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We present a valence calculation of the electric polarizability of the neutron, neutral pion, and neutral
kaon on two dynamically generated nHYP-clover ensembles. The pion masses for these ensembles are
227(2) MeV and 306(1) MeV, which are the lowest ones used in polarizability studies. This is part of a
program geared toward determining these parameters at the physical point. We carry out a high statistics
calculation that allows us to: (i) perform an extrapolation of the kaon polarizability to the physical point;
we find αK ¼ 0.269ð43Þ × 10−4 fm3, (ii) quantitatively compare our neutron polarizability results with
predictions from χPT, and (iii) analyze the dependence on both the valence and sea quark masses. The kaon
polarizability varies slowly with the light quark mass and the extrapolation can be done with high
confidence.
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I. INTRODUCTION

Determining the polarizability of hadrons has been a
challenge both theoretically and experimentally for several
decades. To calculate them from first principles, one needs
a nonperturbative approach to QCD. In this work we use
lattice QCD. The lattice calculation needs to overcome
many challenges in order to get to experimentally relevant
results, such as the use of smaller quark masses, determin-
ing an appropriate field strength for the electric field,
volume effects, sea-quark charging effects, etc. In this
paper, we will study several of these issues for neutral
hadrons (neutron, neutral pion and kaon). Charged hadrons
involve additional complications which we defer to future
studies.
The neutron polarizability is known experimentally,

αn ¼ 11.6ð1.5Þ × 10−4 fm3 [1], and therefore a theoretical
calculation from first principles provides a good test of
QCD. The first experimental determination of the kaon
polarizability will be performed as part of the COMPASS
[2,3] experiment along with more precise determination of
the pion polarizability.
At the lowest order the effects of an electromagnetic

field on hadrons can be parametrized by the effective
Hamiltonian:

Hem ¼ −~p · ~E − ~μ · ~B −
1

2
ðαE2 þ βB2Þ þ � � � ; (1)

where p and μ are the static electric and magnetic dipole
moments, respectively, and α and β are the static electric
and magnetic polarizabilities. Due to time reversal sym-
metry of the strong interaction, the static dipole moment, ~p,
vanishes. Furthermore, by restricting ourselves to the case
of a constant electric field, the leading contribution to the

electromagnetic interaction comes from the electric polar-
izability term at OðE2Þ.
There have been several studies on computing the

electric polarizabilities in lattice QCD [4–8]. These calcu-
lations, however, were done at relatively large pion masses
leaving the chiral region largely unexplored. Here we
present a study using two flavors of dynamical nHYP-
clover fermions with two different dynamical pion masses
(227 and 306 MeV) and several partially quenched valence
masses. These pion masses are the lowest pion masses to
date for polarizability studies.
Our calculation employs the background field method

and uses Dirichlet boundary conditions (DBC) for the
valence quarks. This choice of boundary condition has the
benefit of allowing us to freely choose an arbitrarily small
value for the electric field which is needed in order to
extract the polarizability. We note that this work, though
done on dynamical configurations, uses electrically neutral
sea quarks throughout. Methods for introducing the
effect of the electric field on the sea quarks are under
investigation [4,9].
The paper is organized as follows. In Sec. II we describe

our methods used in extracting the polarizability. This
includes a discussion of the background field method, how
the value of the electric field is chosen, and our fitting
procedure. In Sec. III we present our results for the neutron,
pion, and kaon. Section IV is a discussion on the chiral
behavior of our results. Lastly we will conclude and outline
some future studies in Sec. V.

II. METHODOLOGY

A. Background field method

Electromagnetic properties of hadrons can be determined
with the background field method [10]. This procedure
introduces the electromagnetic vector potential, Aμ, to the
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Euclidean QCD Lagrangian via minimal coupling; the
covariant derivative becomes

Dμ ¼ ∂μ − igGμ − iqAμ; (2)

whereGμ are the gluon field degrees of freedom. The lattice
implementation is achieved by a multiplicative U(1) phase
factor to the gauge links i.e.,

Uμ → e−iqaAμUμ: (3)

To achieve a constant electric field, say in the x-direction,
we may choose Ax ¼ −iEt which provides us with a real
multiplicative factor. The extra factor, i, comes from the
fact that we are using a Euclidean metric on the lattice. A
more convenient choice, and the one implemented in this
study, is the use of an imaginary value for the electric field
which leads to a U(1) multiplicative factor that keeps
the links unitary. When using an imaginary value of the
field, the energy shift due to the polarizability acquires an
additional negative sign leading to a positive energy shift
for a positive value of the polarizability [8]:

δE ¼ −
1

2
αE2 → δE ¼ þ 1

2
αE2 (4)

To compute this energy shift (and hence the polar-
izability) we calculate the zero-field (G0), plus-field
(GþE), and minus-field (G−E) two-point correlation func-
tions for the interpolating operators of interest. The
combination of the plus and minus field correlators allows
us to remove any OðEÞ effects, which are statistical
artifacts, when the sea quarks are neutral. For neutral
particles in a constant electric field the correlation functions
still retain their single exponential decay in the limit
t → ∞. In particular we have

lim
t→∞

hGEi ¼ AðEÞ exp½−EðEÞt�; (5)

where EðEÞ has the perturbative expansion in the electric
field given by

EðEÞ ¼ mþ 1

2
αE2 þ � � � : (6)

By studying the variations of the correlation functions with
and without an electric field one can isolate the energy shift
to obtain α.
For spin-1/2 particles the energy EðEÞ has an additional

contribution to its energy shift if the hadron has a magnetic
moment, as with the neutron. The interaction of the
magnetic moment with the external field contributes to
the energy shift at the same order, OðE2Þ, as the Compton
polarizability [11]. To see this consider a pointlike neutral
spin-1/2 particle with a nonzero magnetic moment. This
system satisfies the Pauli-Dirac equation (in Minkowski

space) when subject to an electromagnetic field [12], in
particular

�
iγμ∂μ −m −

μ

2m
Fμνσ

μν

�
ψ ¼ 0; (7)

where Fμν is the electromagnetic field strength tensor. In
the nonrelativistic limit one can approximate the solution as

ψ ≈ e−imt

�
Φ
χ

�
: (8)

In the case of a constant electric field the equation of
motion for the upper component satisfies the differential
equation

i
∂Φ
∂t ¼

�
p2

2m
− ~μ ·

�
~E ×

~p
m

�
þ μ2

2m
E2

�
Φ: (9)

The first term is the usual kinetic term associated with a
particle of momentum p. The second term is very interest-
ing; in general there is an OðEÞ contribution to the energy
shift due to the magnetic moment and momentum of the
hadron. It would appear that this term would affect our
energy shift since our system has a nonzero momentum due
to the DBC (see discussion below). However, this term is
zero for our calculations since the direction of the electric
field is in the same direction as its induced momentum. The
last term is the nonzero contribution due to the magnetic
moment of the particle. We see that not only is there a
contribution to the energy shift from the Compton polar-
izability, but also a contribution from the neutron’s mag-
netic moment. Note that the Compton polarizability acts in
the opposite direction of the effects due to the magnetic
moment. In the case of a real electric field it lowers the
energy whereas the magnetic moment effect increases it.
For imaginary fields, as we use in this study, the effect is
opposite. The energy expansion is then augmented as

EðEÞ ¼ mþ 1

2
E2

�
αc −

μ2

m

�
þ � � � : (10)

This combination of the Compton polarizability term
and the magnetic moment term is what is called the static
polarizability,

α ¼ αc −
μ2

m
; (11)

which is what we measure from the energy shift of the
hadron. To obtain the Compton polarizability (αc) we need
to account for the magnetic moment. We will address how
this is done for the nucleon when presenting our results.
To extract the energy shift we need to choose an

appropriate value of E. If the field is too large then higher
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order effects become non-negligible, and if the field is too
small we will encounter numerical instabilities in the fitting
procedure since the shift to be extracted becomes compa-
rable to the numerical errors introduced by roundoff effects.
To ascertain an appropriate field strength we take a single
gauge configuration and compute

log
GηðtÞ
G0ðtÞ

=ðtη2Þ (12)

for the interpolating operator, d̄γ5d, to calibrate the field as
a function of η≡ a2qdE where a is the lattice spacing and
qd is the magnitude of the electric charge for the down
quark. The correlator,GηðtÞ, is symmetrized with respect to
η to ensure that there are no linear effects. This symmet-
rization is achieved by algebraically averaging the plus and
minus field correlators. This function is proportional to the
effective energy shift and should have a flat behavior in the
region where quadratic scaling dominates. Deviations from
a constant behavior indicates effects coming from higher
order terms in E. Figure 1 shows our findings. We see the
effects beyond OðE2Þ more dominant for larger times
and larger fields. The value η ¼ 10−4 is in a well-behaved
scaling region for the time slices that we use in our fits and
therefore we use this field strength for all our calculations.
We checked the OðE2Þ behavior for several different
configurations on all ensembles used in this work and
found similar trends as in Fig. 1.
Several studies used periodic boundary conditions (PBC)

