 1

π

∫ ∞

4m2
π

dt ′σ
(
t ′,mV ,ΓV

)
h̄

I,V
0++

(
s, q2, t ′

)
. (57)

Let us then introduce the following two integrals:

J I,π
(
s, q2) = 1

π

∫ ∞

4m2
π

ds′

(s′)2(s′ − s)

sin δI
0 (s′)

|ΩI
0 (s′)| h̄

I,π
0,++

(
s′, q2),

J I,V
(
s, q2) = 1

π

∫ ∞

4m2
π

ds′

(s′)2(s′ − s)

sin δI
0 (s′)

|ΩI
0 (s′)|

× h̃
I,V
0,++

(
s′, q2,mV ,ΓV

)
, (58)

where ΩI
0 (s′) is given in Eq. (80). It is worth noting here that

the s′ integrations in Eq. (58) are well defined when using
the s + iε and q2 + iε prescriptions, since the singularities
from 1/(s′ − s) and from h̃

I,V
0,++(s′, q2,mV ,ΓV ) are then

moved away from the real axis as has been discussed above
in Sect. 3.4.

Writing dispersion relations with two subtractions at s

= 0, the representation for the H++ helicity amplitude, tak-
ing into account rescattering in the S-wave, can then be writ-
ten as

HI++
(
s, q2, θ

)
= Fv

π

(
q2)H̄ I,Born

++
(
s, q2, θ

)

+
∑

V =ρ,ω

FV π

(
q2)H̄ I,V

++
(
s, q2, θ

)+ ΩI
0 (s)

[
aI
(
q2)

5In practice, this representation was used only for the ρ-meson, the
spectral integration being performed numerically. Alternatively, the
computation of the partial-wave amplitudes can be done starting from
the finite width helicity amplitudes, Eqs. (39), (52), and performing the
angular integration numerically, which provides a check on the calcula-
tion. In the case of the ω meson, the finite width was implemented more
naively by using a complex mass, i.e. setting m2

V ≡ (mω − iΓω/2)2 in

h̄
I,V
0,++(s, q2,m2

V ).
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+ s bI
(
q2)+ s2 Fv

π

(
q2) J I,π (s, q2) − J I,π (q2, q2)

s − q2

+ s2
∑
V

FV π

(
q2)J I,V

(
s, q2)]. (59)

We have indicated explicitly that the two subtraction con-
stants aI and bI should depend on q2. These functions are
expected to be analytic as a function of q2 with a cut on
the real axis, q2 > 4m2

π . When q2 is real and smaller than
4m2

π , aI and bI are real as well as the form factors, which
ensures that the partial-wave amplitude from the representa-
tion (59) satisfies Watson’s theorem. Let us now consider the
constraints arising from the soft-photon and from the soft-
pion limits.

4.1 Soft-photon constraints

The point s = q2 is special because it corresponds to the
limit of the photon becoming soft, q1 = 0. In this limit, we
expect the helicity amplitudes to vanish, after subtracting the
Born term, according to the general theorem of Low [34].
This follows, in the present case, simply from the general
expressions of the helicity amplitudes (18) in terms of the
invariant functions. These expressions show that the ampli-
tudes vanish when s = q2 except if A(s, t, q2), B(s, t, q2)

or C(s, t, q2) has a pole in the soft-photon limit. This is the
case for the Born term parts ABorn(s, t, q2), BBorn(s, t, q2)

see (30) which have a pole when t = m2
π or u = m2

π , and
one has

t − m2
π = 2q1 · p1, u − m2

π = 2q1 · p2 (60)

which indeed vanish in the soft-photon limit. The remaining
parts, by definition, have no such poles in t or u. The soft-
photon constraint implies that the subtraction functions aI

and bI in Eq. (59) obey the following linear relation:

aI
(
q2)+ q2bI

(
q2)+ (q2)2

×
[
Fv

π

(
q2)Ĵ I,π

(
q2)+∑

V

FV π

(
q2)J I,V

(
q2)]= 0 (61)

with

Ĵ I,π
(
q2)= ∂J I,π (s, q2)

∂s

∣∣∣∣
s=q2

, (62)

which we can write as

Ĵ I,π
(
q2)

= −
√

4 − I√
3π

∫ ∞

4m2
π

ds′

(s′ − q2)

× d

ds′

[
sin δI

0 (s′)
(s′)2|ΩI

0 (s′)|
(
4m2

πLπ

(
s′)− 2q2)], (63)

where we have replaced h̄I,Born by its explicit expression
(see (31), (32)) and integrated by parts.

The appearance of a derivative in the integrand of
Eq. (63) (which is needed when q2 �= 0) may seem pecu-
liar but simply results from the (s − q2) denominator in the
Born amplitude. One immediate consequence of this struc-
ture is that the integral in Eq. (63) diverges when q2 = 4m2

K

because the phase-shift δI
0 (s′) exhibits a cusp at the KK̄

threshold. This problem is caused by the approximation
of using one-channel Omnès formulae, while the cusp is
due to the opening of an inelastic channel. We show in
Appendix C that no divergence arises if one consistently
implements two-channel unitarity in the Omnès method.
The one-channel Omnès formalism should be used only for
q2 < 1 GeV2.

4.2 Adler zero, chiral expansion

In the chiral limit, current algebra easily shows that the
γ ∗(q2) → π0π0γ amplitude Wμν vanishes when one of the
pions becomes soft.6 In this limit, e.g. p1 → 0, the tensors
T

μν
1 , T

μν
2 , T

μν
3 are no longer independent. The following

relations hold among them:

T
μν
2

∣∣
mπ=0,p1=0≡ 2q2T

μν
1 , T

μν
3

∣∣
mπ=0,p1=0 ≡ −2q2T

μν
1

(64)

(the sign ≡ means that equality holds up to terms which
vanish when contracted with ε1) such that one has

Wμν
∣∣
mπ=0,p1=0=

[
A + 2q2(B − C)

]
T

μν
1 (65)

and the soft-pion theorem implies

A + 2q2(B − C)
∣∣
mπ=0, t=0, s=0= 0 (66)

which holds true for any value of q2. Let us then introduce
a function of s

W
(
s, q2)≡ A

(
s, t, q2)+2q2(B(s, t, q2)−C

(
s, t, q2))∣∣

t=m2
π

(67)

which, in the chiral limit, behaves as W(s, q2) ∼ λ(q2)s at
small s. In the physical, massive pion case, it behaves at
small s as

W
(
s, q2)∼ (λ(q2)+ a

(
q2))s + b

(
q2) (68)

where a, b are O(m2
π ). The function W should therefore

display an Adler zero as a function of s. The same holds

6In the case of charged pions, a sum rule was derived by Terazawa [35]
giving the amplitude for two off-shell photons producing two soft pi-
ons.
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for the helicity amplitude Hn++ when t = m2
π (which corre-

sponds to cos θ = 1/σπ(s)), since it can be written as

Hn++
(
s, q2, θ

)|t=m2
π

= 1

2

(
s − q2)

× [W (s, q2)− 2
(
s − 4m2

π

)
B
(
s, t = m2

π , q2)] (69)

and thus can be cast into a form similar to Eq. (68) for
small values7 of s. The value of the Adler zero sA should
be small, O(m2

π ), and depend on the value of q2. For illus-
tration, in the case of the vector-exchange amplitude, HV++,
one has

HV++
(
sA, q2, θ

)∣∣
t=m2

π
= 0,

sA = m2
π (2m2

V − 2m2
π − q2)

m2
V − 2m2

π

.
(70)

In the chiral expansion, the amplitudes γ ∗ → γπ0π0,
γπ+π− have been computed at NLO in Refs. [19, 21].
The results, for the non-vanishing helicity amplitudes, are
recalled below

Hn++|NLO = 2(s − m2
π )

F 2
π

Ḡ
(
s, q2),

Hc++|NLO = s

F 2
π

Ḡ
(
s, q2)+ (l̄6 − l̄5)

s − q2

48π2F 2
π

+ HBorn++ ,

Hc+−|NLO = HBorn+− ,Hc
+0 = HBorn

+0

(71)

with

Ḡ
(
s, q2)= sḠπ (s) − q2Ḡπ (q2)

s − q2
−q2 J̄π (s) − J̄π (q2)

s − q2
(72)

and using the definitions of Ref. [25] for the loop functions
J̄π and Ḡπ ,

J̄π (z) = 1

16π2

(
2 + σπ(z) log

σπ(z) − 1

σπ(z) + 1

)
,

Ḡπ (z) = − 1

16π2

(
1 + m2

π

z
log2 σπ(z) − 1

σπ(z) + 1

)
.

