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Abstract

In this seminar I will make a quick introduction into the Chiral Perturbation theory (ChPT)
and try to explain its basic ideas. I will apply the general principles of ChPT to neutral pion elec-
troproduction on the proton near threshold, show the stucture of the corresponding Lagrangian.
Then I will compare the predictions of the theory to existing measurements and point out the
most evident di�erences between them. In the end I will focus on a particular experiment (E04-
007) at Je�erson Lab, which was designed to extend and re-examine existing measurements, in
particular those from Mainz.
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1 Overture into Quantum Chromodynamics

Strong interaction is a fundamental force between quarks and gluons inside the hadrons. A theory
that describes this interaction is Quantum chromodynamics (QCD) [1, 2, 3] and is an important
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part of the Standard Model of particle physics [4].

QCD introduces six fundamental particles (quarks) and eight interaction particles, called glu-
ons. Their dynamics is controlled by the Lagrangian:

LQCD = qi (iγµ∂µ −m) qi −
1
4
GaµνG

µν
a − gGaµqiγµλaijqj , a = 0 . . . 8 (1)

where qi and G
a
µ are quark and gluon �elds, and λa are the generators of the SU(3) group. The

�rst term in the Lagrangian corresponds to free-quark dynamics, the second part represents the
dynamics of the gluons, while the third part describes the interaction between quarks and gluons.
Regarding the Strong interaction, quarks of di�erent �avors (u,d,s,c,b,t) have identical properties
except for their masses. Quark masses are free parameters in QCD which means that the theory
can be formulated for any value of quark masses. If we restrict the theory only to the light
quarks, QCD can be well approximated with the �ctitious massless quarks only. In this case the
Lagrangian (1) would be symmetric to the exchange of quarks of di�erent �avors. We call this a
Flavor symmetry. In reality, the �avour symmetry is only approximate because the quarks have
di�erent masses.

In the massless limit we can also realize that the left- and right-handed quarks are completley
decoupled:

L
(mi=0)
QCD = qLi (iγµ∂µ) qLi − gGaµqLi γµT aijqLj +

+qRi (iγµ∂µ) qRi − gGaµqRi γµT aijqRj −
1
4
GaµνG

µν
a , (2)

with qL = PLq and qR = PRq, where PL and PR are projection operators [5], and are de�ned as:

PL =
1
2

(1 + γ5) , PR =
1
2

(1− γ5) .

The massless Lagrangian is therefore invariant under separate unitary global transformations of
the left- and right-hand quark �elds, known as the chiral rotations:

q′L = eiεiTi(1−γ5)qL,

q′R = eiδiTi(1+γ5)qL,

L′
(m=0)
QCD (q′L, q

′
R) = L

(m=0)
QCD (qL, qR)

where εi and δi are free parameters of the transformations and Ti are the Gell-Mann matrices
Ti = 1

2λi. This property of QCD is called Chiral symmetry. The chiral symmetry transforma-
tions L,R can be rewritten into a symmetric vector and antisymmetric axial-vector symmetry
transformations:

V ∼ (eiεiTi(1−γ5) + eiδiTi(1+γ5)) = eiφaTa ,

A ∼ (eiεiTi(1−γ5) − eiδiTi(1+γ5)) = eiθaTaγ5 ,

where θi and φi are again transformation parameters. Now we can introduce the Vector and Axial
currents as [2]:

V µ
a =

∂L

∂(∂µφa)
= qγµ

λa
2
q ,

Aµa =
∂L

∂(∂µθa)
= qγµγ5

λa
2
q,
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where a = 0, . . . 8 and λ0 = 1. We get nine vector and nine axial currents. If chiral symmetry
is a good symmetry for a given Lagrangian, than these currents are conserved by virtue of the
Noether's theorem [2]:

∂µV
µ
a = 0, ∂µA

µ
a = 0 .

