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The polarizabilities of the pion have been predicted in several different theoretical

frameworks. The status of these is reviewed.
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1 Introduction

The concept of polarizability first appeared in the realm of particle physics twenty years

ago [TE73, TE74, FR75, BT76] as a quantity which characterizes an elementary particle,

like its charge radius, magnetic moment, etc. In classical physics the polarizability of

a medium (or a composite system in general) is a well known concept related to the

response of the system to the presence of an external electromagnetic field, representing

a measure of how easy it is to polarize it. The translation of this quantity into quantum

physics involves Compton scattering on the corresponding target. For an electrically

charged system, scattering at threshold is determined by the charge of the system. This

is the Thompson limit. The polarizabilities give the corrections to Thompson scattering

—corrections to the next order in the energy of the photons. For neutral targets, the

corrections parameterized by the polarizabilities are the leading answer.

Since the introduction of this new quantity, considerable work has been performed

both theoretically and experimentally, largely on the nucleon and pion polarizabilities. In

this article we focus attention on the theoretical predictions for the pion polarizabilities.

All the numerical results about polarizabilities given in this paper are expressed in the

Gaussian system (e2 = α) and in units of 10−43cm3 = 10−4fm3, which are not quoted.

2 Definition of pion polarizabilities

Let us consider Compton scattering on a pion

γ(q1) π(p1) −→ γ(q2) π(p2) (1)

where qi are the 4–momenta of the photons and pi those for the pions. The amplitude for

this process can then be expanded in powers of the energies of the photons:

A(γπ → γπ)|threshold =
[

− α

mπ

δππ± + απ ω1ω2

]

ǫ̂1·ǫ̂∗2+βπ ω1ω2 (ǫ̂1×q̂1)·(ǫ̂∗2×q̂2)+. . . (2)

where qi = ωi (1, q̂i) for i = 1, 2 and ǫ̂i is the polarization vector of the photon with

momentum qi.

In Eq. (2) απ and βπ are the electric and magnetic polarizabilities, respectively, and

α is the fine structure constant. Let us note:

1.- At zeroth order in the energies of the photons only the point-like structure of the

target survives and it is accordingly zero for a neutral pion.
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2.- There is no linear term in the energy of photons. This is because we are dealing with

a spinless target. In the case of the nucleon, for example, there is a non–vanishing

linear term.

3.- The polarizabilities are not specified by symmetry arguments alone.

As can be seen from their definition, the polarizabilities carry information about the

electromagnetic structure of the target in the Compton process.

3 General remarks on pion polarizabilities

Before detailing various theoretical predictions, there are results we know about the

pion polarizabilities on quite general grounds:

1/ Chiral dynamics demands that in the exact chiral limit the relation

απ + βπ = 0 (3)

must be obeyed [DH89].

2/ A dispersion relation for the forward scattering amplitude gives [TE74, HO90]

απ + βπ =
1

2π2

∫ ∞

0
dω

σtot(ω)

ω2 , (4)

where σtot is the total photoproduction cross section on pions; this, of course, implies

απ + βπ > 0 . (5)

3/ Crossing symmetry relates the polarizabilities to the helicity amplitudes of the pro-

cess γγ → ππ at the crossed–channel threshold. If we call M++ the helicity 0

amplitude and M+− the helicity 2 amplitude [KS86, BG93] for γγ → ππ,

(απ ± βπ)C = − α

mπ

[

MC
+∓ − MBORN

]
∣

∣

∣

s=0,t=m2
π

(6)

(απ ± βπ)N =
α

mπ

MN
+∓ |s=0,t=m2

π

,

where the superscript C or N denotes charged or neutral pions, respectively. In

the charged case, the Born amplitude must be subtracted first to obtain the corre-

sponding combination of electric and magnetic polarizabilities. The relations, Eq.

(6), allow us to see that the combination (απ − βπ) is pure S–wave, while (απ + βπ)

is pure D–wave in the γγ → ππ channel.
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4/ The polarizabilities of the charged pion are directly related by chiral dynamics to

the axial (hA) and vector (hV ) structure–dependent form factors of the radiative

pion decay π+ → e+νeγ as [DH89]

απ± =
α

8π2mπF 2
π

hA

hV

(7)

where Fπ ∼ 93 MeV is the decay constant of pion.