(73)

These functions satisfy the relation

d

dz

(
zḠπ (z)

)= z
d

dz
J̄π (z) (74)

which ensure that Hn++ and Hc++ −HBorn++ vanish at the soft-
photon point s = q2. In Eqs. (71) the NLO expression for the

7The Adler zero can disappear for exceptional values of q2 such that
λ(q2) − 2B(0, t = m2

π , q2) = 0.

pion form factor which enters in HBorn must be used i.e. [36]

Fv
π

(
q2)∣∣

NLO

= 1 + 1

6F 2
π

(
q2 − 4m2

π

)
J̄π

(
q2)

+ q2

96π2F 2
π

(
l̄6 − 1

3

)
. (75)

The NLO amplitude Hn++(s)|NLO has an Adler zero at
s = m2

π which does not depend on the value of q2.

4.3 Dispersive amplitudes with chiral constraints

In order to implement chiral constraints in our dispersive
representation of the amplitude in a transparent way, we re-
define the subtraction functions bI (q2) such that all the in-
tegral pieces are multiplied by a factor of s:

HI++
(
s, q2, θ

)
= Fv

π

(
q2)H̄ I,Born

++
(
s, q2, θ

)
+
∑

V =ρ,ω

FV π

(
q2)H̄ I,V

++
(
s, q2, θ

)

+ ΩI
0 (s)

{(
s − q2)bI

(
q2)

+ s F v
π

(
q2)[ s(J I,π (s, q2) − J I,π (q2, q2))

s − q2

− q2Ĵ I,π
(
q2)]

+ s
∑

V =ρ,ω

FV π

(
q2)[sJ I,V

(
s, q2)

− q2J I,V
(
q2, q2)]}. (76)

The value at s = 0 of the π0π0 amplitude is now given sim-
ply by

Hn++
(
0, q2, θ

)= ∑
V =ρ0,ω

H
n,V
++
(
0, q2, θ

)− q2bn
(
q2) (77)

where bn(q2) (and similarly bc(q2)) is given from Eq. (12)
in terms of bI (q2)

(√
2bc(q2)

bn(q2)

)
= C

(
b0(q2)

b2(q2)

)
. (78)

Consistency with the soft-pion theorem requires that the
right-hand side of Eq. (77) should vanish in the chiral limit,
i.e. bn(q2) ∼ O(m2

π ), at least when q2 �= 0. The chiral be-
haviour when q2 = 0 is actually different. This can be seen
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by comparing with the NLO chiral amplitude at s = 0 and
q2 � m2

π ,

H
n,NLO
++

(
s = 0, q2, θ

) = −2m2
π

F 2
π

(
Ḡπ

(
q2)− J̄π

(
q2))

= q2

96π2F 2
π

(
1 + q2

15m2
π

+ · · ·
)

(79)

from which one deduces that bn(0) = −1/96π2F 2
π in the

chiral limit.
As will be discussed in the next section, we assume the

subtraction functions bI (q2) to be slowly varying, except
near the positions of the vector resonances, and we will con-
strain them from experimental data at q2 = 0 and q2 > 4m2

π .
The Adler and soft-photon zeros in the resulting ampli-
tudes are illustrated in Fig. 7. The figure shows H++ with
t = m2

π , as a function of s in the case of both positive and
negative values of q2. In the latter case, the NLO chiral
and the dispersive amplitudes are very close in the region
q2 ≤ s ≤ 4m2

π . The amplitude is also rather small in this re-
gion because of the two zeros. In the case of positive q2,
there is a visible difference between the two amplitudes. To

Fig. 7 Illustration of the Adler and soft-photon zeros in the dispersive
amplitude Hn++ and in the corresponding NLO chiral approximation.
The upper plot corresponds to q2 = 0.2 GeV2 and the lower one to
q2 = −0.2 GeV2

a large extent, this reflects the influence of the pion form fac-
tor, which grows rapidly for positive q2, and is set equal to
1 in the NLO amplitude. The figure also shows that both the
real and imaginary parts of the dispersive amplitude display
an Adler zero, but they do not coincide as in the NLO case.
Furthermore, their location varies a function of q2.

4.4 Comparison with some other approaches

Eq. (76) represents our final result for the dispersive rep-
resentation of the γ ∗γ → ππ or γ ∗ → γππ amplitudes.
There has been a long lasting interest in the literature for
the closely related amplitudes describing the decays of the
ρ, ω mesons into γππ . An illustrative list of references
is [37–51]. Much of the previous work is based on com-
puting the amplitudes from chiral Lagrangians which also
include a few light resonances. Chiral Lagrangians automat-
ically enforce chiral as well as QED Ward identities. Fur-
thermore, Feynman diagrams satisfy analyticity properties,
as well as unitarity relations if loops are computed. All re-
sults, therefore, could be written in a way formally analo-
gous to Eq. (76). The Born term rescattering piece, for in-
stance, would correspond to the pion loop contribution in a
Lagrangian calculation. The amplitude (76) further includes
the rescattering contributions associated with the ρ and ω

exchange amplitudes, which would correspond to π +ρ and
π + ω loops in a Lagrangian approach (see Appendix B).
Such contributions seem not to have been considered pre-
viously. Additionally, elastic unitarity for the ππ → ππ

partial-wave scattering amplitudes is enforced exactly in the
dispersive expression (76). This property is also correctly
satisfied in the unitarised ChPT approaches [43, 46], but not
in the resonance Lagrangian ones. Finally, the rescattering
contribution from the I = 2 ππ amplitude has usually been
neglected in previous work.

5 Comparison with experiment

5.1 ππ phase-shifts and Omnès functions

The expressions for the γ γ ∗ amplitudes involve the Omnès
functions ΩI

0 (s) constructed from the I = 0,2 S-wave ππ

phase-shifts δI
0 ,

ΩI
0 (s) = exp

[
s

π

∫ ∞

4m2
π

ds′ δI
0 (s′)

s′(s′ − s)

]
. (80)

In using one-channel Omnès functions one ignores inelastic
channels in the unitarity relations. The I = 0 channel is pe-
culiar in this respect, because the inelasticity associated with
the KK̄ channel sets in rather sharply as an effect of the
f0(980) resonance. This resonance also causes the phase-
shift δ0

0 to raise very rapidly at 1 GeV, which gives rise to a
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large peak in the Omnès function Ω0
0 . As has been pointed

out in Ref. [52], it is useful to make use of experimental in-
formation at the f0(980) peak even if the formulae are to
be applied at smaller energies. The f0(980) peak in the case
of the γ γ → ππ amplitudes is observed to be rather small.
In fact, the peak was clearly observed only recently by the
Belle collaboration γ γ experiments [53, 54]. This implies
that the polynomial parameters in the γ γ amplitude must be
such as to produce a zero close to one GeV in the coefficient
of the Omnès function. An equivalent method for generating
a zero is to make use of a modified Omnès function Ω[φ0

0 ],
constructed with a phase φ0

0 which satisfies8

φ0
0(s) = δ0

0(s), s ≤ sπ

φ0
0(s) = δ0

0(s) − π, s > sπ

(81)

and sπ is such that δ0
0(sπ ) = π , which is a point close to the

KK̄ threshold. The modified and original functions satisfy
the simple relation Ω[φ0

0 ] = (1 − s/sπ )Ω[δ0
0].

