\relax \bibstyle{plain} \@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{2}} \@writefile{toc}{\contentsline {section}{\numberline {2}Using the Software}{3}} \newlabel{sec:using}{{2}{3}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Getting the code}{3}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.2}Building the files}{3}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.3}Using the files}{4}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {2.3.1}\tt librezest.a}{4}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {2.3.2}\tt rezest\_point}{4}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {2.3.3}\tt rezest\_point\_comp}{4}} \citation{Yao:2006px} \@writefile{toc}{\contentsline {section}{\numberline {3}How the Estimates Are Done}{5}} \citation{Bevington+92} \@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Transverse Momentum Resolution}{6}} \newlabel{eq:p-and-B}{{1}{6}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Curvature vs.\ Momentum}{6}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Error on Slope and $y$-intercept of a Straight-Line Fit, Equally Spaced Measurements}{6}} \citation{Yao:2006px} \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Generic straight line through origin.}}{7}} \newlabel{fig:slope}{{1}{7}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.4}Angular Error Due to Multiple Coulomb Scattering}{7}} \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Quantities used to describe multiple Coulomb scattering. The particle is incident in the plane of the figure.}}{8}} \newlabel{fig:ms-pdg}{{2}{8}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.5}Contribution to Azimuthal Angle Resolution \\ from Curvature Resolution}{8}} \newlabel{sec:curve-angle}{{3.5}{8}} \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces The concept for estimating the effect of curvature resolution on azimuthal angle resolution.}}{9}} \@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Geometry of the CDC}}{9}} \newlabel{fig:CDC}{{4}{9}} \@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Values of geometry parameters for the CDC in the current design.}}{10}} \newlabel{tab:cdc-geometry}{{1}{10}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.6}Geometry of the CDC}{10}} \newlabel{sec:cdc-geometry}{{3.6}{10}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.7}Geometry of the FDC}{10}} \@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Geometry of the FDC.}}{11}} \newlabel{fig:FDC}{{5}{11}} \@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Values of geometry parameters for the FDC in the current design.}}{11}} \newlabel{tab:fdc-geometry}{{2}{11}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.8}Combining the CDC and the FDC}{12}} \newlabel{sec:combining}{{3.8}{12}} \@writefile{toc}{\contentsline {section}{\numberline {4}Results}{12}} \@writefile{lot}{\contentsline {table}{\numberline {3}{\ignorespaces Figures displaying resolution estimates as a function of momentum and polar angle.}}{12}} \newlabel{tab:figs}{{3}{12}} \@writefile{toc}{\contentsline {section}{\numberline {5}Conclusions}{12}} \@writefile{toc}{\contentsline {section}{\numberline {A}Some useful equations}{12}} \newlabel{app:algebra}{{A}{12}} \bibdata{rezest} \bibcite{Bevington+92}{1} \bibcite{Yao:2006px}{2} \@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Estimates for resolution in relative transverse momentum as a function of total momentum at $20^\circ $ for $B = 2.0$\nobreakspace {}T.}}{13}} \newlabel{fig:pscan-pt}{{6}{13}} \@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces Estimates for resolution in polar angle as a function of total momentum at $20^\circ $ for $B = 2.0$\nobreakspace {}T.}}{14}} \newlabel{fig:pscan-polar}{{7}{14}} \@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces Estimates for resolution in azimuthal angle as a function of total momentum at $20^\circ $ for $B = 2.0$\nobreakspace {}T.}}{14}} \newlabel{fig:pscan-azimuth}{{8}{14}} \@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces Estimates for resolution in relative transverse momentum as a function of polar angle at $p = 1.0$\nobreakspace {}GeV/$c$ for $B = 2.0$\nobreakspace {}T.}}{15}} \newlabel{fig:thetascan-pt}{{9}{15}} \@writefile{lof}{\contentsline {figure}{\numberline {10}{\ignorespaces Estimates for resolution in polar angle as a function of polar angle at $p = 1.0$\nobreakspace {}GeV/$c$ for $B = 2.0$\nobreakspace {}T.}}{16}} \newlabel{fig:thetascan-polar}{{10}{16}} \@writefile{lof}{\contentsline {figure}{\numberline {11}{\ignorespaces Estimates for resolution in azimuthal angle as a function of polar angle at $p = 1.0$\nobreakspace {}GeV/$c$ for $B = 2.0$\nobreakspace {}T.}}{17}} \newlabel{fig:thetascan-azimuth}{{11}{17}}