5/ A sum rule for the electric polarizability was proposed by Petrun’kin [PE64] (see

also [EH73, BH88]) using a classical approach. This sum rule says that απ can be

split into two parts

απ = αcl
π + αintr

π . (8)

The term αcl
π is related to the electromagnetic pion size (it is proportional to the

charge radius squared)

αcl
π =

α

3mπ

〈r2
π〉 , (9)

while αintr
π is the intrinsic polarizability associated with possible excited states of

the pion accessed by electric dipole transitions and vacuum polarization effects:

αintr
π = 2α

∑

n 6=0

|〈n|D|0〉|2
En − E◦

, (10)

where D is the electric dipole operator. This description has been criticized by Ter-

ent’ev [TE74] (on grounds that assumptions involved in taking the non–relativistic

limit are dubious), but Holstein [HO90] gives an interpretation of αintr
π relating it to

the spectral functions of vector and axial–vector mesons, ρV (s) and ρA(s), respec-

tively, by comparing with the known current algebra result [DM67]. This gives,

∑

n 6=0

|〈n|D|0〉|2
En − E◦

=
1

4mπF
2
π

∫

ds
ρA(s) − ρV (s)

s2 (11)

Bernard et al. [BH88] have computed the intrinsic electric polarizability, Eq. (10),

and the analogous intrinsic magnetic polarizability in a valence quark model (MIT

bag). However, they obtain the opposite sign for the magnetic polarizability com-

pared to that given by phenomenology. This result the authors claim means that

the pion cannot be regarded as a single bound q q valence pair, but rather the pion

must be treated as a collective degree of freedom to obtain consistent results.
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4 Experimental situation

It is evident that experimentally Compton scattering on pions is not easy. Fortunately,

there are processes, when properly analyzed, that allow information about pion polar-

izabilities to be extracted. In this section we comment briefly on the status of these

experimental determinations and refer the reader to the reference [BB92] for a more com-

plete discussion. The experimental situation is very different for charged and neutral

pions:

Charged pion polarizabilities

All the experimental results (except when otherwise stated) are analysed assuming the

constraint on the sum of polarizabilities, Eq. (3). The experimental sources of information

and results are:

1/ Radiative pion nucleon scattering (Primakoff effect) [ π−Z → π−Zγ ]

The SERPUKOV group gives [AN83]

απ± = 6.8 ± 1.4(stat) ± 1.2(syst) . (12)

When they relax the condition Eq. (3), they find [AN85]

(απ + βπ)C = 1.4 ± 3.1(stat) ± 2.5(syst) , (13)

which is consistent with Eq. (3).

2/ Pion photoproduction in photon–nucleon scattering [ γp → γπ+n ]

The LEBEDEV group obtains [AI86]

απ± = 20 ± 12(stat) . (14)

3/ Photon–photon into two pions [ γγ → π+π− ]

The data of the MARK II group [BO90] have been analyzed in [BB92] with the

result

απ± = 2.2 ± 1.6(stat + syst) . (15)

As can be seen the results are far from consistent with each other. Clearly more experi-

mental effort is needed.
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Neutral pion polarizabilities

There are no real experimental measurements of neutral pion polarizabilities. However,

Babusci et al. [BB92] have analyzed data on γγ → π◦π◦ taken by the Crystal Ball

Collaboration [MA90] using the theoretical calculation in Chiral Perturbation Theory to

be discussed in Sect. 5.1 (with the constraint on the sum of polarizabilities Eq. (3)) and

find,

|απ◦| = 0.69 ± 0.07(stat) ± 0.04(syst) . (16)

Other analyses involve parameterizations using dispersion relations [KS86, KS92] and

then fitting the data. We will comment on these in Sect. 5.4.

5 Theoretical predictions

In spite of the fact that the concept of the polarizability of an elementary particle

was introduced long ago [PE64, TE73, TE74], only after the first measurement of charged

pion polarizabilities was this issue taken up by theorists. In the last two years there has

been a burst of theoretical predictions on charged and neutral pion polarizabilities. These

we collect here. We detail the theoretical frameworks employed, their respective results

and give a brief analysis of these.