in their calculations [5,6]. In this case, in order to produce a
constant electric field, the value of the electric field must be
quantized in units of E0 ¼ 2π=ðqTLÞwhere T and L are the
physical extent of the lattice in the temporal and spatial
directions, respectively. For the lattice sizes used in this
study, the smallest values of η which satisfy this quantiza-
tion condition are η ¼ 0.005 and η ¼ 0.004 for the
243 × 48 and 243 × 64 ensembles, respectively. These
values of η are on the periphery where quadratic scaling
begins to break down.

To free ourselves of this constraint, we use Dirichlet
boundary conditions (DBC) in the x direction. This allows
us to deploy arbitrarily small values of the field. The use of
DBC in the direction of the field introduces boundary
effects, one of which is an induced momentum that
vanishes in the limit L → ∞. For an elementary particle
in a box of length L the induced momentum is p ≈ π=L and
the lowest energy state is E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
. One can observe

this effect by looking, for example, at the lowest energy in
the pion channel with DBC and PBC. This is shown in
Fig. 2. Note the constant shift from the DBC to PBC that
corresponds to p2. Throughout this work we plot the results
as a function of the pion mass, as a proxy for the quark
mass. This is the pion mass measured using PBC.
When the hadron is moving, the energy shift (δE)

induced by the electric field is not equal to the change
in the hadron mass since E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
. We compute the

mass shift, δm, as

δm ¼ δE
E
m
; (13)

where m is the zero-momentum mass of the particle which
we calculate using PBC.
Using the methods just described we aim to calculate

the polarizability of the pion, kaon and neutron. Before
proceeding, we should mention that we are only computing
the connected contribution to the pion correlation function.
The standard interpolating field for the neutral pion is
π0 ¼ ðūγ5u − d̄γ5dÞ=

ffiffiffi
2

p
. When the theory is isospin

symmetric the disconnected contributions to the two-point
correlation function cancel. In the case of an applied
external electric field we no longer have isospin symmetry
and we should include the disconnected contributions to the
correlator. This requires significantly more computational
efforts and is thus neglected in this study. We will comment
more on this issue in the discussion section.

B. Fitting method

The zero, plus, and minus-field correlation functions are
highly correlated because they are constructed from the
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FIG. 1 (color online). Scaling check for the correlation function
of d̄γ5d on a single EN1 gauge configuration. The constant
behavior indicates the values of η for which quadratic scaling
holds. Deviations from this behavior are apparent for the larger
values of η.
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FIG. 2 (color online). Plot of ðaEπÞ2 as a function of the bare
quark mass (∼1=κ) for DBC and PBC for the 306 MeVensemble.
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same gauge configurations. Extracting the energy shift, δE,
then requires a simultaneous-correlated fit among the three
correlators. We emphasize that this desired energy shift is
very small, several orders of magnitude smaller than the
statistical uncertainties of the energy itself. It is because of
the correlation that we can extract this tiny shift. Thus, our
only hope of extracting such a tiny shift lies in the ability to
properly account for the correlations among the three
values of the electric field. To do this we construct the
following difference vector as

vi ≡ fðtiÞ − hG0ðtiÞi; vNþi ≡ f̄ðtiÞ − hGþEðtiÞi;
v2Nþi ≡ f̄ðtiÞ − hG−EðtiÞi for i ¼ 1;…; N; (14)

where t1…tN is the fit window, fðtÞ ¼ Ae−Et and f̄ðtÞ ¼
ðAþ δAÞe−ðEþδEÞt. We minimize the χ2 function,

χ2 ¼ 1

2
v†C−1v;

in the usual fashion, where C is the 3N × 3N correlation
matrix which has the block structure

C ¼
 C00 C0þ C0−

Cþ0 Cþþ Cþ−
C−0 C−þ C−−

!
;

where 0;þ;− represent G0; GþE , and G−E , respectively.
Note that the symmetrization is done implicitly in this
procedure, since f̄ is the same for GþE, and G−E . This
method is used to extract all parameters presented in
this work.

