BigBite Optics

Miha Mihovilovic For the E05-102 Collaboration

13. december 2009

Miha Mihovilovic For the E05-102 Collaboration

BigBite Optics

BigBite Spectrometer General Description

BigBite characteristics					
Configuration	Dipole	-			
Momentum range	$200 - 900 \frac{MeV}{c}$				
Momentum acceptance	$-0.6 \leq \frac{\delta p}{p} \leq 0.8$				
Momentum resolution	$4 imes 10^{-3}$				
Angular acceptance	pprox 100 msr				
Angular resolution	$pprox 1 \ { m mr}$	Canal 1			
Flight path (during $(e, e'd)$)	$\approx 3 \text{ m}$	1			
Maximum Field	0.92 T				

BigBite Hadron detector package

- Two MWDCs for tracking
- Each MWDC consists of 6 wire planes u,u',v,v',x,x'
- Two Scintillation planes E/dE for particle Identification & Energy determination

The main purpose of the optics calibration is to determine the target variables $(y_{Tg}, \phi_{Tg}, \theta_{Tg}, \delta_{Tg})$ from the focal plane variables $(x_{Fp}, \theta_{Fp}, y_{Fp}, \phi_{Fp})$. There are many different ways to do that:

- O Different Analytical Approximations
 - THaOpticsAnalytical, THaVertexTime Circular arc approximation
 - THaOpticsAGen Effective-midplane approximation
- Pransport matrix formalism
 - THaOpticsHRS

$$\begin{pmatrix} \delta_{Tg} \\ \theta_{Tg} \\ y_{Tg} \\ \phi_{Tg} \end{pmatrix} = \begin{pmatrix} \langle \delta_{Tg} | x_{Fp} \rangle & \langle \delta_{Tg} | \theta_{Fp} \rangle & \cdots & \cdots \\ \langle \theta_{Tg} | x_{Fp} \rangle & \langle \theta_{Tg} | \theta_{Fp} \rangle & \cdots & \cdots \\ \cdots & \cdots & \langle y_{Tg} | y_{Fp} \rangle & \langle y_{Tg} | \phi_{Fp} \rangle \\ \cdots & \cdots & \langle \phi_{Tg} | y_{Fp} \rangle & \langle \phi_{Tg} | \phi_{Fp} \rangle \end{pmatrix} \begin{pmatrix} x_{Fp} \\ \theta_{Fp} \\ y_{Fp} \\ \phi_{Fp} \end{pmatrix} + \cdots$$

Analytical Model THaVertexTime Pros & Cons

Transport Matrix Approach The Standard Approach

• For BigBite the same matrix structure as for the HRS is being used.

$$\{\delta_{Tg}, \theta_{Tg}, \phi_{Tg}, y_{Tg}\} = \sum_{i,j,k} \theta_{Fp}^{i} y_{Fp}^{j} \phi_{Fp}^{k} \sum_{z=0}^{7} a_{z} x_{Fp}^{z}$$

Until now the matrix elements were determined by a semi/automatic method. Various scatter plots were used to determine how target variables depend on the focal-plane variables. So far we considered only two-variable dependencies.

$$\begin{aligned} \delta_{Tg} &= \delta_{Tg}(x_{Fp}, \theta_{Fp}), \qquad \theta_{Tg} = \theta_{Tg}(x_{Fp}, \theta_{Fp}) \\ y_{Tg} &= y_{Tg}(y_{Fp}, \phi_{Fp}), \qquad \phi_{Tg} = \phi_{Tg}(y_{Fp}, \phi_{Fp}) \end{aligned}$$

At the moment the second iteration of the matrix element determination is being done.

δ_{Tg} and y_{Tg} Matrix Elements

These matrix elements work reasonably well.

ϕ_{Tg} Matrix Elements

Not determined yet. Using assumption that BigBite is an ideal dipole: ϕ_{Tg} should be equal to ϕ_{Fp} . In this approximation $\langle \phi_{Tg} | \phi_{Fp} \rangle = 1$.

θ_{Tg} Matrix Elements

We have only poor 1^{st} order approximation for θ_{Tg} .