In QCD these relations are true in the limit of massless quarks. However, we know that quark
masses are not exactly zero. The nonzero quark mass leads to the so-called explicit chiral symme-
try breaking and consequently, the Vector and Axial-vector currents are no longer conserved [3]:

∂µV
µ
a =

1
2
iq [M,λa] q ,

∂µA
µ
a =

1
2
iq {M,λa} γ5q , (3)

M =

 mu 0 0
0 md 0
0 0 ms


However, the consequences of the explicit symmetry violation can still be analyzed systematically
because quark masses are small. We say, that QCD possesses an approximate chiral symmetry.
Let us also mention that QCD is also invariant under the discrete symmetries of parity (P), charge
conjugation (C) and time reversal (T).

Beside symmetries QCD also has some other very interesting properties. Figure 1 shows that
the Strong-coupling constant αs, which is a measure for the strength of the interaction, decreases
with increasing energy µ. This means that in high-energy reactions quarks and gluons inter-
act very weakly. This prediction of the QCD was �rst discovered in the early 1970s by David
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Figure 1: Summary of the values
of αs(µ) at characteristic energies µ
where they are measured. The lines
show the central values and the ±1σ
limits of our average. The �gure
clearly shows the decrease in αs(µ)
with increasing µ. The data are, in in-
creasing order of µ, τ width, Υ decays,
deep inelastic scattering, e+e− event
shapes at 22 GeV from the JADE data,
shapes at TRISTAN at 58 GeV, Z
width, and e+e− event shapes at 135
and 189 GeV [4].

Politzer, Frank Wilczek and David Gross and is known as the Asymptotic freedom. For this dis-
covery these authors were awarded the Nobel prize in 2004. It allows us to employ perturbative
methods to analyze and understand the physical processes. On the other hand, at low energies
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(or equivalently at large distances) the force between quarks becomes stronger and stronger. Be-
cause of that it would take an in�nite amount of energy to separate two quarks and therefore
they are forever bound into hadrons such as proton1. This property of the QCD is known as
con�nement. This low energy regime is beyond the reach of the perturbative theory and demands
a non-perturbative treatment. The necessity to employ approaches for long-distance processes
has encouraged scientists to develop various e�ective �eld theories. One such theory is Chiral
Perturbation Theory.

2 The Chiral Perturbation Theory

Chiral perturbation theory [6] (ChPT) is an e�ective �eld theory constructed of an e�ective
Lagrangian which is consistent with the chiral symmetry of quantum chromodynamics, as well as
with other symmetries. In the ChPT we no longer use quarks and gluons as degrees of freedom.
Instead we write an e�ective Lagrangian with hadrons (protons, pions) as our basic particles. The
purpose of this e�ective Lagrangian method is to represent in a simple way the dynamical content
of a theory in the low energy limit, where e�ects of heavy particles can be incorporated into a
few constants [7]. The main idea in the ChPT is to write a Lagrangian which includes all terms
consistent with the symmetries of the parent theory. In general there is an in�nite number of such
terms, but one hopes that at low energies only few will be relevant. The Lagrangian also contains
unknown parameters, known as low-energy constants (LEC's), which are associated with speci�c
terms in the Lagrangian and must be determined by a numerical �t to various experimental data.
The pion �elds are usually represented in the exponential form [7]:

o
U= e

i
F
φ, φ =

(
π0

√
2π+

√
2π− −π0

)
, F = 132 MeV

The matrix U is used to generate the Lagrangian which is invariant under the chiral SU(2)
transformation:

L =
∑
i

Li = L2 + L4 + L6 + L8 + · · · =

=
F 2

4
Tr

(
∂µ

o
U ∂µ

o
U
†)

+ α1

[
Tr

(
∂µ

o
U ∂µ

o
U
†)]2

+α2Tr

(
∂µ

o
U ∂ν

o
U
†)
· Tr

(
∂µ

o
U ∂ν

o
U
†)

+ . . . . (4)

The terms without derivatives are not included in the Lagrangian, because Tr
(
UU †

)
= 2 is a

constant. The indices i denote the order of a particular term in the Lagrangian. It follows from
the dimensional analysis that the coe�cient before an operator with n derivatives behaves as

1
Mn−4 , where M is a mass scale which depends on the speci�c theory [7]. We also know that each
derivative gives us a factor of q when we calculate the matrix elements. That means, that the
e�ect of an n-derivative vertex is of order:

Ln ∝
qn

Mn−4
= M4

( q
M

)n
Consequently we can write our Lagrangian symbolically as:

L = C2

( q
M

)2
+ C4

( q
M

)4
+ C6

( q
M

)6
+ . . . (5)

This kind of expansion is most commonly used and is known as momentum expansion.