III. RESULTS

A. Ensemble details

The electric polarizabilities of the neutron, pion, and
kaon are calculated on two dynamically generated 2-flavor
nHYP-clover ensembles [13] with two different sea quark
masses to study the chiral behavior. Details of the ensem-
bles are listed in Table I. The lattice spacing for both
ensembles was computed using the Sommer scale [14].
Our calculation of the Sommer parameter, r0=a follows
the methodology described in [15]. We find r0=a to be
4.017(50) and 4.114(39) for ensembles EN1 and EN2,

respectively. Using the value of r0 ¼ 0.5 fm yields the
lattice spacings listed in Table I.
In addition to computing propagators for the sea quark

mass we calculated propagators for a string of partially
quenched quark masses to gauge the influence of the sea
quark mass on the polarizability. The partially quenched
values were estimated by looking at the dependence of mπ

on κ for each ensemble. We then performed interpolation in
the region wherem2

π ∝ 1=κ to obtain values of κ which gave
reasonable values ofmπ around the dynamical pion masses.
The partially quenched mπ and κ values for each ensemble
are tabulated in Table II.
An optimally implemented multi-GPU Dslash operator

[16], along with an efficient BiCGstab multimass inverter
[17] was used to compute all correlation functions in
this work.
For the kaon polarizability we needed to include a

valence mass for the strange quark. To this end we
determined an appropriate value of κs by measuring the
mass of the Ω baryon and the ϕ meson. We computed the
mass of the Ω baryon and ϕ meson for a string of κ values.
We then performed interpolation among these masses to
match the physical value of each hadron and took the
average of the two values. We find κs ¼ 0.1266ð1Þ for the
EN1 ensemble and κs ¼ 0.1255ð1Þ for the EN2 ensemble.

B. Extracted parameters

To reduce our statistical uncertainties we computed
quark propagators at multiple point sources for each
configuration. The number of sources used in each ensem-
ble is listed in Table I. The sources were chosen by
selecting points which are related by translational sym-
metry. This is achieved by varying the source position only
along the y and z axes—these directions remain transla-
tionally invariant since we use PBC in these directions.
To observe the benefits of multiple sources we study the

behavior of the statistical error of the energy shift as a
function of the number of sources, Ns. Figure 3 shows such
scaling plots.
In determining the number of sources to compute one

should look at the scaling of the statistical error for the
different hadrons of interest. For example, if one were to
look only at the pion then it would seem that little or
nothing is gained from using more than Ns ≃ 15 sources.

TABLE I. Details of the lattice ensembles used in this work. Nc
and Ns label the number of configurations and number of sources
on each configuration, respectively.

Ensemble Lattice a (fm) κ mπ (MeV) Nc Ns

EN1 243 × 48 0.1245(16) 0.12820 306(1) 300 25
EN2 243 × 64 0.1215(11) 0.12838 227(2) 450 18

TABLE II. List of pion masses and kappa values used for each
ensemble. The boldface values correspond to the fully dynamical
(or unitary) points.

Ensemble Quantity m1 m2 m3 m4 m5

EN1 mπ [MeV] 269(1) 306ð1Þ 339(1) 368(1) —
κ 0.1283 0.1282 0.1281 0.1280 —

EN2 mπ [MeV] 227ð2Þ 283(1) 322(1) 353(1) 382(1)
κ 0.12838 0.12825 0.12814 0.12804 0.12794
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However, for the neutron we observe a decrease in the
uncertainties relative to the pion for up to 25 sources. A
similar plateau region for the neutron is expected to occur
as more sources are added since the source locations
become more dense and hence more correlated.
To quote a value of δE we need to determine an

appropriate time window to fit the correlators. Our fit
region is chosen by varying the minimum time distance and
computing δE, and χ2=dof for each ensemble and particle
of interest. We choose our fit window based on the stability
of the parameters as a function of tmin, and on a reasonable
value of χ2=dof. Figure 4 shows an example of this for the
extracted energy shift of the neutron on the EN2 ensemble
at the unitary point, i.e., the point where the sea quark
mass is equal to the valence mass. The value of tmax was
held fixed at t ¼ 21. A similar analysis was performed at
neighboring values of tmax and we find the same behavior
in each case. For both ensembles and each hadron we
determined the fit range using the procedure just described
for the unitary point. We then kept that fit window fixed for
all other partially-quenched values. Table III lists the time

ranges used to extract the energy shifts for each hadron on
the two ensembles.
Our computed values for the neutral pion and kaon

polarizabilites are presented in Table IV. Tables V and VI
list the extracted energy shift and masses, respectively. The
static polarizabilities were computed from the mass shift
via the equation:

α ¼ 2a3e2

9η2
ðaδmÞ: (15)

Equation (15) is readily obtained by recalling that the mass
shift is connected to the polarizability via δm ¼ αE2=2 and
η ¼ ea2E=3. The left panel of Fig. 5 shows our results for
the kaon and the left panel of Fig. 7 shows our results for
the pion, both as a function of mπ . For the pion polar-
izability we also overlay quenched results from the study
done in [18], we will comment on this in the discussion
section.
To obtain the neutron Compton polarizability we use the

energy expansion given in Eq. (10) which depends on its
anomalous magnetic moment μ. In our analysis we did not
measure μ directly. Instead we perform an extrapolation to
the values of μ as a function of mπ determined from an
independent study [19]. We use a quadratic fit, as was done
in [19], to find μ as a function of mπ . In units of the nuclear
magneton, μN , we find

μðmπÞ ¼ a0 þ a1mπ þ a2m2
π; where a0 ¼ −2.067;

a1 ¼ 1.459 × 10−3; and a2 ¼ −3.427 × 10−7: (16)

0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

Ns

N
1

FIG. 3 (color online). Error scaling for the pion (blue/circle)
and neutron (orange/triangle) for the EN1 ensemble. The points
correspond to the measured values of the uncertainty in the
energy shift, δE. The solid black line corresponds to the expected
ideal situation if the data points were completely uncorrelated.
The curves were generated by taking the value for Ns ¼ 1
and scaling it by 1=

ffiffiffiffiffiffi
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FIG. 4 (color online). Plots of the extracted values of δE and χ2=dof for the neutron on the EN2 lattice as a function of minimum time
window used in the fits.

TABLE III. The list of fit ranges used in extracting the energy
shifts for the pion, kaon, and neutron. The fit ranges were
determined by examining the unitary point for each ensemble.

Ensemble Pion Kaon Neutron

EN1 [14,30] [14,30] [8,21]
EN2 [15,36] [15,37] [9,23]
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Figure 6 shows the fit to the data points from [19]. This
fitting form is motivated by χPT [20]. By comparing our fit
with lattice results at lower pion mass [21], we estimate
that our systematic errors are less than 5%. Given that the
magnetic moment contributes at most 20% to the mass shift
the overall systematic associated with this procedure is on
the order of 1%. This is significantly smaller than our
stochastic errors on the polarizability.

Using the above functional form for μ we can now
compute the Compton neutron polarizability by

αc ¼ αþ μ2ðmπÞ
mn

; (17)

where α is given by Eq. (15) and mn is the mass of the
neutron measured from the lattice in physical units.

TABLE IV. Extracted polarizabilities for both ensembles and for all kappa values. The labels m1; m2, etc. correspond to the pion
masses that are tabulated in Table II.

α [10−4 fm3]

EN1 EN2

Hadron m1 m2 m3 m4 m1 m2 m3 m4 m5

π −0.31ð13Þ −0.15ð11Þ −0.019ð91Þ 0.082(81) −0.43ð18Þ −0.20ð12Þ −0.082ð0.10Þ 0.019(85) 0.109(76)
K 0.175(37) 0.176(34) 0.184(32) 0.186(30) 0.222(29) 0.239(25) 0.248(23) 0.252(21) 0.256(20)
n 2.31(24) 2.24(18) 2.17(15) 2.13(13) 3.06(0.37) 2.71(24) 2.56(18) 2.48(14) 2.43(12)

TABLE V. Extracted energy shifts for both ensembles and for all kappa values. The labels m1; m2, etc. correspond to the pion masses
that are tabulated in Table II.

aδE × 108

EN1 EN2

Hadron m1 m2 m3 m4 m1 m2 m3 m4 m5

π −7.37ð3.10Þ −3.69ð2.68Þ −0.49ð2.39Þ 2.20(2.18) −10.01ð4.24Þ −5.26ð3.23Þ −2.24ð2.73Þ 0.54(2.44) 3.21(2.22)
K 5.08(1.07) 5.14(99) 5.39(93) 5.48(88) 7.14(94) 7.69(81) 7.99(74) 8.15(69) 8.29(65)
n 55.1(7.2) 53.4(5.4) 52.2(4.4) 51.8(3.67) 86.2(12.5) 74.5(7.9) 70.7(5.8) 68.6(4.7) 67.9(3.8)