We used phase-shifts δ0
0 , δ2

0 based, at low energies, on
the twice-subtracted Roy equations analysis from Ref. [55].
The two scattering lengths a0

0 , a2
0 have been updated to the

values given by the NA48/2 collaboration [56]. In the case
of δ0

0 , the Roy solutions are extended in energy up to the
KK̄ threshold (see [57]). Above 1 GeV, the phase-shifts are
taken from fits to experimental data.

5.2 Case q2 = 0

Setting q2 = 0, the amplitudes Hλλ′ correspond to photon-
photon scattering, γ γ → ππ . In this case, the helicity am-
plitude H+0 vanishes identically and the differential cross
section is given by

dσ

d cos θ
= α2π

4s
σπ (s)

(|H++|2 + |H+−|2). (82)

The values of the subtraction functions at q2 = 0 can be
related to the pion electric and magnetic polarisabilities
απ , βπ . These two observables indeed parametrise the pion
Compton scattering amplitude near threshold (see e.g. [17]
and references therein). One can then relate the polarisabil-
ity difference απ − βπ to the helicity amplitude H++ com-
puted in the limit t → m2

π , s → 0 after subtracting the Born

8Alternatively, Ref. [20] discuss the idea of using an Omnès function
with a cutoff, i.e. setting φ0

0 = 0 for s ≥ Λ. In the present context,

the divergence of the function Ĵ 0,π (q2) leads to a reduced range of
applicability, as a function of q2, as compared to the prescription of
Eq. (81).

amplitude

mπ(απ0 − βπ0) = lim
s→0, t→m2

π

2α

s
Hn++

(
s, q2 = 0, θ

)
,

mπ(απ+ − βπ+) = lim
s→0, t→m2

π

2α

s
Ĥ c++

(
s, q2 = 0, θ

)
,

(83)

where, in the charged case,

Ĥ c
λλ′ ≡ Hc

λλ′ − HBorn
λλ′ . (84)

In the approach followed here, the following simple relation
thus holds between the polarisabilities and the values of the
subtraction functions at q2 = 0:

(απ0 − βπ0) = 2α

mπ

(
bn(0) − 4m2

π C̃ρ0 B̃Wρ

(
m2

π

)

− 4m2
π C̃ω

m2
ω − m2

π

)
,

(απ+ − βπ+) = 2α

mπ

(
bc(0) − 4m2

π C̃ρ+ B̃Wρ

(
m2

π

))
.

(85)

At present, the values of the pion polarisabilities cannot be
considered as precisely determined experimentally. It was
observed in Ref. [58] that NLO ChPT predictions were in
qualitative agreement with the available γ γ → ππ cross
sections. Their discussion was improved in Ref. [17] who
combined ChPT with Omnès dispersive representations.
New measurements of γ γ → π0π0, π+π− covering the
very low-energy region are planned at KLOE [59]. For
charged pions, a new experiment is under way at COM-
PASS [60] which aims at measuring the Compton amplitude
and the polarisability by the Primakov method. There have
also been attempts to determine the polarisabilities from un-
subtracted dispersion relations leading, however, to some-
what conflicting results [61, 62]. The result for the polaris-
ability difference in the chiral expansion at NLO is easily
obtained from Eqs. (71),

(απ0 − βπ0)|NLO � −1.0 · 10−4 fm3,

(απ+ − βπ+)|NLO � 6.0 · 10−4 fm3
(86)

(with Fπ = 92.2 MeV, l̄6 − l̄5 = 3.0). The calculation of the
γ γ amplitudes at NNLO have been performed [25, 26, 63,
64]. However, quantitative results for the polarisabilities at
NNLO are affected by an uncertainty due to the fact that the
O(p6) chiral coupling constants are not known at present.
For definiteness, we will use here the estimates obtained in
Ref. [65] from a coupled channel MO treatment of the two
sets of measurements by the Belle collaboration [53, 54].
These data have very high statistics but do not cover the
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very low-energy region. This analysis favoured the follow-
ing value for the neutral pion polarisability difference:9

(απ0 − βπ0) = −(1.25 ± 0.16) · 10−4 fm3 (87)

while the charged polarisability difference was constrained
to lie in the range predicted by the two-loop calculation plus
resonance modelling of the LEC’s performed in Ref. [64].
The data favoured values in the lower part of that range

(απ+ − βπ+) � 4.7 · 10−4 fm3. (88)

Using the determinations (87), (88) for the couplings C̃V

gives the following values for the subtractions functions at
q2 = 0:

b0(0) = −(0.66 ± 0.20) GeV−2,

b2(0) = −(0.54 ± 0.14) GeV−2
(89)

(we have ascribed an error ±1.4 · 10−4 to the charged polar-
isabilities difference).

The result for the γ γ → π0π0 cross section derived from
our amplitudes using the values (89) for bI (0) is shown on
Fig. 8 and compared to the experimental measurements from
Refs. [54, 66]. Note that the cross section displays a cusp at√

s = 4m2
π+ , due to the π0 − π+ mass difference, which

was discussed in Ref. [67] using ChPT.

5.3 Case q2 �= 0: Fv
π , Fωπ , Fρπ form factors

In order to address the case with q2 �= 0 we must specify
the q2 dependence of the three form factors which enter

Fig. 8 Comparison of the γ γ → π0π0 cross sections using the am-
plitude Hn++ as derived from Eq. (76) and Hn+− = H

n,V
+− with experi-

ment. The influence of varying the polarisability difference απ0 − βπ0

is shown

9In the fit, the dipole and quadrupole polarisabilities of the π0 were
allowed to vary subject to the constraint that the combination 6(απ0 −
βπ0 )dipole + m2

π (απ0 − βπ0 )quadrupole is given by a chiral sum rule.

into the expression of the amplitude (76). They were defined
from the relevant matrix elements of the electromagnetic
current operator by Eqs. (27), (38). We will employ usual
phenomenological descriptions based on superposition of
Breit–Wigner-type functions associated with the light vector
resonances. We give some details on these in Appendix D.
The pion form factor, of course, is known rather precisely
from experiment. Some experimental data exist also for the
ωπ form factor in two kinematical regions surrounding the
peak of the ρ meson. The data in these two ranges are com-
patible with the simple model used except, possibly, in a
small energy region (see Appendix D for more details). The
Fρπ form factor, finally, is more difficult to isolate experi-
mentally than Fωπ , because of the width of the ρ. We used
the same type of modelling together with symmetry argu-
ments to fix the parameters.

5.4 Case q2 �= 0: subtraction functions

The values of b0(q2), b2(q2) when q2 �= 0 are a priori
not known and must thus be determined from experiment.
Given detailed experimental data on e+e− → γπ0π0 and
e+e− → γ ∗ → γπ+π−, one could determine these func-
tions for each q2 by performing a fit of the differential
dσ/ds cross sections. In practice, one expects that a sim-
ple parametrisation of q2 dependence should be adequate.
We adopted the following form, which involves two arbi-
trary parameters:

bn
(
q2)= bn(0)F

(
q2)+ βρ

(
GSρ

(
q2)− 1

)
+ βω

(
BWω

(
q2)− 1

)
,

bc
(
q2)=bc(0) + βρ

(
GSρ

(
q2)− 1

)+ βω

(
BWω

(
q2)− 1

)
(90)

with

F
(
q2)= 192π2 m2

π (J̄π (q2) − Ḡπ (q2))

q2
. (91)

The relation between b0, b2 and bn, bc is given in Eq. (78).
This form (90) is motivated by the discussion concerning
the chiral limit. Assuming that the parameters βρ , βω are
O(m2

π ) ensures that bn(q2), bc(q2) have the correct chiral
limit behaviour at q2 �= 0 as well as q2 = 0 (see Sect. 4.3).