1This is also the reason why we can not detect single quarks. We simply do not have enough energy to separate

them from the hadrons.
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2.1 Pion Electroproduction in the ChPT

In the following we apply the ChPT Lagrangian to the particular process of the electroproduction
of a neutral pion on the proton. In the isospin limit (mp = mn = m0) the Lagrangian to second
order looks like [3]:

L = LFirst Order + LSecond Order + · · · =
= L

(1)
πN + L(2)

ππ︸ ︷︷ ︸
First Order

+ ∆L(0)
πN + ∆L(1)

πN + L
(2)
πN + L

(3)
πN + L(4)

ππ︸ ︷︷ ︸
Second Order

+ . . . (6)

L
(1)
πN = ψ (iγµDµ −m0)ψ +

α0
s

2
ψγµγ5u

µψ (7)

L(2)
ππ =

F 2

4
Tr
[
5µU

† 5µ U +M2
0 (U + U †)

]
∆L(0)

πN = ∆m0

(
m02

2F 2

)
ψψ

∆L(1)
πN = −∆α0

s

(
m02

2F 2

)
ψγ5γµu

µψ

L
(2)
πN = c1

m0

F 2
ψψTr(χ+) + c6

m0

F 2
ψσµνf+

µνψ + c7
m0

F 2
ψσµνTr(f+

µν)ψ + . . .

L
(3)
πN = −b10

1
2F 2

ψγ5γµu
µψTr(χ+) + b11

α0
sm

0

F 2
ψγ5χ−ψ + b12

1
F 2

ψ(iγµDµ −m0)ψTr(χ+)

+d1
F

2
εµναβψγµψTr(uνf+

αβ) + d2
F

2εµναβ
ψγµuνψTr(f+

αβ) + d3Fψγ5iσ
µν
↔
D
α

[uα,f
+
µν ]ψ

+id4Fψγ5γµ[uµ.f+
µν ]ψ +

b9
F 2

ψγµDνf+
µνψ +

b9
F 2

ψγµψTr(Dνf+
µν)

+
αs
12
b13ψγ5γ

µ

(
[Dν , f−µν ] +

i

2
[uν , f+

µν ]
)
ψ + . . .

L(4)
ππ =

l3
16
Tr(χ2

+) +
l4
16

{
2Tr(5µU 5µ −U †)Tr(χ+)2 + 2Tr(χ† + Uχ†U + χU †χU †)

−4Tr(χ†χ)− Tr(χ−)2
}

+ i
l6
2
Tr([uµ, uν ]f+

µν) + . . .

where

f±µν = e(∂µAν − ∂ν∂µ)(uQu† ± u†Qu),

ψA
↔
D
α
Bψ = ψA(∂α + Γα)Bψ − ψA(

←
∂
α
−Γα)Bψ , A,B− free parameters

χ = 2B0M ,

M =

 mu 0 0
0 md 0
0 0 ms


〈0|uu|0〉 = 〈|dd|〉 = −F 2B0

with B0 beeing a free parameter. The tree level Lagrangian LFirst Order depends on the nucleon
mass (m0), the axial vector coupling constant g0

A and the pion decay constant F . The second-order
part LSecond Order of the Lagrangian depends on parameters ci, bi, di, and li which are a priori
unknown. We have already mentioned in section 2 that we call these parameters Low-Energy
Constants. Some of them absorb the divergencies induced by the pion loops and renormalize the
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values of di�erent parameters:(
M,F, g0