5.1 Chiral Perturbation Theory (χPT )

The study of the cross–section for the process γγ → ππ in χPT gave the first predic-

tions. The leading contribution is O(p4) in the chiral expansion and was computed by

Bijnens and Cornet [BC88] using the SU(3)L⊗SU(3)R chiral Lagrangian [GL85]. At this

order, even with mπ 6= 0, they found that

(α + β)C,N |χPT [O(p4)] = 0 (17)

and the results

απ± =
4α

mπF
2
π

( Lr
9 + Lr

10 ) = 2.68 ± 0.42

(18)

απ◦ = − α

96π2mπF 2
π

= −0.50 ,

where the error in απ± comes from the phenomenological determination of Lr
9 and Lr

10.

It is worth emphasizing that there is no contribution from the 1–loop graphs to απ± and

that only the pion loop contributes to απ◦ .
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Table I Predictions of χPT for pion polarizabilities

Polarizability O(p4) O(p6) [BG93] Total
[BC88] tree two − loop

απ◦ −0.50 0.21 −0.07 −0.35 ± 0.10

βπ◦ 0.50 0.79 0.24 1.50 ± 0.20

(απ + βπ)N 0 1.00 0.17 1.15 ± 0.30

(απ − βπ)N −1.00 −0.58 −0.31 −1.90 ± 0.20

απ± 2.68 − − 2.68 ± 0.42

Recently the next–to–leading order corrections to γγ → π◦π◦ in SU(2)L⊗SU(2)R χPT

have been calculated by Bellucci et al. [BG93]. The authors have computed the O(p6)

contribution that involves a full two–loop calculation 2. In order to handle the divergences,

the L6 contact terms of the effective Lagrangian must be included. The strengths of these

terms are given by coupling constants, the values of which are extracted by saturating

with vector mesons (1−−), C–odd axial vector mesons (1+−), scalars (0++) and tensors

(2++).

At this order Eq. (3) is no longer satisfied. Now

(α + β)C,N
χPT [O(p6)] 6= 0 . (19)

The complete results are shown in Table I. The errors in the total predictions come from

the uncertainties in the phenomenological determination of the coupling constants in the

chiral Lagrangian.

2See S. Bellucci in this Handbook.
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5.2 Lowest order χPT with explicit resonance contributions

Another way to take into account corrections to the leading order result comes from

explicitly computing the resonance contributions. Chiral power counting establishes that

only axial vector mesons (1++) start to contribute to O(p4), while vectors (1−−), C–

odd axial vectors (1+−), scalars (0++) and tensors (2++) start at O(p6). However such

calculations do mean that part of the higher order corrections are automatically included

in these resonance terms.

As the leading order is O(p4) and in order to avoid double counting the contribution

of axial vectors a1(1
++) is not included. This is because these resonances only contribute

to απ± , but the combination Lr
9 + Lr

10 in Eq. (18) comes from pure a1 annihilation in

the s–channel for γπ+ → γπ+ [DH93] 3. We now enumerate the contribution of these

resonances in turn:

Vector mesons (1−−) [ ρ, ω ]

These resonances only modify the value of βπ. The contribution of their direct channel

exchange in γπ → γπ has been calculated in [KO90, BB93] and found to be:

(απ + βπ) |Cρ = 0.07

(20)

(απ + βπ) |Nρ,ω = 0.83 .

Since the couplings of the light vector mesons are well–known , the calculation of their

contributions should be reliable.

C–odd axial vector mesons (1+−) [ b1, h1 ]

Ko has worked out [KO93] their contribution to γπ◦ → γπ◦, and hence to the neutral

pion polarizabilities. These resonances do not modify βπ◦ and Ko finds 4

απ◦|b1,h1
= 0.21 (21)

to be added to

απ◦|χPT [O(p4)] = −0.50 . (22)

We note that since this resonance sector is not so well known, the result in Eq. (21),

which is obtained assuming no mixing and exact nonet symmetry, could change when

3This is so when the Weinberg relation of masses ma1
=

√
2mρ is used.

4A numerical error has been corrected here (we thank S. Bellucci for pointing this out).
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more realistic approximations are made. 5

Scalar mesons (0++) [ a◦, f◦ ] and tensor mesons (2++) [ a2, f2 ]

After [AB92], Babusci et al. [BB93] have considered the contribution of scalar and tensor

resonances to γπ◦ → γπ◦. However a problem arises here. Since exchanges contribute in

the t–channel, an ambiguity results in the phenomenological determination of the signs

of the couplings. The contribution given by tensor exchange is thus

|απ◦|T = 0.04 , |βπ◦|T = 0.07 . (23)

The contribution from scalars follows from [BG93] as

|απ◦|S = 0.02 , |βπ◦|S = 0.02 (24)

with (αS
π +βS

π )N = 0. Since we only know the magnitudes, both these contributions must

be included as an uncertainty in the chiral prediction.