We consider the experimental data in the region
√

s ≤
0.95 GeV where it is an acceptable approximation to ignore
the effect of inelasticity in ππ scattering. We also ignore the
effect of ππ rescattering in D or higher partial waves, since
the corresponding ππ phase-shifts are small in this region.
Note, however, that J ≥ 2 partial waves in the γ ∗ → γππ

amplitudes are not necessarily small, except very close to
the ππ threshold. They are included via HBorn

λλ′ (for charged
amplitudes) and HV

λλ′ . The results of performing fits to the
data of Refs. [4] and [5] are shown in Table 1 and illustrated
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in Fig. 9. The calculation of the χ2 with asymmetric errors
is done following the prescription of the introduction chap-
ter of the PDG. The few data points from Ref. [5] which are
given as upper bounds are not included in the fit. The figure
shows the result of the combined fit compared separately
with the data of Refs. [4, 5]. We also show the result ob-
tained upon setting the two parameters βρ , βω to zero. The
amplitude with βρ = βω = 0 agrees with experiment except
at the ω peak. The data essentially require one parameter,
βω, to be different from zero.

The behaviour of the differential cross section, dσ/d
√

s

is shown in Fig. 10 for several values of q2. A change in the
shape occurs when q2 ≥ (mω + mπ)2. This corresponds to
the appearance of the ω meson inside the Dalitz plot, which
gives rise to peaks when t = m2

ω or u = m2
ω . The ωπ thresh-

old effect is also clearly visible in the integrated cross sec-
tion σ(q2) in Fig. 9.

6 Some applications

6.1 Decays of the ρ, ω mesons into γππ

One can define the decay amplitude of a vector meson from
the γ ∗(q2) → γππ helicity amplitudes when q2 is close to
a resonance peak. First, one defines the coupling FV of a

Fig. 9 Integrated cross section for e+e− → γπ0π0. The experimental
results are from Refs. [4, 5]. The solid line is the result of the calcula-
tion from the dispersive representations (76) with bI (q2) parametrised
as in Eq. (90) and with values of the parameters βρ , βω obtained from a
combined fit to the two sets of experimental data (third line in Table 1).
The dotted line corresponds to βρ = βω = 0

Fig. 10 Differential cross sections, as a function of the ππ energy
√

s,
for various values of the virtual photon energy q2

vector meson to the electromagnetic current from the matrix
element

〈
0
∣∣jμ(0)

∣∣V (λ)
〉= emV FV εμ(λ). (92)

This definition is usual although it is well defined, strictly
speaking, in the limit of a stable meson. From the quoted
values [28] of the meson decays ρ,ω → e+e− widths one
obtains

Fρ = 156.5 ± 0.7, Fω = 45.9 ± 0.8 MeV. (93)

In this same zero-width limit, the amplitude which describes
the vector-meson decay V → γππ is related to the residue
of the V meson pole in the γ ∗ → γππ helicity amplitude
by the LSZ formula

T V
λλ′(s, θ) = lim

q2=m2
V

q2 − m2
V

mV FV

eHλλ′
(
s, q2, θ

)
. (94)

In the finite width case, the pole is replaced by a Breit–
Wigner-type function in our representations and we ap-
proximate the residue by the coefficient of this function.
These Breit–Wigner-type functions are present in the para-
metrisations of the three form factors Fv

π , Fωπ , Fρπ (see
Appendix D, note that ω–ρ mixing is accounted for) and
also in the subtraction functions b0(q2), b2(q2). The differ-
ential decay width is given in terms of the amplitude T V

λλ′
by

d2Γ

ds d cos θ
= α(m2

V − s)

12(4π)2m3
V

σπ(s)
(∣∣T V++

∣∣2 +∣∣T V
+0

∣∣2 +∣∣T V+−
∣∣2).

(95)

From this, and using the fitted parameters from the last line
of Table 1, we deduce the following results for the branching
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Table 1 Results of fitting the
two-parameter dependence of
the subtraction functions (see
Eq. (90)) to the experimental
data

βρ βω χ2/Ndof Ref.

0.14 ± 0.12 (−0.39 ± 0.12) · 10−1 20.2/27 [4]

−0.13 ± 0.15 (−0.31 ± 0.15) · 10−1 15.0/21 [5]

0.05 ± 0.09 (−0.37 ± 0.09) · 10−1 38.1/50 Combined

fractions:

BF
(
ω → π0π0γ

)= (5.61 ± 1.70)10−5,

BF
(
ρ → π0π0γ

)= (4.21 ± 0.60)10−5.
(96)

The result for the ω differs somewhat from that derived by
the experimental groups [4, 5] (from the same data), be-
ing smaller by nearly one sigma. This illustrates that these
branching fractions are not directly measurable quantities,
unlike the e+e− cross sections.

The shapes of the differential decay widths dΓV /d
√

s of
the ρ and the ω mesons, as a function of the ππ energy, is
illustrated on Fig. 11. The two shapes are rather different.
This can be easily understood from the general structure of
the dispersive amplitudes (76). In the ρ decay amplitude, a
large ππ rescattering contribution is induced from the Born
terms integrals J I,π , which is absent in the isospin limit for
the ω decay amplitude. Our result for dΓρ/d

√
s is in better

agreement with the one obtained using a unitarised ChPT
approach [46] than those obtained using resonance models
with a Breit–Wigner σ -meson (see Fig. 11).

Finally, let us quote our results for the decays into
π+π−γ . In this case, the Born amplitude contributes and
one must take the infrared divergence into account. We
follow Ref. [68] and consider the radiative width defined
with a cutoff on the photon energy Eγ ≥ Ecut

γ = 50 MeV.
Integrating the differential decay width (95) up to scut =
m2

V − 2mV Ecut
γ we obtain

BF
(
ρ → π+π−γ

)= 10.2 · 10−3 (Born),10.4 · 10−3 (Full)

BF
(
ω → π+π−γ

)= 1.85 · 10−4 (Born),2.59 · 10−4 (Full)

(97)

The Born amplitude dominates this mode in the case of the
ρ decay. In the case of ω decay, the Born amplitude is sup-
pressed by isospin but its relative contribution is neverthe-
less sizable. The experimental values for these branching
fractions are [28]

BF
(
ρ → π+π−γ

)∣∣
exp= (9.9 ± 1.6) · 10−3,

BF
(
ω → π+π−γ

)∣∣
exp< 36 · 10−4.

(98)

Fig. 11 Upper plot: differential distributions, as a function of the ππ

energy, of the branching fractions for ω → π0π0γ and ρ0 → π0π0γ

(solid lines). The dotted lines correspond to the amplitudes from the
vector-meson exchange diagrams alone. Lower plot: comparison of
the results from the dispersive amplitudes and from other approaches:
Ref. [46] (unitarised ChPT with resonances) and Ref. [49] (sigma
model)

6.2 Generalised polarisabilities

In the case where q2 < 0, it is fruitful to introduce the no-
tion of generalised polarisabilities. This was originally pro-
posed in the case of the nucleon in Ref. [69] and extended
to the case of the pion and further discussed in Refs. [21,
22]. As explained in Ref. [22], the generalised polarisabil-
ities characterise the spatial distribution in the hadron of
the polarisability induced by an external static electric or
magnetic field. These observables can be related to the co-
efficient functions A(s, t, q2), B(s, t, q2), C(s, t, q2) in the
limit t → m2

π , s → q2 after subtracting the Born term. We
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will be concerned here with the polarisability difference,
which is given by [21]

απ

(
q2)− βπ

(
q2)

= lim
s→q2, t→m2

π

α

mπ

(
A
(
s, t, q2)− 2

(
s − 4m2

π

)

× B
(
s, t, q2)) (99)

(απ(q2) is denoted as αL
π (q2) in Ref. [21]). Considering the

expression for the helicity amplitude H++ in terms of the
coefficient functions (18) one sees that the polarisability dif-
ference can be related to the helicity amplitude taken in the
limit s → q2, θ → π/2

απ

(
q2)− βπ

(
q2)= lim

s→q2, θ→π/2

2α

mπ

Ĥ++(s, q2, θ)

s − q2
. (100)

The results deriving from our dispersive amplitudes are
shown in Fig. 12 and compared to the chiral NLO results.
Those have the simple expressions [21]

απ0

(
q2)− βπ0

(
q2)∣∣

NLO= 2α

mπ

(q2 − m2
π )

F 2
π

J̄ ′
π

(
q2),

απ+
(
q2)− βπ+

(
q2)∣∣

NLO

= 2α

mπ

(
q2

2F 2
π

J̄ ′
π

(
q2)+ l̄6 − l̄5

48π2F 2
π

)
.