A,m
0
)
−→ (Mπ, Fπ, gA,m) ,

while parameters that remain unhandled have to be estimated experimentally [8]. The superscript
in (6) denotes the energy dimension in terms of order qi (see equation (5)) of each term. The
spinor ψ describes the proton and neutron �elds, the four-vector Aµ represents the photon �eld,
while the pion �elds are described by the matrix-valued function U , which can be written as [3]:

U = u2 = σ + i
φ

F
, σ2 +

φ2

F 2
= 1, (8)

φ =
(

π0
√

2π−√
2π+ −π0

)
, Q =

(
1 0
0 0

)
5µU = ∂µU − ieAµ[Q,U ] (9)

Dµψ = ∂µψ + Γµψ, (10)

Γµ =
1
2

{
u†(∂µ − ieAµQ)u+ u(∂µ − ieAµQ)u†

}
(11)

uµ = iu† 5µ Uu
†, χ± = u†χu† ± uχ†u,

The expression (6) represents the efective Lagrangian for the electromproduction of any pion
(π+, π−, π0) o� any nucleon (p, n). Let us now restrict the discussion to the production of π0

o� a proton. In this case U in (8) becomes diagonal and consequently [Q,U ] = 0. This means
that the photon can not interact directly with the π0 because the interaction term in equation 9
is always zero. However, the photon can interact with the proton through (11) in expression
(10). The interaction of a proton and a π0 is described by the second term in (7). We can use
these �ndings and visualize the leading Feynnman graph for the reaction p(e, e′p)π0. As shown
in �gure 2, the proton �rst absrobs a virtual photon emitted by the scattered electron and after
a while the proton gives away this excessive energy in a form of a neutral pion.

Figure 2: The leading Feynnman graph for the production
of the π0. Virtial photon gives energy to the proton which
after a while emits a neutral pion.

6



Since the formalism described above is based on very general symmetry properties of QCD, the
amplitudes derived from this Lagrangian are expected to describe all processes involving photons
nucleons and pions at low energies very accurately. Now that we have determined the ChPT
Lagrangian for π0 electroproduction we have to derive the cross-section [2] from it and try to
compare the theory to measurements.

3 The Measurements and Their problems

3.1 Kinematics

Figure 3: The kinematics variables for a electroproduction experiment in the one-photon exchange approxi-
mation.

In pion electroproduction experiments the electrons are scattered o� the protons in the Hy-
drogen target (see �gure 3). In the one-photon exhange approximation the electron interacts with
the protons with a well-de�ned energy and momentum transfer. The four-momentum vector of
the exchanged photon is �xed by the four-momenta of the incident and outgoing electrons:

ki =
(
εi,~ki

)
, kf =

(
εf ,~kf

)
, q = (ω, ~q) = ki − kf .

The kinematics of a nucleon target (proton) in the initial state is described by Pi = (Ei, ~Pi). After
the reaction the recoiled proton has a momentum Pf = (Ef , ~Pf ) and emitted pion carries the

momentum k = (ωπ,~k). Due to momentum conservation there are three independent momenta
at the hadronic vertex (q, Pi, k). Because all reaction products are on-shell (P 2

f = m2
f and

k2 = m2
π ) there are three independent scalars that can be set to various values. We have chosen

the following Mandelstain scalars [9]:

Q2, s = W 2 = (Pi + q)2, u = (Pi − k)2 .

The threshold laboratory energy ωL for the production of a neutral pion π0 with mass mπ =
134.98 MeV is obtained by evaluating the variable s in the laboratory and in the centre-of-mass
(CMS) frame [9]:

ωThresholdL

(
Q2
)

=
(mf +mπ)2 −m2

i +Q2

2mi
.
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For the reaction at Q2 = 0 this gives us:

ωThresholdL (0) =
(938.27 + 134.98)2 − 938.27 + 0

2938.27
MeV = 144.69 MeV .

3.2 Cross-section

The di�erential cross-section for an exclusive process of a pion electroproduction can be witten
as [9]:

dσ =
εi
ki

m2
e

εiεf

MiMf

EiEf

1
2ωπ

d3kf
(2π)3

d3k

(2π)3

d3Pf
(2π)3

(2π)4δ(4)(Pi + q − k − Pf )
∣∣∣∣〈Pf , k|Jµ|Pi〉 1

q2
〈kf |jµ|ki〉

∣∣∣∣2 ,(12)
where all kinematical variables are de�ned in �gure 3. In this cross-section we have considered
only the 1

q2
electromagnetic interaction, where jµ is the electron current and Jµ the current of

the hadronic system. The current of the electron can be exactly written in terms of Dirac spinors
u(k) and Dirac matrices γµ as [5]:

jµ = −eu(k′)γµu(k)ei(k
′−k)·x

On the other hand the current of the hadronic system has a more complex form. This is due to
the fact that the proton has an extended structure and that in the �nal state we get two hadrons:
the pion and the proton. Therefore we write a most general form of a transition current between
the initial and �nal nucleon states which re�ects the negative parity of the pion [9]:

Jµ = ψ(p′)
{[
A

(
γµ − (γ · q

q2
)qµ

)
+B

1
2

(Pi + Pf ) + Ckµ

]
γ5

+
[
D

(
γµ − (γ · q

q2
)qµ

)
+ E

1
2

(Pi + Pf ) + Fkµ

]
γ5/q

}
ψ(p) (13)

We de�ne two independent unit vectors k̂ = ~k
k and q̂ = ~q

q , that specify the reaction plane (see
�gure 4) in the center-of-mass system.

When the usual forms of the Dirac matrices and spinors are inserted, the current operator Ĵµ

can be rewritten in the following form [9]:

Ĵµ = (ρ̂, ~̂J)

~̂J =
4πW
m

[
i (~σ − (~σ · q̂)q̂)F1 + (~σ · k̂)(σ × q̂)F2 + ik̂(~σ · q̂)F3

+ ik̂(~σ · k̂)F4 + iq̂(~σ · q̂)F5 + iq̂(~σ · k̂)F6

]
(14)

ρ̂ =
~q · ~̂J
ω

In (14) six so-called structure functions F1, F2, F3, F4, F5, F6 appear instead of parameters A, B,
C, D, E and F in (13). These structure functions are the generalizations of form-factors in the
Rosenbluth formula [5] for elastic electon scattering of a proton but for the more complex process
of pion electroproduction. From a more detailed analysis of a structure of each term in (14)
it follows [10] that the F1, F2, F3 and F4 describe the transverse current while the longitudinal
component is given by F5 and F6.
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Figure 4: The kinematics for a typical
coincidence experiment, leading to an
out-of-plane production of a pion [9].

The structure functions depend on three parameters kinematical quantities Q2, θCM , W and
can be expanded in terms of the Legendre polynomials Pl:

F1 =
∑
i≥0

{
(lMl+ + El+)P ′l+1 + [(l + 1)Ml− + El−]P ′l−1

}
F2 =

∑
l≥1

[(l + 1)Ml+ + lMl−]P ′l

F3 =
∑
l≥1

[
(El+ −Ml+)P ′′l+1 + (El− +Ml−)P ′′l−1

]
F4 =

∑
l≥2

(Ml+ − El+ −Ml− − El−)P ′′l (15)

F5 =
∑
l≥0

[
(l + 1)Ll+P ′l+1 − lLl−P ′l−1

]
F6 =

∑
l≥1

[lLl− − (l + 1)Ll+]P ′l

The Legendre polynomials depend on the polar angle of the pion θCMπ . The physics of the
process is captured in the coe�cients of this polynomial expansion, the so-called pion production
multipoles Ml± (magnetic multipole), El± (electric multipole) and Ll± (longitudinal mulitpole).
Each multipole tells us about the interaction of a particular angular momentum component of a
virtual photon with the hadron system. Multipoles are functions of both energyW and momentum
transfer Q2. The multipoles with l = 0 are called s-wave multipoles, those with l = 1 are called
p-wave multipoles, etc. The way these multipoles depend on Q2 andW is to be determined by the
experiment. The threshold behaviour of all multipoles can be derived from elementary analyticity
properties [10], and have the following dependence on the |q = ~q| and |k = ~k|:

El+ ∼ qlkl, Ll+ ∼ qlkl, l ≥ 0,

Ml+ ∼ qlkl, Ml− ∼ qlkl, l ≥ 1, (16)

El− ∼ ql−2kl, Ll− ∼ ql−2kl, l ≥ 2,

The unpolarized coincidence cross-section for the pion electroproduction in the one photon ex-
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change approximation has the form [9, 11]:

dσ

dΩfdεfdΩπ
= Γ

(
dσT
dΩπ

+ εL
dσL
dΩπ

+ [2εL(1 + ε)]
1
2
dσTL
dΩπ

cosφπ + ε
dσTT
dΩπ

cos 1φπ

)
, (17)

ε =
1

1 + 2 ~q2

Q2 tan2 1
2θe

, εL = ε
Q2

ω2
,

Γ =
α

2π2

εf
εi

(W 2 −m2
i )

2miQ2

1
1− ε

where Γ represents the virtual photon �ux, ω∗ is the photon energy and ε the transverse polar-
ization. θπ and φπ are angles relative to the momentum transfer ~q given in the CMS-frame, and
~q and θe must be evaluated in the laboratory frame. The �rst two terms in the (17) are refered to
as the transverse (T) and longitudinal (L) cross-section and they do not depend on the azimutal
angle φπ. The third and fourth term describe the tansverse-longitudinal interference (TL) and a
transverse-transverse interference (TT) which both depend on angle φπ. All cross-sections (

dσi
dΩ )

can be expressed in terms of structure functions (15). The longitudinal and transversal term, for
example, can be after integration expressed as:

σT =
∫

dσT
dΩπ

dΩπ =

= 2π
|~k|
kCMγ

∞∑
l=0

(l + 1)2
[
(l + 2)

(
|El+|2 + |M(l+1)−|2

)
+ l
(
|Ml+|2 + |E(l+1)−|2

)]
σL =

∫
dσL
dΩπ

dΩπ = 2π
|~k|
kCMγ

∞∑
l=0

(l + 1)3
(
|Ll+|2 + |Ll−|2

)
3.3 Current Results and their problems

There has been a considerable e�ort in the investigation of the electroproduction of neutral pions
near the threshold [12]. Measurements of the lowest contributing multipole (E0+) were made at
Mainz. From �gure 5 we see, that they agree well with the ChPT. These measurements are pos-
sible because near the threshold neutral pion production cross-section is dominated by the s-wave
amplitudes E0+ and L0+. From (16) can be seen, that at the threshold these multipoles are all
that survives. All other multipoles are zero. On the other hand, high precision measurements

Figure 5: The results for the real
part of the amplitude E0+ around the
threshold for the pion electroproduc-
tion. Data points represented with
squares are from Mainz, and with cir-
cles from NIKHEF [13].

of electroproduction at Q2 = 0.10 [GeV]2 [13] and 0.05 [GeV]2 [11] tell a di�erent story. ChPT
calculations were �t to the Q2 = 0.10 [GeV]2 data to determine the low energy constants (LEC's).
When they have compared these results to the ChPT predictions of the 0.05 [GeV]2 data, they
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discovered a big di�erence between these two. Discrepencies were observed both at threshold and
at higher values of W [12].

Figure 6 shows the existing high-precision measurements of the total cross-section for the π0

production as a function of ∆W and Q2. The solid line in these graphs represents the ChPT
calculations. We can clearly see a striking di�erence between the calculation and the precise
data from Mainz. Figure 7 shows how the L0+ amplitude depends on the ∆W . Again we can
see that the ChPT calculation does not provide a good representation of the data. Discrep-

Figure 6: The total cross-
section σtot versus Q2, at
a value of ε = 0.8. The
solid line is the prediction
of ChPT. [11].