TABLE VI. Masses of the kaon and neutron for both ensembles and for all kappa values. The labelsm1; m2, etc. correspond to the pion
masses that are tabulated in Table II.

am

EN1 EN2

Hadron m1 m2 m3 m4 m1 m2 m3 m4 m5

K 0.3155(7) 0.3220(7) 0.3282(6) 0.3344(6) 0.3698(6) 0.3767(6) 0.3825(5) 0.3878(5) 0.3930(5)
n 0.632(8) 0.644(6) 0.659(5) 0.674(4) 0.618(13) 0.628(8) 0.643(6) 0.658(5) 0.672(4)
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FIG. 5 (color online). Left panel: Plot of the extracted kaon polarizability as a function of the pion mass. Right panel: chiral extrapolation
which include only the unitary points for the EN1 and EN2 lattices along with the 400 MeV dynamical point computed in [6].
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Our extracted parameters for the neutron are also
tabulated in Tables IV, V, and VI. In the right panel of
Fig. 7 we plot the results of our two ensembles as a function
of mπ .

IV. DISCUSSION

In this section we will discuss some features in our
results for the kaon, pion, and neutron individually.

A. Neutral kaon

Beginning first with the kaon, we see from the left panel
of Fig. 5 that the polarizability depends on the sea quark
mass even when the valence quark mass is kept fixed. We
note that the change in the polarizability is small in absolute
terms. The difference between the two sea quark masses is
only 0.1 in units of 10−4 fm3 (the “natural” units for hadron
polarizability) when the light quark mass is almost halved.
The kaon polarizability also changes very little when the
valence quark mass is varied.
This slow change as a function of mq allows us to do a

trustworthy extrapolation to the physical point. To perform
this extrapolation, we use the two values at the unitary
points and the result determined in [6] for the kaon
polarizability at mπ ¼ 400 MeV. The fit assumes a linear

dependence on mπ . The results of our extrapolation are
shown in the right panel Fig. 5. We find αK ¼
0.269ð43Þ × 10−4 fm3. The kaon polarizability has not
yet been measured experimentally. χPT predicts the polar-
izability to be zero at Oðp4Þ [22]. Our result is consistent
with χPT since the kaon polarizability is relatively small in
units of 10−4 fm3.
There are systematic errors associated with our study.

One of them is the tuning of κs. Recall from Sec. III A that
we tuned the value of κs so that the masses of the Ω baryon
and the ϕ meson matched their physical values. This
procedure, however, produces different kaon masses for
the EN1 and EN2 ensembles for comparable light quark
masses. This is due to a difference in the strange quark mass
on the two ensembles. We do not expect this to affect the
polarizability significantly. This is supported by the plot in
the left panel of Fig. 5 where we can see that the polar-
izability is insensitive to the value of the valence light quark
mass. We expect the same level of insensitivity with respect
to the valence strange quark mass.

B. Neutral pion

Next we turn to the pion polarizability. In the left panel
of Fig. 7 we overlay the results of our study along with
quenched results found in [18]. This comparison among all
three data sets tells us that the pion polarizability, at the
level of our error bars, is relatively insensitive to the sea
quark mass. The quenched ensemble is interpreted as a
system where the sea quarks are infinitely heavy.
We note that the negative trend that has been seen in

previous studies [6,18] is still present. We would like to
reiterate what was mentioned in [6]: The expectation of
χPT at order Oðp4Þ and Oðp6Þ is that the π0 polarizability
is about απ0 ∼ −0.5 × 10−4 fm3 [23]. This value is con-
sistent with what we have computed. However, the χPT
results come only from disconnected contributions to the
correlation function, which was neglected in our calcula-
tion. Without the disconnected contribution it is expected
that the polarizability is substantially smaller and positive
(see [6]). It was suggested that perhaps this was due to
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FIG. 6 (color online). Plot of the neutron magnetic moments
determined from [19] as a function of mπ . The black curve is our
quadratic fit to the data points.
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finite-volume effects. However, the study done in [18] and
preliminary studies in [24] show that this is not the case.
This puzzling result could also come from the fact that we
have left out the effects of coupling the charge of the sea
quarks to the electric field. Different methods to include
the effects due to charging of the sea quarks are being
explored [9].