(101)

Keeping in mind that the values at q2 = 0 in the dispersive
amplitudes have been chosen to be slightly different from
the chiral NLO values, Fig. 12 shows that the variation as a
function of q2 of the generalised polarisabilities is described
by the simple NLO expressions (101) to a rather good ap-
proximation.

6.3 Sigma meson electromagnetic form factor

The σ meson resonance is often used as a simplified de-
scription of the dynamics of ππ rescattering in the isoscalar

Fig. 12 Generalised polarisability difference from the dispersive am-
plitudes compared with chiral NLO result

S-wave. From this point of view, electromagnetic properties
of this resonance play a role in the hadronic contributions
to the muon g − 2. For instance, in Ref. [71] a contribution
to the vacuum polarisation was estimated assuming a vector
dominance behaviour for the γ − σ form factor. This form
factor would also be involved if one considered the pole con-
tribution γ γ ∗ → σ → γ ∗γ ∗ in the light-by-light scattering
amplitude. In the approach used here, the ππ rescattering
dynamics is expressed in terms of the partial-wave S-matrix.
The sigma meson can be identified as a pole of this function,
in the complex energy plane, on the second Riemann sheet.
It was shown in Ref. [73] that a rather precise determination
can be achieved, based on the Roy equations, despite the fact
that this resonance has a rather large width. Further work on
this topic was done in Ref. [74].

The discontinuity/unitarity relation shows that the second-
sheet poles of the ππ S-matrix are also present in produc-
tion amplitudes such as γ γ → ππ , γ γ ∗ → ππ . The de-
termination of the q2 dependent form factor gσγ γ ∗ from
the latter amplitude can be performed in exactly the same
way as that of the coupling constant gσγ γ from the for-
mer amplitude [23] using the residues of the second-sheet
poles,

T I=0
ππ→ππ

∣∣
pole=

(gσππ )2

sσ − s
, hI=0++

(
s, q2)∣∣

pole=
gσγ γ ∗gσππ

sσ − s
.

(102)

This definition would correspond to the following matrix el-
ement of the electromagnetic current in the zero-width limit
for the σ :
〈
γ (q1)

∣∣jμ(0)
∣∣σ(l1)

〉
= (ε1 · l1q1μ − q1 · l1ε1μ)gσγ γ ∗

(
(q1 − l1)

2). (103)

Using Eq. (102), together with the fact that sσ corre-
sponds to a zero of the S-matrix on the first sheet, one ob-
tains

gσγ γ ∗
(
q2)= hI=0++

(
sσ , q2)( −σ̃ (sσ )

16πṠ0
0(sσ )

) 1
2

, (104)

with σ̃ (z) = √
4m2

π/z − 1. We use here an I = J = 0
ππ S-matrix constrained by the Roy equation up to the
KK̄ threshold discussed in [57], which gives (central val-
ues),

sσ = 0.1202 + i 0.2422 GeV2,

Ṡ0
0(sσ ) = 0.7573 + i 2.2055 GeV−2.

(105)

At q2 = 0, firstly, we obtain from the amplitude (76), (90)
the σ to two photons coupling

gσγ γ = −3.45 + i 5.90 MeV (106)
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in reasonable agreement with our previous result [57]
(gσγ γ = −3.14 + i 6.03 MeV) based on a coupled channel
Omnès representation and a more complete description of
the left-hand cut. The variation as a function of q2 is illus-
trated on Fig. 13, which shows the ratio gσγ γ ∗(q2)/gσγ γ ,
separately for q2 > 0 and q2 < 0. In a simple vector
dominance picture, this ratio is expected to be propor-
tional to m2

ρ/(m2
ρ − q2) for negative q2 implying that

gσγ γ ∗(q2)/gσγ γ should be real in this region. Figure 13
shows that the actual results do not follow this simple VMD
picture.

6.4 Contribution to the muon anomalous magnetic moment

Let us consider, finally, the contribution from the cross sec-
tion σ(e+e− → γ ∗ → γπ+π−, γ π0π0) to the anomalous
magnetic moment of the muon, aμ = (g − 2)/2. This con-
tribution was discussed, in the case of charged pions, in
Refs. [70, 77] in the so called sQED approximation, which
corresponds to retaining only the Born terms in the expres-
sion of γ ∗ → γπ+π− amplitude. In the context of aμ, the
range of validity of our amplitude e+e− → γππ allows
us to evaluate the corresponding contribution in the range
q ≤ qmax = 0.95 GeV. Generically, these contributions to aμ

have the following form:

a[γππ]
μ = 1

4π3

∫ q2
max

4m2
π

dq2 Kμ

(
q2)σe+e−→γππ

(
q2) (107)

Fig. 13 Real and imaginary parts of the ratio gσγγ ∗ (q2)/gσγ γ ∗ (0) as
a function of the virtuality q2

where the kernel function is compactly expressed as [75]

Kμ(z) =
∫ 1

0
dx

x2(1 − x)

x2 + z

m2
μ
(1 − x)

(108)

(see e.g. [76] for the analytic expression and a detailed re-
view).

In the case of charged pions, at first, one must take care
of the infrared divergence. This may be done by separating
the contribution from the Born amplitude squared

∣∣Hc
λλ′
∣∣2 = ∣∣HBorn

λλ′
∣∣2 + 2Re

[
HBorn

λλ′
∗
Ĥ c

λλ′
]+ ∣∣Ĥ c

λλ′
∣∣2 (109)

in the general expression for the cross section (26) and cor-
respondingly writing the cross section as a sum of three
terms

σe+e−→γππ

(
q2)= σ Born(q2)+ σ̂ Born(q2)+ σ̂

(
q2). (110)

Only the first term in Eq. (110) is affected by an infrared
divergence. For definiteness, let us consider the inclusive
definition, where σBorn(q2) is defined by combining it with
the radiative correction to the vertex γ ∗ → π+π−, and can
then be written as follows:

σ Born(q2)= πα2

3q2
σ 3

π

(
q2) ∣∣Fv

π

(
q2)∣∣2 × α

π
η
(
q2) (111)

(see e.g. Ref. [76] where the explicit expression for the func-
tion η(q2) can be found). In accordance with the decompo-
sition (110) of the cross section we can write the contribu-
tions from γπ+π− to the muon anomalous magnetic mo-
ment as

a[γπ+π−]
μ = aBorn

μ + â[γπ+π−]
μ , (112)

and we find the following numerical results:

aBorn
μ = 41.9 · 10−11,

â[γπ+π−]
μ = (1.31 + 0.16 ± 0.40) · 10−11,

(113)

showing the separate contributions from the three terms in
Eq. (110). Similarly, we can compute the contribution to the
muon anomalous magnetic moment from the neutral chan-
nel γπ0π0, and we find

a[γπ0π0]
μ = (0.33 ± 0.05) · 10−11. (114)

As was noted in the literature [70, 77, 78] the contribution
of the γπ+π− channel from the purely Born terms, aBorn

μ

is not negligible. It is of the same size as the present error
in the Standard Model evaluation [79], Δaμ = ±4.9 · 10−10.
Comparatively, the other contributions from γππ are rather
small, even though they do include some enhancement from
the strong ππ rescattering in the isoscalar S-wave. As an
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effect of rescattering, the contribution from the term lin-
ear in the Born amplitude (second term in Eq. (110)) is
found to be positive here, contrary to the result of [7].
Our evaluation of â

[γππ]
μ (113), (114) should be more pre-

cise than the estimates using σ -meson approximations [71,
72].