Figure 7: The results for the real
part of the amplitude L0+ around the
threshold for the pion electroproduc-
tion. Data points represented with
squares are from Mainz [13], and with
circles from NIKHEF.

ancies are also observed between the measured di�erential longitudinal-transverse cross-section
at Q2 = 0.05 [GeV]2 for di�erent energies ∆W above the threshold and the predictions of the
ChPT (see �gure 8). It is evident that the di�erences get worse as ∆W increases. There appear
to be many di�erences between the measured data and the predictions of the chiral perturbation
theory, which at present, are unresolved. If these issues remain unsolved, they will constitute
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Figure 8: Di�er-
ential longitudinal-
transverse cross-section
for Q2 = 0.05 [GeV]2 and
di�erent ∆W determined
by e-vertex. The solid lines
represent the results of
ChPT, for which LEC's
were derived from measure-
ments at Q2 = 0.10 [GeV]2.
Large discrepancies which
increase with ∆W are
observed [12].

a serious threat to the viability of the ChPT as a useful theory of dynamical processes. Such a
result would be very problematical as ChPT is �rmly grounded in the basic properties of the QCD.

There are several possible options which could resolve these discrepancies. Maybe it is neces-
sary to include a signi�cantly larger number of terms in the Chiral expansion, thereby increasing
the number of LEC's to be determined empirically from the Q2 = 0.10 [GeV]2 data. If new,
precise data at 0.05 [GeV]2 would be used to determine the LEC's and the resulting calculation
would reproduce the evaluation of the data in region around 0.05 [GeV]2 but would fail when
approaching to 0.10 [GeV]2, than this would be a favored explanation. Another possibility is that
one or more data points are incorrect. This question can only ne answered by obtaining new, high
statistics data. In the region near the threshold only S-wave and P-wave multipole amplitudes are
signi�cant. The contibution of S-waves is approximately constant near the threshold, while the
contribution of the P-wavs increases with the energy above threshold. Since we know from �gure 8
that dicrepancy between ChPT and measured data rises with the Q2 this would suggest a serious
problem with P-waves. To obtain a better understanding of the S- and P-wave contributions to
the cross-section, it is again necessary to gather more precise data in the threshold region. It is
also possible that there is something basically wrong with the formulation of the Chiral pertur-
bation theory. If experimental results can be reconciled and still can not be reproduced by the
theory, than this would also be a possible explanation.
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4 New Threshold π0 Experiment at JLab

In order to resolve the discrepancies and questions decribed in section 3.3 the scientists at the
Thomas Je�erson National Accelerator Facility have decided to perform a high precision mea-
surement of the reaction p(e, e′p)π0 near threshold [12] on a �ne grid of Q2 and ∆W . With
these measurements they will be able to to extend and re-examine existing measurements of elec-
troproduction near threshold, in particular those from Mainz [13, 11] and provide a strong test
of chiral QCD dynamics. The experiment was performed by the Hall A Collaboration using a
high-resolution spectrometers (HRS) in coincidence with the BigBite spectrometer.

4.1 Hall-A Collaboration

The Continuous Electron Beam Accelerator Facility (CEBAF) at Je�erson Lab (see �gure 9) was
built to investigate the structure of nuclei and hadrons in the region below the high-energy regime
at intermediate energies and the underlying fundamental interactions. CEBAF's 6 GeV, polar-
ized continuous wave electron beam is an ideal probe for the study of non-perturbative QCD. The
beam is delivered independently to JLab's three experimental Halls A, B and C. All Halls can
simultaneously receive the maximum energy beam.

a.) b.)

Figure 9: a.) An image of the TJNAF center. The three small hills conceal the three underground experimen-
tal halls. b.) The schematic view of the CEBAF accelerator complex. The electron beam from the accelerator
is delivered to three experimental halls A, B and C.

The instrumentation in Hall A [14] was designed to study electro- and photo-induced reactions
at very high luminosity and good momentum and angular resolution. The research program is
aimed at a variety of subjects, including nucleon form factors, nucleon electromagnetic and spin
structure fuctions, and properties of the nuclear medium. The central components of Hall A
are two high-resolution spectrometers HRS-L and HRS-R (see �gure 10). They consist of three
quadrupole and a dipole superconducting magnets in the QQDQ magnet con�guration. With
carefull planning and engineering they have achieved a high momentum resolution at 1 × 10−4

level over the 0.8 to 4.0 GeV/c momentum range, a large acceptance in both angle and momen-
tum, good position and angular resolution in the scattering plane, an extended target acceptance
and a large angular range. For the exact characteristics of spectrometers see table 1. Beside
the HRS spectrometers there is also a BigBite spectrometer [15]. The spectrometer consists of a
single normal-conducting dipole magnet and combines a large solid angle with a large momentum
acceptance (see table 1).
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a.) b.)

c.) d.)

