Kinematic Fitting Summer Lecture

Mark M. Ito
Jefferson Lab
July 14, 2015

Motivation I

- Particles measured independently
- Often: known relationships between their kinematics
- energy and momentum conservation in production and decay
- $\sum_{i=1}^{n} E_{\text {initial }, i}=\sum_{i=1}^{n} E_{\text {final }, i}$
- $\sum_{i=1}^{n} \vec{p}_{\text {initial }, i}=\sum_{i=1}^{n=1} \vec{p}_{\text {final }, i}$
- daughters of common parent particle of known mass (Lorentz invariant)
- $\left(\sum_{i=1}^{n} E_{i}\right)^{2}-\left(\sum_{i=1}^{n} \vec{p} c\right)^{2}=\left(m c^{2}\right)^{2}$
- particles from a common "vertex" (spatial correlation)
- particle trajectories start from single space-time point
- Measured kinematics do not respect these relationships in detail.
- Exact relationships made approximate by measurement error.

Motivation II

- How to incoporate knowledge of relationships?
- Kinematic fitting!
- Why bother?
- better measurements: correlations hint at direction of random measurement errors
- hypothesis testing: procedure yields statistical assessment of probability of these measurements

PrimEx Detector

Hybrid Calorimeter

三

Event Display

Two-photon Mass Distribution

Example: Decay of Neutral Pion into Two Photons

- $\pi^{0} \rightarrow \gamma \gamma$
- both photons detected
- assume photon directions are known precisely
- energies have relative uncertainty $\sigma_{E} / E=5 \% / \sqrt{E}$
- for simplicity: look at $500 \mathrm{MeV} / \mathrm{c} \pi^{0}$ moving in z-direction
- but, will not assume $500 \mathrm{MeV} / \mathrm{c}$ nor z-direction for pion

two-photon invariant mass

measured pi0 mass

relative error on single photon energy

(measured E - true E)/true E

two-photon measured momentum

measured momentum

What is the problem?

- want to improve resolution
- assume that photons came from π^{0}, so mass is known
- can we use this information?
- could adjust one photon (why just one?)
- could scale them both (high energy γ : better E measurement)
- could minimize

$$
\chi^{2}=\left(\frac{E_{1, \mathrm{fit}}-E_{1, \mathrm{meas}}}{\sigma_{1}}\right)^{2}+\left(\frac{E_{2, \mathrm{fit}}-E_{2, \mathrm{meas}}}{\sigma_{2}}\right)^{2}
$$

- but minimum is clear: $E_{\text {fit }}=E_{\text {meas }}$ (something is missing!)
- must introduce constraint: $\left(k_{1}+k_{2}\right)^{2}=m_{\pi}^{2}$ gives

$$
2 E_{1} E_{2}(1-\cos \theta)=m_{\pi}^{2}
$$

- Problem: minimize χ^{2} while simultaneously satisfying constraint

Minimization Strategy

- multi-variable minimization with constraints: Lagrange multipliers
- instead of minimizing over two variables, minimize over three $E_{1, \mathrm{fit}}$, $E_{2, \text { fit }}$, and λ

$$
\begin{aligned}
\chi^{2}= & \left(\frac{E_{1, \mathrm{fit}}-E_{1, \text { meas }}}{\sigma_{1}}\right)^{2}+\left(\frac{E_{2, \mathrm{fit}}-E_{2, \text { meas }}}{\sigma_{2}}\right)^{2} \\
& +2 \lambda\left[2 E_{1, \mathrm{fit}} E_{2, \mathrm{fit}}(1-\cos \theta)-m_{\pi}^{2}\right]
\end{aligned}
$$

fit two-photon invariant mass

pi0 mass, fit

fit relative error on single photon energy

(fit E - true E)/true E

fit two-photon measured momentum

fit momentum

Variable Definitions I

- measured variables
N number of measured variables (input)
y vector of measurements, N-dimensional (input)
V covariance matrix, $N \times N$ (input)
η vector of fit values of measured variables, N-dimensional

$$
\chi^{2}=(y-\eta)^{T} V^{-1}(y-\eta)
$$

- unmeasured variables
J number of unmeasured variables (input)
ξ vector of unmeasured variable values, J-dimensional

Variable Definitions II

- constraints
K number of constraints (input)
f vector of constraint functions, K dimensional (input)

Each constraint a function of measured and unmeasured variables. When constraint is satisfied

$$
f_{k}\left(\eta_{1}, \ldots, \eta_{N}, \xi_{1}, \ldots, \xi_{J}\right)=0 \quad \text { for } \quad k=1, \ldots, K
$$

- Lagrange multipliers
λ vector of mulipliers, K-dimensional
Extended χ^{2} to be minimized:

$$
\chi^{2}(\eta, \xi, \lambda)=(y-\eta)^{T} V^{-1}(y-\eta)+2 \lambda^{T} f(\eta, \xi)
$$