7 Conclusions

We have discussed the generalisation of dispersive Omnès-
type representations of γ γ → ππ amplitudes (as e.g. in
Refs. [16, 17]) to the case where one photon is virtual. These
approaches involve a modelling of the left-hand cut, beyond
the pion pole contribution, in terms of light resonance ex-
changes. We showed how this can be consistently defined
as a generalised left-hand cut, with no intersection with the
unitarity cut, through the use of a Källen–Lehmann repre-
sentation for the resonance propagators and the limiting iε

prescriptions for energy variables. Our main result is a rep-
resentation of γ ∗ → γππ (or γ ∗γ → ππ ) helicity ampli-
tudes, Eq. (76) which is based on twice-subtracted disper-
sion relations for the J = 0 partial waves. The representa-
tion satisfies the soft-photon theorem and displays explicitly
the dependence on the ππ I = 0,2 phase-shifts, on the pion
electromagnetic form factor and on V π form factors. It also
involves two functions of the virtuality q2. These functions
are constrained by matching with ChPT, through the val-
ues at q2 = 0 and their relation to the pion polarisabilites.
We then showed that a simple two parameter representa-
tion is adequate for reproducing the experimental data on
e+e− → γπ0π0. Equation (76) is valid in a range of virtu-
alities q2 and ππ energies not exceeding 1 GeV, such that
ππ scattering is essentially elastic and the phase-shifts of
J ≥ 2 partial waves may be neglected. In principle, it is
possible to extend this kind of representation to somewhat
higher energies where inelasticity is dominated by the sin-
gle KK̄ channel, by constructing numerical solutions to the
coupled Muskhelishvili–Omnès equations.

As a first application, the behaviour of the generalised
polarisability difference απ − βπ , as a function of q2, was
derived. This function is found not to deviate much from
the prediction of ChPT at NLO at negative q2. As a sec-
ond application, results were deduced for vector-meson de-
cay amplitudes ρ,ω → γππ as well as the γ σ electromag-
netic form factor. This latter object can be defined from the
second-sheet pole definition of the σ resonance and gener-
alises the σγ γ coupling introduced in Ref. [23]. The ampli-
tudes γ ∗ → γππ participate in the hadronic vacuum polari-
sation contribution to the muon g−2. We have evaluated the
contributions beyond the point-like approximation, which is
usually accounted for.
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Appendix A: Vector resonance propagator with good
analyticity properties

We give here an explicit representation for the resonance
propagator B̃W(t) given from Eqs. (50) and (51) (see
also [32]). In order to evaluate the integral (50) in analytic
form, one must first compute the three zeros tR , t± of the
denominator of Im [BW(t)]. Approximate values are

tR � m2
V

ε3
V γ 2

V

1 + 3ε2
V γ 2

V

, t± � m2
V

1 ± iγV

(A.1)

with εV = 4m2
π/m2

V . More precise values must be deter-
mined numerically. The spectral integral can then be ex-
pressed in terms of the loop function J̄π (z) (see (73)), as

B̃W(t) = 16πγV

1 + γ 2
V

[
A(t) J̄π (t) + B(t) J̄π (tR)

+ C+(t)J̄π (t+) + C−(t)J̄π (t−)
]
, (A.2)

where the coefficient functions A, B , C± are given by

A(t) = t (t − 4m2
π )

(t − tR)(t − t+)(t − t−)
,

B(t) = tR(tR − 4m2
π )

(tR − t)(tR − t+)(tR − t−)
,

C±(t) = t±(t± − 4m2
π )

(t± − t)(t± − tR)(t± − t∓)

(A.3)

and satisfy A + B + C+ + C− = 0. The poles in these func-
tions cancel in B̃W(t), but they are present on the second
Riemann sheet, which is easily seen using the second-sheet
extension of J̄ ,

J̄ I I (t) = J̄ (t) + 2iσπ (t)

16π
. (A.4)

Figure 14 compares the real parts of BW(t) and B̃W(t).

Appendix B: Probing the dispersive formulae with
simple triangle diagrams

We consider here simple triangle diagrams (Fig. 15) as a
toy model of rescattering. This allows one to check the ab-
sence of anomalous thresholds in the dispersive representa-
tion and the correctness of the prescriptions for calculating
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Fig. 14 Comparison of the real part of the usual ρ-meson propaga-
tor BW(t) and the real part of modified propagator B̃W(t) which has
correct analyticity properties

Fig. 15 Simple triangle
diagram

the real and imaginary parts of the amplitude. All particles
in the diagrams are spinless but we take kinematical condi-
tions analogous to those relevant for our γ γ ∗ problem. We
take the mass of the particle associated with the vertical line
to be M and the other two masses to be m. The amplitude
can be expressed as a one-dimensional parametric integral,

T = −1

16π2

∫ 1

0

dα

α(s − q2) + M2 − m2

× log
m2 − α(1 − α)s

αm2 + (1 − α)M2 − α(1 − α)q2
. (B.1)

It is easily verified that the denominator produces no singu-
larity, the only singularities are contained in the logarithms.
The real and imaginary parts of the amplitude, in the repre-
sentation (B.1) correspond to integrating over the real part
and the imaginary part of the logarithm. In order to define
the proper sign for the imaginary parts the energy variable
s is considered as the limit of s + iε and similarly for the
energy variable q2. Let us now consider two cases for the
masses

(a) M = m:
In this situation, the parametric representation simplifies

to

T = −1

16π2(s − q2)

∫ 1

0

dα

α
log

m2 − α(1 − α)s

m2 − α(1 − α)q2
. (B.2)

Let us examine the dispersive representation in the variable
s. The discontinuity is easily found to be

discsT ≡ T (s + iε) − T (s − iε)

2i

= θ(s − 4m2)

16π(s − q2)
log

1 + σ(s)

1 − σ(s)
(B.3)

with σ(s) = √1 − 4m2/s. The discontinuity discsT has a
structure similar to the QED Born term (31) (in particular, it
has a singularity at s = q2). The dispersive representation of
the amplitude requires no subtraction and has the form

T (s) = 1

π

∫ ∞

4m2

ds′

s′ − s
discsT

(
s′). (B.4)

One can verify that the representation (B.4) is correct (i.e.
the absence of an anomalous threshold), as it can be derived
from (B.2) by making a simple change of variable. Split-
ting the integration range into two parts: [0, 1

2 ] and [ 1
2 ,1],

one sets α = α−(s′) in the first range and α = α+(s′) in the
second, with

α±
(
s′)= 1

2

(
1 ± σ

(
s′)). (B.5)

We can rewrite this representation in a form which ex-
hibits the symmetry in s and q2, in terms of a difference of
two integrals

T = I (s) − I (q2)

s − q2
(B.6)

with

I (x) = x

16π2

∫ ∞

4m2

ds′

s′(s′ − x)
log

1 + σ(s′)
1 − σ(s′)

. (B.7)

This form is a simplified analog of the Born term rescatter-
ing piece in Eq. (59). The function I (x) can be expressed
analytically

I (x) =

⎧⎪⎪⎨
⎪⎪⎩

x ≤ 0, − 1
32π2 log2 β(x)+1

β(x)−1

0 ≤ x ≤ 4m2, 1
8π2 arctan2

√
x

4m2−x

x ≥ 4m2, − 1
32π2 (log 1+β(x)

1−β(x)
− iπ)2.