In Table II we collect the different resonance structure contributions. It is worth

emphasizing that the results in Table II are not directly comparable with those in Table

I because of differences in the order of chiral powers included.

Table II Lowest order χPT with explicit resonance contributions
to pion polarizabilities

Polarizability χPT |O(p4) 1−− 1+− 0++ 2++ Total

απ◦ −0.50 0 0.21 ±0.02 ±0.04 −0.29 ± 0.04

βπ◦ 0.50 0.83 0 ∓0.02 ±0.07 1.33 ± 0.07

απ± 2.68 ± 0.42 0 −∗ −∗ −∗ 2.68 ± 0.42

βπ± −2.68 ± 0.42 0.07 0 −∗ −∗ −2.61 ± 0.42

(∗)This contribution has not been calculated

5By the way this warning must be extended also to the O(p6) calculation in χPT [BG93] that model
the C–odd axial vector mesons in the same way.
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5.3 Generalized Chiral Perturbation Theory (GχPT )

The cross–section of γπ◦ → γπ◦ has recently been studied in the framework of GχPT

[SS93] by Knecht et al. [KM94]. This has allowed predictions to O(p5) for the neutral

pion polarizabilities to be calculated. The authors have also worked out an O(p4) result

for the charged pion polarizability. To these orders, they still find

(απ + βπ)C,N = 0 . (25)

The neutral pion polarizability depends on 5 unknown parameters : αππ, βππ (related to

O(p3) tree level ππ scattering), απK , βπK (related to O(p3) tree level πK scattering) and a

combination of the coupling constants of the L5
GχPT contact term they call c. Disregarding

the kaon contribution (i.e. setting απK = βπK = 0), taking values for αππ, βππ from a fit

to ππ scattering data [SS93] and constructing a low energy sum rule for c evaluated by

saturating with the vector resonances, ρ, ω and φ, they obtain

απ±|O(p4) = 3.47 , απ◦|O(p5) = +0.44 . (26)

Let us note that the prediction to O(p5) of GχPT for απ◦ has a different sign than the

prediction to O(p6) in χPT (Table I).

5.4 Dispersive descriptions

The S–wave isospin amplitudes for the processes γγ → ππ were worked out by Morgan

and Pennington [MP91] using twice–subtracted dispersion relations

fI(s) = ΩI(s)

{

pI(s)Ω
−1
I (s) + cI + sdI −

(s − s◦)
2

π

∫ ∞

4m2
π

dx
pI(x)ℑm[Ω−1

I (x)]

(x − s◦)
2(x − s − iǫ)

}

(27)

for I = 0, 2, where ΩI(s) is the Omnès function, pI(s) gives the structure of the left hand

cut, and cI , dI are two subtraction constants which depend on the subtraction point s◦.

Analogous relations hold for higher waves, their known threshold behaviour fixing their

subtraction constants [MP88].

Once the fI(s) are determined it is possible to deduce the combination (απ−βπ) (since

it is pure S–wave, Eq. (6)). Thus

(απ − βπ)N =
4α

mπ

lim
s→0

fN(s)

s

(28)

(απ − βπ)C =
4α

mπ

lim
s→0

[fC(s) − fBORN ]

s

9



with

fN(s) =
2

3
[ f0(s) − f2(s) ] , fC(s) =

1

3
[ 2f0(s) + f2(s) ] . (29)

The Omnès functions, ΩI(s) in Eq. (27), can be determined from experimental phase

shifts. The structure of the left hand cut pI(s) and the subtraction constants can be

worked out from QED at low energy and chiral dynamics: PCAC zeros [PE92], matching

with χPT [DH93] or GχPT [KM94], respectively.