C. The neutron

In the right panel of Fig. 7 we plot our results for neutron
polarizability. We see that the dependence on the sea quark
mass is more pronounced than in the meson case. Our
results are compatible with the quenched ones, at least
qualitatively. The large error bars for the quenched results
make a more quantitative evaluation impossible. Turning to
our results, we see that the polarizability rises when the
quark mass is decreased, as anticipated. The change in
the valence mass produces only a slight increase, whereas
the sea quark mass change plays a more important role.
We compare now our findings for the neutron polar-

izability to two different χPT predictions: χPT1 [25,26] and
χPT2 [27]. We use this comparison to gauge the systematic
errors of our calculation, in particular finite volume effects
and neglecting the electric charge of the sea quarks. These
two χPT curves use different approximations in their
calculations to derive the chiral form. In the case of
χPT1 the calculation is expanded to N2LO using a non-
relativistic form for the propagators. There are two extra
free parameters which are determined by fitting to
Compton scattering data. The second result, χPT2, includes
terms up to NLO and uses relativistic propagators. They
compute α as a function ofmπ with no free parameters. The
error bars in χPT1 come from a careful analysis [28]
whereas the error bar for the second curve is fixed to a value
estimated at the physical point.
The left panel of Fig. 8 shows the two χPT curves along

with our findings. Our results for both ensembles seem to
be in agreement more with the χPT1 curve for our 306MeV
pion. However, our lattice calculation is in disagreement

with both curves at the 227 MeV pion. We believe that this
is due to finite-volume effects and the fact that the sea
quarks are electrically neutral.
To gauge the effect of charging the sea quarks we use

χPT [29]: for the pion mass between 140 MeV and
300 MeV when the sea quarks are charged the polar-
izability increases by 1.5 − 2 × 10−4 fm3. This would
explain part of the discrepancy seen between our data at
mπ ¼ 227 MeV and the χPT curves shown in Fig. 8.
However, significant differences still remain and we believe
that this is due to finite volume effects.
Finite volume corrections can also be estimated using

χPT. For periodic boundary conditions these effects
were calculated for electric polarizabilities [29] and
magnetic polarizabilities [30]. For mπ ¼ 250 MeV and
L ¼ 3 fm it was found that the correction to α is about 7%
[29]. However, we used DBC in this work and we expect
that these corrections will be more important than for
PBC. This is supported by the discrepancy we have
between our results and χPT predictions, as discussed
above, and sigma model studies for chiral condensate
in the presence of hard walls [31]. Further studies
are required to determine the magnitude of these
corrections.
In the right panel of Fig. 8 we add the experimental point

along with two other lattice calculations [4,5] for the
neutron polarizability. Our results have the smallest pion
masses used in polarizability studies and the smallest
statistical errors.

V. CONCLUSION

We performed a valence calculation of the electric
polarizabilites of the neutral pion, neutral kaon, and neutron
using a two-flavor nHYP clover action at two dynamical
pion masses: 306 MeVand 227 MeV. These are to date the
lowest pion masses used for polarizability studies. A chiral
extrapolation for the kaon was performed using three
dynamical points including the 400 MeV point from
[6]. We find the neutral kaon polarizability to be
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FIG. 8 (color online). Plots of the neutron polarizability as a function of mπ . The left panel shows the results obtained in this work.
Only the dynamical points of each ensemble are displayed with error bars. The dashed lines are two different curves predicted by χPT1
[25,26] and χPT2 [27]. The right panel plots our data along with the experimental value and two other lattice calculations [4] and [5].
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αK ¼ 0.269ð43Þ10−4 fm3. The chiral behavior of the kaon
is fairly mild, suggesting that the systematic errors for our
extrapolated value are similarly mild. For the pion, the
negative trend remains to be understood. We speculate that
this may be due to the fact that we have neglected the
charge of the sea quarks and we are working on including
these effects [9]. Our neutron polarizability results are
promising. The stochastic errors are significantly smaller
than other lattice studies and we also have the lightest
dynamical quark masses. We note that our errors are
significantly smaller than the ones from χPT studies.
The hope is that when the finite-volume systematics
are removed and the sea quarks are charged we will be
able to constrain the parameters in the χPT models.
This in turn could be used to tighten the error bars on
the χPT predictions at the physical point and make the

comparison with the experimentally measured values more
informative.
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