(B.8)

Let us finally remark that the imaginary part of the amplitude
T does not necessarily coincide with the s-discontinuity, de-
pending on the value of q2. Indeed,

ImT = Im I (s)

s − q2
= discT , q2 ≤ 4m2

ImT = Im I (s) − Im I (q2)

s − q2
�= discT , q2 > 4m2.

(B.9)
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(b) M �= m:
Let us now consider the unequal mass case. Starting from

the parametric representation (B.1) one obtains the expres-
sion for the s-discontinuity as,

discsT = θ(s − 4m2)

16π(s − q2)
LV

(
s, q2,M2) (B.10)

where the function LV is the same which appears in the
vector-exchange amplitude (41). Thus, the dispersion rela-
tion representation of T reads,

T = 1

16π2

∫ ∞

4m2

ds′

(s′ − s)(s′ − q2)
LV

(
s′, q2,M2). (B.11)

We have not been able to derive this expression by making
a simple change of variables as in the equal mass case. As
a check of its correctness, we show below that the imagi-
nary parts of the dispersive and parametric representations
coincide. For the real parts, we checked their equality only
numerically.

When using Eq. (B.11) one must be careful in the evalua-
tion of the real and imaginary parts of the amplitude. Unlike
the case when M = m, no imaginary part is generated from
the s′ − q2 denominator (because LV (q2, q2) = 0). The
function LV (s′, q2,M2), on the other hand, has an imagi-
nary part if q2 > (M + m)2. With s′ real and q2 the limit of
q2 + iε, the proper definition of LV is

LV

(
s′, q2,M2) = ReLV

(
s′, q2,M2)

− iπθ
((

s′ − s−
)(

s+ − s′)). (B.12)

The explicit expressions for s±(q2,M2) were given in Eq.
(43). Inserting this in the dispersive representation of the tri-
angle amplitude (B.11) we get, for the imaginary part

ImT
(
s, q2)

disp

= 1

16π

(
θ
(
s − 4m2)ReLV

(
s, q2,M2)

− θ
(
q2 − (M + m)2) 1

s − q2

× log

∣∣∣∣ (s+ − s)(s− − q2)

(s− − s)(s+ − q2)

∣∣∣∣
)

. (B.13)

Let us verify that this result coincides with the one ob-
tained from the parametric representation. We can write
the logarithm in the integrand in Eq. (B.1) as a difference:
log(Ps(α)) − log(Qq2(α)). The zeros of the polynomial
Ps(α) are given by

α±(s) = 1

2

(
1 ± σ(s)

)
(B.14)

and log(Ps(α)) has an imaginary part when s > 4m2 and
α−(s) ≤ α ≤ α+(s). The zeros of the polynomial Qq2(α)

are given by

β±
(
q2)= 1

2q2

(
q2 + M2 − m2 ±

√
λ
(
q2,M2,m2

))
(B.15)

and log(Qq2(α)) has an imaginary part when q2 > (M +
m)2 and β−(q2) ≤ α ≤ β+(q2). Performing the integration
over α we find that Eq. (B.1) gives

ImT
(
s, q2)

param

= 1

16π

1

s − q2

×
(

θ
(
s − 4m2) log

∣∣∣∣α+(s)(s − q2) + M2 − m2

α−(s)(s − q2) + M2 − m2

∣∣∣∣
+ θ
(
q2 − (M + m)2)

× log

∣∣∣∣β−(q2)(s − q2) + M2 − m2

β+(q2)(s − q2) + M2 − m2

∣∣∣∣
)

. (B.16)

We can now compare Eq. (B.16) with Eq. (B.13): the two
expressions are seen to be identical upon using the relations
between the s± and the β± functions

s±
(
q2)− q2 = − (M2 − m2)q2

M2
β±
(
q2),

β+
(
q2)β−

(
q2)= M2

q2
.

(B.17)

The real part of the amplitude is more difficult to evalu-
ate analytically, but one can verify numerically that the real
parts of the dispersive and the parametric representations
also coincide.

Appendix C: Finiteness of Ĵ π (q2) at the KK̄ threshold

We show here that no divergence affects the function Ĵ π (q2)

(see (63)) at the KK̄ threshold if one uses a two-channel for-
malism. In connection with two-channel unitarity, one must
use a 2 × 2 Omnès matrix Ω and the formula for Ĵ π (q2)

becomes(
Ĵ π (q2)

Ĵ K(q2)

)

= − 1

π

∫ ∞

4m2
π

ds′

(s′ − q2)

× d

ds′

(
1

(s′)2
Im
(
Ω−1)(4m2

πLπ(s′) − 2q2

4m2
KLK(s′) − 2q2

))
(C.1)

which replaces Eq. (63). The inverse of the Omnès matrix
satisfies the following unitarity relation:
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ImΩ−1

= −Ω−1 × T

×
(

σπ(s′)θ(s′ − 4m2
π ) 0

0 σK(s′)θ(s′ − 4m2
K)

)
(C.2)

where T is the 2 × 2 T -matrix. By construction, multiplying
the T -matrix by the inverse of the Omnès function removes
the right-hand cuts, so the matrix elements (Ω−1 T)ij should
not exhibit any cusp at the ππ or the KK̄ thresholds and
therefore have continuous derivatives. The derivative of the
remaining pieces involve

d

ds′
[
σP

(
s′)(4m2

P LP

(
s′)− 2q2)]= 2

(
s′ − q2) σ̇P

(
s′) (C.3)

(with P = π,K) which give contributions which are finite
and independent of q2.

Appendix D: Electromagnetic form factors

D.1 Pion form factor Fv
π (q2)

We need a description of the modulus and phase of the pion
electromagnetic form factor Fv

π (q2). The form factor is de-
fined from the matrix element in Eq. (27). The modulus
can be determined from experiment in the physical region
(s ≥ 4m2

π ) since it is related to the e+e− → π+π− cross
section by the formula

σe+e−→π+π−
(
q2)= ∣∣Fv

π

(
q2)∣∣2 πα2(q2 + 2m2

e) σ 3
π (q2)

3(q2)2 σe(q2)

(D.1)

at leading order in e2. Many such measurements have been
performed recently, see e.g. [80] and references therein. Ac-
curate representations at medium energy can be obtained
from a simple superposition of Breit–Wigner-type func-
tions [81]. We use here the fit performed by the CMD-2 col-
laboration [82], based on the following representation:

Fv
π

(
q2) = 1

1 + β

[
GSρ(770)

(
q2)(1 + δ

q2

m2
ω

BWω

(
q2))

+ β GSρ(1450)

(
q2)]. (D.2)

In Eq. (D.2), GSR is the Gounaris–Sakurai function [29],
which can be expressed as follows:

GSR

(
q2)= DR(0)

DR(q2)
, (D.3)

DR

(
q2)= m2

R − q2 − γR

[
F
(
q2)

− F
(
m2

R

)− (q2 − m2
R

)
F ′(m2

R

)]
(D.4)

with

γR = mRΓR

σπ(m2
R)(m2

R − 4m2
π )

,

F
(
q2)= 16π

(
q2 − 4m2

π

)
J̄π

(
q2)

(D.5)

and the loop function J̄π (q2) is given in Eq. (73). For the ω

meson, a simple Breit–Wigner function is used in Eq. (D.2)

BWω(s) = m2
ω

m2
ω − s − imωΓω

. (D.6)

D.2 Fωπ(q2) form factor

Naively, we expect that the Fωπ form factor should be some-
what similar to the pion form factor, i.e. that it should be
approximated reasonably well by a superposition of ρ(770)

and ρ(1450) resonances with a small isospin violating con-
tribution from the ω. However, there could be some differ-
ences for two reasons: (1) the phase of Fωπ(q2) is not re-
lated to the ππ scattering phase δ1

1(q2), unlike the phase
of Fv

π (q2) and (2) instability of the omega meson permits
triangle diagram contributions to the form factor which vio-
late real analyticity. In other terms, the discontinuity of the
form factor along the elastic cut is complex. A dispersion
relation analysis of Fωπ(q2) which takes such effects into
account was performed some time ago [83]. This was recon-
sidered more recently in Ref. [84] whose dispersive analysis
is based on self-consistent solutions of Khuri–Treiman type
equations for the ππ → ωπ scattering amplitude [85]. As
compared to these results, the Breit–Wigner-type approach
appears to be, at least qualitatively, acceptable and we will
use it here because of its simplicity.