The analysis of Morgan and Pennington [MP91, PE92] inputs the appearance of a

near threshold zero in the S–wave γγ → π◦π◦ amplitude from chiral dynamics at s = sN

to fix subtraction constants in Eq. (27). The remaining input information is taken

from experiment. The S–wave amplitudes for γγ → ππ are thereby determined and so

predictions can be made for the neutral pion polarizability (απ − βπ)N . Not surprisingly,

given Eq. (28), this combination is found to be directly proportional to how far the chiral

zero is from s = 0. (Note that at O(p4) in χPT , this zero is at sN = m2
π, while at O(p6)

is at 6 sN ≃ 1.1 m2
π).

Alternatively, others [DH93, KM94], rather than inputting experimental information,

have attempted to match these dispersion relations with detailed predictions of χPT (to

a given order) for a range of energies about some point. Donoghue and Holstein [DH93]

use s◦ = 0, while Knecht et al. [KM94] try a range from s◦ = 0 to s◦ = 4m2
π. Knecht et

al. find that the resulting neutral pion polarizability depends strongly on the subtraction

point chosen for this matching 7. Indeed, even the sign of the combination of neutral pion

polarizabilities, Eq. (28), changes as s◦ is varied. This implies that the χPT predictions

for 0 < s < 4m2
π must have a significantly different dependence on energy than given

by the other inputs to Eq. (27). This problem requires further work to isolate the

source of the discrepancy. We note that the dependence is far softer for the charged pion

polarizabilities.

In these approaches, predictions are not just made for the polarizabilities but for the

amplitudes for γγ → ππ scattering at low energies too. Pennington [PE92] illustrates

that an equally good description of low energy data is obtained whether the chiral zero

is at sN = 1
2m2

π or 2m2
π, not just m2

π. However, the combination (απ − βπ)N varies by a

factor 4 in this range of sN . Similarly, the O(p6) χPT prediction of [BG93] and the O(p5)

6This can be seen in Fig. 8 of [BG93].
7In doing this Knecht et al. assume the combination (απ + βπ)N is saturated by vector and C–odd

axial vector mesons.
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GχPT prediction of [KM94] describe low energy γγ → π◦π◦ data equally well, yet can

have (απ − βπ)N with opposite signs.

Table III Results of fits to the experimental data on γγ → ππ by
Kaloshin et al. [KS94, KP94] to determine the pion polarizabilities

Data fitted

Polarizability CELLO MARK − II Crystal Ball

(απ + βπ)C 0.30 ± 0.04∗ 0.22 ± 0.06∗ −

(απ − βπ)C 5.3 ± 1.0 − −

(απ + βπ)N − − 1.00 ± 0.05∗

(απ − βπ)N − − −0.6 ± 1.8

∗ See text for discussion of these errors

In a related way Kaloshin et al. [KS86, KS92, KS94] directly parameterize the disper-

sion relations of Eq. (27) in terms of polarizabilities as the subtraction constants. Then

by fitting the charged and neutral channel data [BO90, BE92, MA90] they find the results

for (απ − βπ)C,N summarized in Table III. Note the large uncertainty in the neutral com-

bination reflects the insensitivity of the low energy data to the exact position of the chiral

zero already mentioned. In [KP94], Kaloshin et al. have attempted a similar analysis

for the D–wave combination (απ + βπ)C,N and claim to have determined these with re-

markable precision —again their results are tabulated in Table III. In view of the detailed

amplitude analysis of the same data by [MP90] which shows the D–wave cross–section

may be uncertain by as much as 50 % even in the f2(1270) region, the errors quoted by

Kaloshin et al. [KP94] appear unbelievably small [PE94].
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5.5 Quark Confinement Model (QCM)

The QCM developed by Efimov et al. [IM92, EI93] has also been employed to predict

values for the pion polarizabilities. The basic characteristic of the model is a confinement

ansatz that allows loop calculations to be made finite, avoiding the need for a regulariza-

tion procedure.

Efimov et al. [EI93] consider the contribution to pion polarizabilities coming from

pure loop terms and vector, axial vector and scalar resonances. Their results are given in

Table IV.

As can be seen the most important contribution in this model is given by the scalar

resonances. Moreover, in the case of neutral pion polarizabilities, there is a strong can-

cellation between loops and the scalar contribution. The contribution of vector mesons is

quite similar to that found in χPT , but not for axial vector mesons. As mentioned earlier

the main contribution to the leading order in χPT to απ± comes from these axial–vector

resonances, but in the QCM scheme their contribution is negligible.