[matrix]						
D 0	0	0	-0.0062	-0.9545	1.1391	0.0000
D 1	0	0	3.3909	-7.6819	7.7660	0.0000
D 2	0	0	11.7304	-19.2305	21.1691	0.0000
DЗ	0	0	14.3041	-8.6769	3.5387	0.0000
Τ Ο	0	0	0.0106	-0.4968	-0.1145	0.0000
Τ1	0	0	0.4910	0.1213	-0.4243	0.0000
Ρ0	0	1	1.0000	0.0000	0.0000	0.0000
ΥO	0	0	-0.0321	0.0000	0.0000	0.0000
ΥO	1	0	-1.0241	0.0000	0.0000	0.0000
ΥO	2	0	-0.4919	0.0000	0.0000	0.0000
ΥO	0	1	2.8075	0.0000	0.0000	0.0000
ΥO	1	1	0.7202	0.0000	0.0000	0.0000
ΥO	2	1	-0.7153	0.0000	0.0000	0.0000

Sieve slit #1First reconstruction

BigBite Sieve Slit

- A $3.5\,\mathrm{cm}$ sieve during (e,e'd)
- Most of the holes already visible
- Some are out of the acceptance (covered by Helmholtz coils)

Miha Mihovilovic For the E05-102 Collaboration

BigBite Optics

Sieve slit #2A lot of work still needs to be done

Miha Mihovilovic For the E05-102 Collaboration BigBite Optics

Miha Mihovilovic For the E05-102 Collaboration BigBite Optics

Used carbon runs because with these runs we cover a larger portion of the BigBite Focal plane.

Step No.1

First determine how y_{Tg} depends on ϕ_{Fp} for different values of y_{Fp} . For each narrow cut on y_{Fp} we can find:

$$y_{Tg}(\phi_{Fp}) = c_1(y_{Fp})\phi_{Fp} + c_0(y_{Fp})$$

Step No.2

Determine how c_i depend on y_{Fp} :

$$c_i(y_{Fp}) = d_{i2}y_{Fp}^2 + d_{i1}x_{Fp} + d_{i3}$$

Results

Parameters d_{ij} are matrix elements for y_{Tg} .

Miha Mihovilovic For the E05-102 Collaboration

y_{Tg} reconstruction results #1

イロト イポト イヨト 小臣

Miha Mihovilovic For the E05-102 Collaboration BigBite Optics

) Q (

3

< ロ > < 同 > < 三 > < 三 > 、

Step No.1

First determine how δ_{Tg} depends on θ_{Fp} for different values of x_{Fp} . For each narrow cut on x_{Fp} seek for a polynomial:

$$\delta_{Tg}(\theta_{Fp}) = a_3(x_{Fp})\theta_{Fp}^3 + a_2(x_{Fp})\theta_{Fp}^2 + a_1(x_{Fp})\theta_{Fp} + a_0x_{Fp})$$

Step No.2

Determine how a_i depend on x_{Fp} :

$$a_i(x_{Fp}) = b_{i2}x_{Fp}^2 + b_{i1}x_{Fp} + b_{i3}$$

Results

Parameters b_{ii} are matrix elements for δ_{Tg} .

Miha Mihovilovic For the E05-102 Collaboration

Deuteron Selection

• For the calibration 1^{st} - and 2^{nd} -pass H runs and 2^{nd} -pass ${}^{2}H$ runs at different $p_{central}^{BB} = 0.37 \, {\rm GeV/c}$ and $0.5 \, {\rm GeV/c}$ were used. For these runs $\vec{q} = \vec{p}_{proton}^{BB}$.

Problem

How to isolate deuterons from protons in ${}^{2}H$ runs?

• Cuts on the dE/E plots: Calculating distance from the main band and selecting the events on the positive side.

$\delta_{\rm Tg}$ reconstruction results $_{\rm Hydrogen\ Results}$

Results

Matrix seem to be working reasonably well in the wide momentum region between 300 $\rm MeV/c$ and 600 $\rm MeV/c.$

Miha Mihovilovic For the E05-102 Collaboration BigBite Optics

$\delta_{\rm Tg}$ reconstruction results $_{\rm Deuteron\ Results}$

Results

Matrix works for both momentum settings of the BigBite.