From an experimental point of view the form factor
Fωπ(q2) has been probed in the region q ≥ mω + mπ �
0.92 GeV from e+e− → ωπ0 [86–90] and from the τ de-
cays τ± → ωπ±ντ by the CLEO collaboration [91]. It has
also been measured in the energy region q ≤ mω − mπ �
0.65 GeV from ω → l+l−π0 decays [92–96]. Let us first
consider the e+e− and τ decay measurements. Experimen-
tal observables are related to the form factor Fωπ(q2) by the
following expressions:

σe+e−→ωπ0

(
q2)= C̃ω

∣∣Fωπ

(
q2)∣∣2 4πα2λ

3/2
ωπ (q2)

3(q2)3
,

dΓτ±→ωπ±ντ
(q2)

dq2
= C̃ω

∣∣Fωπ

(
q2)∣∣2

× V 2
udG2

F m3
τ λ

3/2
ωπ (q2)

96π3(q2)2

×
(

1 − q2

m2
τ

)2(
1 + 2q2

m2
τ

)

(D.7)
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with λab(q
2) = (s − (ma − mb)

2)(s − (ma + mb)
2). A di-

mensionless quantity also shown in Ref. [91] is the ωπ spec-
tral function which is given by

Vωπ

(
q2)= C̃ω

∣∣Fωπ

(
q2)∣∣2 λ

3/2
ωπ (q2)

3π(q2)2
. (D.8)

These experiments probe the “tail” of the ρ(770) resonance
and can be reproduced in the region

√
s <∼ 1.5 with a reso-

nance superposition model very similar to that of Fv
π

Fωπ

(
q2) = 1

1 + β ′

[
GSρ(770)

(
q2)(1 + δ

q2

m2
ω

BWω

(
q2))

+ β ′GSρ(1450)

(
q2)]. (D.9)

The parameter δ which describes ω–ρ mixing is taken to
be the same as in Fv

π . The parameter β ′ is not related to
the corresponding one in Fv

π because the phases of the form
factors Fv

π and Fωπ should be allowed to be different. We
perform a fit of the data varying the two parameters β ′
and the width of the ρ(1450) resonance (fixing its mass
to Mρ(1450) = 1.53 GeV [91]). We included 60 data points
taken from Refs. [88–90] in the fit and obtain the following
values for the parameters:

β ′ = −0.177 ± 0.004, Γρ(1450) = 0.560 ± 0.024 GeV

(D.10)

giving a χ2/Ndof = 1.51. These results allow one to extract
the value of the ωρπ coupling constant (which will be useful
below) from its relation with the coefficient of the ρ(770)

Breit–Wigner function,

Fρ gωρπ

2mρ Cω

= 1

1 + β ′ (D.11)

which gives (using Fρ = 156.44 ± 0.67 MeV)

gωρπ � 13.8 ± 0.3 GeV−1. (D.12)

This value is somewhat smaller than the one obtained in the
fits of Ref. [89] (e.g. gωρπ = 16.7±0.4±0.6 in fit I). This is
because (a) our fit is constrained to reproduce the PDG value
of ω → γπ0 when q2 → 0 (see Eq. (38)) and (b) our use of
Gounaris–Sakurai functions for the ρ, ρ′ mesons. This indi-
cates that there is a significant model dependent uncertainty
in the determination of gωρπ from e+e− → ωπ . We account
for this by multiplying the error in Eq. (D.12) par a factor 10.

The result of this fit is illustrated on Fig. 16 and on
Fig. 17 which also shows the energy region below the ω

peak. One observes a reasonable agreement between our de-
termined form factor and the data at low energies q <∼ 0.55
GeV but not with the few data points lying in the range

Fig. 16 Experimental results on the e+e− → ωπ0 cross section (mul-
tiplied by the ω → π0γ branching fraction) fitted to a form factor with
two resonances as in Eq. (D.9). The data shown are from Refs. [89]
(CMD-2), [88](SND (2000)), [87] (DM2), [90] (SND (2011)) and [91]
(CLEO)

Fig. 17 Form factor |Fωπ |: the solid curve is the fit to the data
on e+e− → ωπ , it is compared to the data on ω → l+l−π from
Refs. [95] (SND), [94] (CMD-2(2005), [92] (lepton-G), [96] (NA60)

0.60 ≤ q ≤ 0.63 GeV. The pole-like behaviour in this small
region is a puzzle which cannot be explained by theoreti-
cal models [83, 84, 97]. A new ω → e+e−γ decay experi-
ment is being performed by the WASA at COSY collabora-
tion [98] which will hopefully clarify the situation.

D.3 Fρπ(q2) form factor

In principle, one could determine the Fρπ form factor sim-
ilarly to Fωπ , using experimental inputs from e+e− → ρπ

scattering and ρ → l+l−π decay. Unfortunately, the width
of the ρ(770) resonance is much larger than that of the ω and
this makes it much more difficult to extract unambiguously
the e+e− → ρπ cross section than it was for ωπ . There is
also only an upper bound available for the decay amplitude
ρ → e+e−π . We will therefore try to estimate the Fρπ form
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factor from (hopefully) plausible phenomenological consid-
erations rather than from actual data. Let us start by writing,
as before, a representation in terms of three Breit–Wigner
functions (we ignore ρ–ω mixing here),

Fρπ

(
q2)= αω BWω

(
q2)+ αφ BWφ

(
q2)+ αω′ BWω′

(
q2)
(D.13)

with αω + αφ + αω′ = 1 and try to determine the αV param-
eters. The first one, αω, can be related to the ωρπ coupling
constant

αω = Fω gωρπ

2mωCρ

(D.14)

and we can use its value determined above (D.12) (with a
rescaled error, accounting for the model dependence), to-
gether with Fω = 45.9 ± 0.8 MeV and Cρ = 0.42 ± 0.02
from the second line in Eq. (37), which gives

αω = 0.96 ± 0.19. (D.15)

We can write for the second parameter, αφ , a relation analo-
gous to Eq. (D.14) and determine the coupling gφρπ from
φ → ρπ . However, only the branching fraction for φ →
3π is precisely known, so we must content with a guess:
BF(φ → ρπ) � 0.8 × BF(φ → 3π) which gives

gφρπ � −1.09 GeV−1. (D.16)

The choice of the minus sign can be justified by the consid-
eration of the ω–φ mixing angle θV . Indeed, one expects (in
a simple minded quark model picture) the following relation
to hold:

gφρπ

gωρπ

= 1 − √
2 tan θV√

2 + tan θV

= tan(θid − θV ) (D.17)

which requires the left-hand side to be negative if θV >

θid = 35.26◦. This seems indeed to be the case if one deter-
mines θV from the vector-meson masses, e.g. the quadratic
mass formula gives θV � 39◦. Our determined values for
the couplings gφρπ , gωρπ gives a reasonably similar value:
θV � 39.8◦. This then leads to the following estimate for the
parameter αφ :

αφ � −0.101 (D.18)

while the last parameter in the representation (D.13) for Fρπ

is determined from the normalisation condition αω′ = 1 −
αω − αφ . Finally, the result for the form factor is illustrated
on Fig. 18.

Fig. 18 Illustration of the modulus of the form factor Fρπ as modelled
from Eq. (D.13)
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