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Introduction

Motivation I

Particles measured independently

Often: known relationships between their kinematics
energy and momentum conservation in production and decay∑n

i=1 Einitial,i =
∑n

i=1 Efinal,i∑n
i=1 ~pinitial,i =

∑n
i=1 ~pfinal,i

daughters of common parent particle of known mass (Lorentz
invariant)

(
∑n

i=1 Ei )
2 − (

∑n
i=1 ~pc)

2 = (mc2)2

particles from a common “vertex” (spatial correlation)

particle trajectories start from single space-time point

Measured kinematics do not respect these relationships in detail.

Exact relationships made approximate by measurement error.

Mark Ito (JLab) Kinematic Fitting July 14, 2015 2 / 28



Introduction

Motivation II

How to incoporate knowledge of relationships?

Kinematic fitting!

Why bother?

better measurements: correlations hint at direction of random
measurement errors
hypothesis testing: procedure yields statistical assessment of probability
of these measurements
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PrimEx Experiment in Hall B

PrimEx Detector

Mark Ito (JLab) Kinematic Fitting July 14, 2015 4 / 28



PrimEx Experiment in Hall B

Hybrid Calorimeter
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PrimEx Experiment in Hall B

Event Display
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PrimEx Experiment in Hall B

Two-photon Mass Distribution
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Example

Example: Decay of Neutral Pion into Two Photons

π0 → γγ

both photons detected

assume photon directions are known precisely

energies have relative uncertainty σE/E = 5%/
√
E

for simplicity: look at 500 MeV/c π0 moving in z-direction

but, will not assume 500 MeV/c nor z-direction for pion
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Example

two-photon invariant mass
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Example

relative error on single photon energy
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Example

two-photon measured momentum
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Example

What is the problem?

want to improve resolution

assume that photons came from π0, so mass is known

can we use this information?
could adjust one photon (why just one?)
could scale them both (high energy γ: better E measurement)

could minimize

χ2 =

(
E1,fit − E1,meas

σ1

)2

+

(
E2,fit − E2,meas

σ2

)2

but minimum is clear: Efit = Emeas (something is missing!)

must introduce constraint: (k1 + k2)2 = m2
π gives

2E1E2(1− cos θ) = m2
π

Problem: minimize χ2 while simultaneously satisfying constraint
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Example

Minimization Strategy

multi-variable minimization with constraints: Lagrange multipliers

instead of minimizing over two variables, minimize over three E1,fit,
E2,fit, and λ

χ2 =

(
E1,fit − E1,meas

σ1

)2

+

(
E2,fit − E2,meas

σ2

)2

+2λ
[
2E1,fitE2,fit(1− cos θ)−m2

π

]
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Results

fit two-photon invariant mass
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Results

fit relative error on single photon energy
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Results

fit two-photon measured momentum
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General Formalism

Variable Definitions I

measured variables

N number of measured variables (input)
y vector of measurements, N-dimensional (input)
V covariance matrix, N × N (input)
η vector of fit values of measured variables, N-dimensional

χ2 = (y − η)TV−1(y − η)

unmeasured variables

J number of unmeasured variables (input)
ξ vector of unmeasured variable values, J-dimensional
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General Formalism

Variable Definitions II

constraints

K number of constraints (input)
f vector of constraint functions, K dimensional (input)

Each constraint a function of measured and unmeasured variables. When
constraint is satisfied

fk(η1, . . . , ηN , ξ1, . . . , ξJ) = 0 for k = 1, . . . ,K

Lagrange multipliers

λ vector of mulipliers, K -dimensional

Extended χ2 to be minimized:

χ2(η, ξ, λ) = (y − η)TV−1(y − η) + 2λT f (η, ξ)
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General Formalism

Minimization Condition

Set all partial derivatives to zero:

∂χ2

∂ηn
=
[
−2V−1(y − η) + 2FT

η λ
]
n

= 0, n = 1, . . . ,N

∂χ2

∂ξj
=
[
2FT

ξ λ
]
j

= 0, j = 1, . . . , J

∂χ2

∂λk
= [2f ]k = 0, k = 1, . . . ,K

where

(Fη)kn =
∂fk
ηn

and (Fξ)kj =
∂fk
ξj

In general, a system of non-linear equations, N + J + K equations with
N + J + K unknowns.
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General Formalism

Linearize the Constraints; Iterate the Solutions

Go to a linear form of the constraints:

1 Change variables: η = η0 + δη, ξ = ξ0 + δξ, and λ = λ0 + δλ

2 Take first order in Taylor expansion:
f (δη, δξ, δλ) = f (η0, ξ0, λ0) + (Fη)(δη) + (Fξ)(δξ)

Now have a linear system of N + J + K equations with N + J + K
unknowns, i. e. δη, δξ, δλ

Unique solution!

But an approximation was made: need to iterate

Choose new η0, ξ0, λ0 based on δη, δξ, δλ.

After a few iterations, size of δη, δξ, δλ get small, change in χ2 gets
small.

Also: must initialize variables
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General Formalism

Errors

covariance matrices:

fit variables
Vη = V

[
I − (G − HUHT )V

]
unmeasured variables

Vξ = U

covariances between fit and unmeasured variables

Vη,ξ = −VHU

where G = FT
η S−1Fη, H = FT

η S−1Fξ, U−1 = FT
ξ S−1Fξ

and S = FT
η VFη
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Diagnostics

Stretch Functions or “Pulls”

How to tell if the thing is working?

look at use these N quantities:

zn =
yn − ηn√

σ2(yn)− σ2(ηn)
n = 1, . . . ,N

Gaussian with mean at 0, σ of 1

If not there are problems:

offset mean: measurements biased
wrong width: errors not correct
tails: non-Gaussian tails in measurements, background in sample
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Diagnostics

stretch function
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Diagnostics

Unmeasured Variables, Number of Constraints

go back to π0 decay

could have introduced unmeasured variables: pπ,x , pπ,y , pπ,z

but then would have to apply 3-momentum conservation

now have 4 constraints with 3 unmeasured variables

used to have 1 constraint with 0 unmeasured variables

same problem recast: 1-C fit

C = K − J, the number of degrees of freedom
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Diagnostics

Check χ2

χ2 should have a standard probablility density distribution: f (χ2)

Convenient to check χ2 probability:

P(χ2
0) =

∫ ∞
χ2

0

f (χ2)dχ2

P runs from 0 to 1

for nominal χ2 distribution P will be uniform

non-uniformity: problem with errors, check the pulls

often see peaks near 0: bad χ2, background in sample
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Diagnostics

χ2 Distribution
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Diagnostics

χ2 Probability Distribution
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Summary

Summary

measured variables, with or without statistical correlation, may have
physical relationships
kinematic fit varies values of measured quantities to satisfy
relationships
minimize χ2 with constraints
improved measurements
diagnostics about bias and errors in measurements are generated
goodness of fit a handle on correctness of physical relationships
assumed

Reference: A. G. Frodesen, O. Skjeggestad, H. Tøfte. Probability and Statistics in Particle
Physics. Universitetsforlaget, 1979. ISBN 82-00-01906-3
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