Figure 10: a.)Spectrometer layout in Hall-A. There are three spectrometers: Two high resolution spectrome-
ters HRS-L, HRS-R and a large-acceptance spectrometer BigBite. All three spectrometers can be positioned
at various scattering angles. b.) The BigBite spectrometer during the p(e, e′p)π0 experiment. c.) and d.)
The HRS-L spectrometer. The optical length of this spectrometer is 23.4 m.

4.2 The experimental setup

The intent of the Threshold Pi0 experiment (E04-007) has been to study thep(e, e′p)π0 reaction
in the range of 0.04 [GeV]2 ≤ Q2 ≤ 0.14 [GeV]2 and 0 MeV ≤ ∆W ≤ 20 MeV. We have used
BigBite spectrometer to detect the protons and the HRS-L to detect the electrons. The high
resolution of the electron spectrometer allowed a precise determination of the invariant mass W
and the three momentum transfer ~q. On the other hand, the large acceptance and momentum
range of BigBite permitted a large fraction of the cone of forward-emitted protons along ~q to be
detected simultaneously. As a target we have used a 10 cm-long and 2 cm-wide liquid hydrogen
cell with thin Havar windows and walls. The HRS-R spectrometer was used as a single-arm
electron detector to monitor the luminosity throughout the experiment.

4.3 Current Results

The experiment E04-007 was running in April and May 2008. Since then the data analysis
is underway. The data analysis is at the moment focused on the calibration of the BigBite
spectrometer. In this experiment a new set of detectors has been used for this spectrometer and
because of these modi�cations its optic properties have changed. Figure 11 shows the missing
mass peak (which should be centered at the pion mass) after �rst and second iterations of the
calibration. We expect to have the �rst preliminary results on the measured cross-sections analysis
by early 2009.
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Main design characteristics of HRS's [14]
Con�guration QQDQ
Momentum range 0.3− 4.0 GeV/c

Momentum acceptance −4.5% ≤ δp
p
≤ 4.5%

Momentum resolution 1× 10−4

Angular acceptance
Horizontal ±30 mrad
Vertical ±60 mrad

Angular resolution
Horizontal 0.5 mrad
Vertical 1.0 mrad

Main design characteristics of BigBite [15]
Con�guration Dipole
Momentum range 200− 900 MeV/c

Momentum acceptance −0.6 ≤ δp
p
≤ 0.8

Momentum resolution 4× 10−3

Angular acceptance ≈ 100 msr
Angular resolution ≈ 1 msr

Table 1: Main design characteristics of the Hall-A high resolution spectrometers HRS and new BigBite
spectrometer.

Figure 11: Graph shows the missing
mass peak in the Threshold Pi0 experiment
which corresponds to the mass of the pion:
M2
miss = (ω − Tp)2 − (~q − ~pp)2, where Tp is

the kinetic energy of the proton and pp is its
momentum.

5 Conclusion

Nuclear reactions in the low-energy limit are very hard to describe. Strong interactions between
quarks inside hadrons can not be approximated with one- or two-gluon exchange like at high
energies. Many gluons are exchanged in each reaction and that makes these processes impossible to
describe in terms of perturbative QCD. Suitable phenomenological models are needed to describe
the reactions at low energies. These approaches are �rmly grounded in the symmetries of QCD.
Any dissagrement between the theory and the measurements would pose a fundamental problem.
Current measurements are showing such dissagrements but they are very inconclusive. There are
many possible explanations why the theory and the measured data are inconsistent. Therefore
it is of great importance to make new and more precise measurements near the threshold, like
these in JLab, and try to resolve the discrepency between the two. Hopefuly we will learn the
true answer in the next few years.
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