Table IV Predictions of QCM for the pion polarizabilities
by Ivanov et al. [IM92]

Polarizability Loops 0++ 1−− 1++ Total

απ◦ −3.01 3.76 0 0 0.75

βπ◦ 2.95 −3.76 0.51 0 −0.30

απ± −0.14 3.76 0 0.02 3.64

βπ± 0.30 −3.76 0.05 0 −3.41

12



Let us comment on these predictions of the Quark Confinement Model :

1/ As stated before, the charged electric pion polarizability is related to the quotient

of axial and vector structure–dependent form factors of the radiative pion decay

Eq. (7). In the QCM απ± and hA/hV are independent quantities. How this model

legitimately avoids this chiral constraint is unclear.

2/ There is a large model dependence in the scalar sector of QCM. Moreover, the

experimental parameters used in their model have changed significantly [PD92].

The authors themselves consider that the contribution of scalars has an error of at

least 30%. It could easily be bigger. However, the scalar contributions cancel in

(α + β), giving

(απ + βπ)C |QCM = 0.22 , (απ + βπ)N |QCM = 0.44 . (30)

3/ Finally, there remains the question of double counting between loops and meson

resonances. This is an unresolved issue for models that consider contributions at

both the quark and meson level simultaneously.

5.6 QCD sum rules

Recently a calculation of the electric polarizability for the charged pion has been

performed using QCD sum rules [LN94]. The authors take the current algebra sum rule

of Das, Mathur and Okubo [DM67],

απ± =
α

3mπ

〈r2
π〉 +

α

2mπF
2
π

∫ ∞

4m2
π

ds
1

s2 [ ρA(s) − ρV (s) ] , (31)

where the spectral functions are defined as in Eq. (11). They input the experimental

[AM86] pion charge radius 〈r2
π〉 = (0.439 ± 0.008) fm2 and then compute the integral of

the vector and axial spectral functions using QCD sum rule methods. They obtain

απ± |QCDsr = 5.6 ± 0.5 , (32)

the integral in Eq. (31) largely cancelling the charge radius term. Fortunately, Lavelle et

al. find that their calculation depends little on the poorly known quark condensate and

so they deduce a rather precise value for απ±. This value, Eq. (32), is in good agreement

with Eq. (12), but not with the prediction of one loop χPT, Eq. (18).
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6 Pion polarizabilities at DAΦNE

The DAΦNE electron–positron collider at
√

s ∼ 1.02 GeV provides the opportunity

to study γγ → ππ processes at low energy. This is due to the possibility of double tagging

of e+e− → e+e−ππ in the KLOE multi–particle detector [AL93] that will eliminate much

of the background.

Assuming full acceptance of the detector and with a machine luminosity of L ≃ 5 ×
1032 cm−2s−1, the expected rates are

• N [γγ → π◦π◦] ≃ 104 events/year

• N [γγ → π+π−] ≃ 1.8 × 106 events/year

Such event rates will allow the low energy cross–sections to be measured with much higher

statistics than previously.

However, the pion polarizabilities are still likely to be poorly known. The maximum

ππ mass that can be realistically attained is ∼ 0.6 GeV. This will allow the S–wave cross–

sections to be accurately measured, but not the difference of the D–wave from its Born

component without precise azimuthal correlations. Even then, we have seen that knowing

the low energy γγ → ππ cross–section accurately still allows large uncertainties in the

polarizabilities [PE94]. Only measurements of Compton scattering will resolve these.

In principle, there are two ways of studying Compton scattering on a pion. Both

involve γπ production, initiated by either a photon or a pion beam. The idea is that

γN → γπN proceeds by one pion exchange at small momentum transfers allowing Chew–

Low extrapolation to extract the Compton cross–section, while πZ → γπZ will occur by

one photon exchange if the scattering is on a heavy target, Z, and the photon is almost

real. Such a Primakoff production experiment, E781, is planned at Fermilab for 1996 with

an initial pion momentum of 600 GeV/c, when the virtual photon can have a 4-momentum

squared of −2 × 10−8 GeV2 very close to zero [MO92, FE94]. The process γN → γπN

may prove possible with a back–scattered laser experiment at an electron storage ring

facility such as Grenoble [DA94, RE94]. These experiments are for the future; they are

much needed if we are to learn more of the pion’s polarizabilities.
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