Miha Mihovilovic For the E05-102 Collaboration

BigBite Optics

200

dE/E as alternative momentum reconstruction Background

• ADC signals from the dE and E planes can be used for particle ID as well as for the estimation of the particle momentum using the Bethe-Bloch equation:

$$\left(rac{dE}{ds}
ight)_{Bethe-Bloch} \propto rac{Zz^2}{A}
ho rac{1}{eta^2}[1+\cdots]$$

• Since plastic scintillators are used, Birks formula needs to be considered for the Light output of the scintillators:

$$\left(\frac{dL}{ds}\right)_{Mean} = A \frac{\left(\frac{dE}{ds}\right)}{1 + k_{Birks} \left(\frac{dE}{ds}\right)}$$

 Adjusting A_{dE}, A_E and k_{Birks} we can fit a theoretical curve to our data. In this way we can estimate the momentum of the events at different regions of the dE/E plots.

Exact calculations of momenta is impossible due to straggling, path-length distribution, etc.

dE/E as alternative momentum reconstruction A good example

• Elastic Hydrogen run #3488 at $E_b = 2 \text{ GeV}$, $p_p \approx 450 \frac{\text{MeV}}{c}$:

For a rough approximation,the method seems to work reasonably well for this example: $\frac{\vec{p}-\vec{q}}{q} \approx +7 \%$, $\sigma_{\vec{p}-\vec{q}} \approx 19 \frac{\text{MeV}}{\text{c}}$

dE/E as alternative momentum reconstruction A bad example

• Elastic Hydrogen run #1518 at $E_b = 1 \text{ GeV}$, $p_p \approx 340 \frac{\text{MeV}}{c}$:

Problem

Near the punch-through point all points correspond to the same mean energy-loss i.e. to the same momentum. Consequently an artificial sharp peak appears at the P.T.P.

Conclusion and Outlook

Conclusions

- Problems with Analytical model Work in progress.
- First attempts to determine the matrix elements look promising.
- We can already see a sieve slit.
- Resolution is not yet good enough.

To-Do

- Try to make analytical model work.
- Determine matrix elements for ϕ_{Tg} and θ_{Tg} .
- Find higher-order terms for all target variables and consider more than two-variable dependence and increase the resolution.
- Incorporate particle Energy-losses.
- Include path length into the matrix.

Thank You! The End

Collaborator List for the Quasi-Elastic Family of Experiments (E05-0015, E05-102, E08-005)

	Run Coordinators:	D. Flav
Spokespersons:	A. Camsonne P. Monaghan S. Riordan	F. Garibaldi H. Gao R. Gilman
T. Averett J. P. Chen S. Gilad D. Higinbotham X. Jiang W. Korsch B. E. Navum	B. Sawatzky R. Subedi V. Sulkosky Y. Qiang B. Zhao	S. Golge O. Hansen T. Holmstron J. Huang H. Ibrahim E. Jensen M. Jones
S. Širca	Collaboration:	H. Kang J. Katich
V. Sulkosky	K. Allada B. Anderson J. R. M. Annand	C. W. Kees P. King J. LeRose
Graduate Students:	W. Boeglin	R. Lindgren
G. Jin E. Long M. Mihovilovič Y. Zhang	P. Bradšhaw M. Canan C. Chen R. De Leo X. Deng A. Deur C. Dutta L. El Fassi	H. Lu W. Luo P. Markowitz M. Meziane R. Michaels B. Moffit N. Muangma H. P. Khanal

K. Pan D Parno E. Piasetzky P. Pradshaw M. Posik A I R Puckett X. Qian X. Qui A Saha E Salvatore M. Shabestari A. Shahinvan B Shoenrock J. St. John A. Tobias W Tireman G. M. Urciuoli D. Wang K. Wang I Watson B. Wojtsekhowski 7 Ye X Zhan X. Zheng L. Zhu

3 × < 3 ×

э

Miha Mihovilovic For the E05-102 Collaboration