Minimization Condition

Set all partial derivatives to zero:

$$
\begin{gathered}
\frac{\partial \chi^{2}}{\partial \eta_{n}}=\left[-2 V^{-1}(y-\eta)+2 F_{\eta}^{T} \lambda\right]_{n}=0, \quad n=1, \ldots, N \\
\frac{\partial \chi^{2}}{\partial \xi_{j}}=\left[2 F_{\xi}^{T} \lambda\right]_{j}=0, \quad j=1, \ldots, J \\
\frac{\partial \chi^{2}}{\partial \lambda_{k}}=[2 f]_{k}=0, \quad k=1, \ldots, K
\end{gathered}
$$

where

$$
\left(F_{\eta}\right)_{k n}=\frac{\partial f_{k}}{\eta_{n}} \quad \text { and } \quad\left(F_{\xi}\right)_{k j}=\frac{\partial f_{k}}{\xi_{j}}
$$

In general, a system of non-linear equations, $N+J+K$ equations with $N+J+K$ unknowns.

Linearize the Constraints; Iterate the Solutions

Go to a linear form of the constraints:
(1) Change variables: $\eta=\eta_{0}+\delta \eta, \xi=\xi_{0}+\delta \xi$, and $\lambda=\lambda_{0}+\delta \lambda$
(2) Take first order in Taylor expansion:
$f(\delta \eta, \delta \xi, \delta \lambda)=f\left(\eta_{0}, \xi_{0}, \lambda_{0}\right)+\left(F_{\eta}\right)(\delta \eta)+\left(F_{\xi}\right)(\delta \xi)$
Now have a linear system of $N+J+K$ equations with $N+J+K$ unknowns, i. e. $\delta \eta, \delta \xi, \delta \lambda$

- Unique solution!
- But an approximation was made: need to iterate
- Choose new $\eta_{0}, \xi_{0}, \lambda_{0}$ based on $\delta \eta, \delta \xi, \delta \lambda$.
- After a few iterations, size of $\delta \eta, \delta \xi, \delta \lambda$ get small, change in χ^{2} gets small.
- Also: must initialize variables

Errors

covariance matrices:

- fit variables

$$
V_{\eta}=V\left[I-\left(G-H U H^{T}\right) V\right]
$$

- unmeasured variables

$$
V_{\xi}=U
$$

- covariances between fit and unmeasured variables

$$
V_{\eta, \xi}=-V H U
$$

$$
\begin{aligned}
& \text { where } G=F_{\eta}^{\top} S^{-1} F_{\eta}, \quad H=F_{\eta}^{\top} S^{-1} F_{\xi}, \quad U^{-1}=F_{\xi}^{\top} S^{-1} F_{\xi} \\
& \text { and } S=F_{\eta}^{T} V F_{\eta}
\end{aligned}
$$

Stretch Functions or "Pulls"

How to tell if the thing is working?

- look at use these N quantities:

$$
z_{n}=\frac{y_{n}-\eta_{n}}{\sqrt{\sigma^{2}\left(y_{n}\right)-\sigma^{2}\left(\eta_{n}\right)}} \quad n=1, \ldots, N
$$

- Gaussian with mean at $0, \sigma$ of 1
- If not there are problems:
- offset mean: measurements biased
- wrong width: errors not correct
- tails: non-Gaussian tails in measurements, background in sample

stretch function

stretch function, photon 1

Unmeasured Variables, Number of Constraints

- go back to π^{0} decay
- could have introduced unmeasured variables: $p_{\pi, x}, p_{\pi, y}, p_{\pi, z}$
- but then would have to apply 3 -momentum conservation
- now have 4 constraints with 3 unmeasured variables
- used to have 1 constraint with 0 unmeasured variables
- same problem recast: 1-C fit
- $C=K-J$, the number of degrees of freedom

Check χ^{2}

- χ^{2} should have a standard probablility density distribution: $f\left(\chi^{2}\right)$
- Convenient to check χ^{2} probability:

$$
P\left(\chi_{0}^{2}\right)=\int_{\chi_{0}^{2}}^{\infty} f\left(\chi^{2}\right) d \chi^{2}
$$

- P runs from 0 to 1
- for nominal χ^{2} distribution P will be uniform
- non-uniformity: problem with errors, check the pulls
- often see peaks near 0: bad χ^{2}, background in sample

χ^{2} Distribution

χ^{2} Probability Distribution

Summary

- measured variables, with or without statistical correlation, may have physical relationships
- kinematic fit varies values of measured quantities to satisfy relationships
- minimize χ^{2} with constraints
- improved measurements
- diagnostics about bias and errors in measurements are generated
- goodness of fit a handle on correctness of physical relationships assumed
Reference: A. G. Frodesen, O. Skjeggestad, H. Tøfte. Probability and Statistics in Particle Physics. Universitetsforlaget, 1979. ISBN 82-00-01906-3

