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1. Introduction

One of the recent acquisitions in the experimental Hall A of the Thomas Jefferson

National Accelerator Facility (TJNAF) is the BigBite spectrometer. This device was

previously used at the NIKHEF facility as the electron spectrometer [1, 2]. At Jefferson

Lab, BigBite has recently been re-implemented as a versatile large-acceptance spectrom-

eter that could be outfitted with various detector packages depending on the particular

requirements of the experiments. The spectrometer is an addition to the High-Resolution

Spectrometers (HRS-L and HRS-R) that are the standard equipment of Hall A [3], allow-

ing for more flexible experimental setups involving double- and even triple-coincidence

measurements.

BigBite has been used in two large groups of experiments that were performed in

2008 and 2009, and were dealing with a broad range of physics topics. Among others, we

studied neutral pion production on protons close to threshold (experiment E04-007 [4]);

measured single-spin asymmetries in semi-inclusive pion electro-production on polarized

3He (experiments E06-010 and E06-011 [5, 6]); determined the parallel and perpendicular

asymmetries on polarized 3He in order to extract the gn
2 structure function in the deep-

inelastic regime (experiment E06-014 [7]); and measured the double-polarization asym-

metries A′
x and A′

z in the quasi-elastic processes He(e, e′d), He(e, e′p), and He(e, e′n)

(experiment E05-102 [8]). This paper describes the optical calibration of the BigBite

spectrometer with the detector package configured for the detection of hadrons, as it has

been used in the E05-102 experiment.
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2. Experimental details

Experiment E05-102 was performed in Hall-A [3] at Thomas Jefferson National Ac-

celerator Facility. In the experiment a polarized 3He target was used in conjuction with

a polarized continuum electron beam. Scattered electrons ware detected with the High

Resolution Spectrometer (HRS-L) in coincidence with protons and deuterons detected by

the large-acceptance spectrometer BigBite. Beside the helium target, carbon target and

gasous hydrogen and deuterium targets were used for calibration. Various kinematical

settings were considered, with momentum-transfer vector ~q pointing in the direction of

BigBite. This way elastic and quasi-elastic protons and deuterons were within the Big-

Bite acceptance. For a 1.245 GeV running, HRS-L was positioned at 17◦ and BigBite at

−74◦ with respect to the direction of the incomming electron beam. Afterwards, BigBite

was moved to −75◦ for the experiments with 2.425 GeV and 3.606 GeV electrons. HRS-L

was then at 14.5◦ and at 12.5◦.

3. BigBite Spectrometer

BigBite is a non-focusing spectrometer with large momentum and angular accep-

tance [1]. It consists of a single normal-conducting clam-shell dipole magnet. For a mean

field density of 0.92 T, a 518 A current is used. This corresponds to a central momentum

of 500 MeV/c and bending angle of 25 deg. The magnet is followed by the hadron de-

tector package, which consists of two Multi-Wire-Drift-Chambers (MWDC) for tracking

and two planes of scintillation detectors for triggering, particle identification and energy

determination. Each MWDC consists of six wire-planes. Wires in first two planes are

positioned horizontaly, while the wires in the third and fourth plane are oriented at angle

30 deg with respect to the horizontal line. Wires of the last two planes are oriented at

−30 deg. Wire-planes in first MWDC contain 141 wires. Second MWDC is bigger and

consists of 200 wires per wire-plane. Wires in both planes are 1 cm apart. Trigger planes

dE and E are built of 24 bars, made of EJ-204 plastic scintillator. Each bar is 50 cm long

and 8.6 cm wide. For the dE-plane thin, 0.3 cm, bars were used, to detect low energy

particles, while for E-plane thicker 3 cm bars were considered for detection of more ener-

getic particles. Signal from each bar is detected with two XP2262 photomultiplier tubes,
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Figure 1: BigBite Spectrometer with the hadron detector package mounted on a supprot frame

mounted on both ends of a bar. To double spacial and momentum resolution, E-plane is

shifted for half of a paddle with respect to the dE-plane.

4. Optical calibration

The purpose of optical calibration is to determine target variables, that have phys-

ical meaning from the detector variables, that are measured directly. In BigBite two

position coordinates xDet and yDet and two angles θDet and φDet are measured. From

this information vertex position yTg, in-plane and out-of-plane scattering angles, φTg

and θTg, and a relative particle momentum δTg are reconstructed. This can be done in

many ways. For BigBite analytical model was considered, followed by more sophisticated

transport-matrix-formalism approach.

4.1. Analytical model

Analytical model served as a starting point for BigBite optics. Due its simplicity it

could be quickly implemented, tested and used on experimental data to get first estima-

tion of the experimental results. In BigBite magnet field is oriented in yTg direction (see

Fig. 2). According to [1], BigBite has almost constant field-density inside the magnet,

accompanied by fringe-fields on the edges, which are falling exponentially, when moving

away from the magnet. In the analytical model, true field was approximated by a con-

stant magnetic field within the effective field boundaries and neglecting any edge effects.
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Figure 2: View of the dispersive and non-dispersive plane of BigBite spectrometer. A small angu-

lar deflection in a non-dispersive plane occours if trajectory is not perpendicular to the effective-field

boundary [2]. This correction was calculated by Penner [? ] and was estimated to be (≈ 18 mrad). Since

opposite effects happen at the entrance and exit field boundary, non-dispersive angle remains unchanged.

This way a circular-arc model could be applied for the determination of all target coor-

dinates. The description of particle transport inside the magnet can be divided into a

free particle motion in the y − z plane and a circular motion in x − z plane, which is
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described by the Lorentz equation

py = const. , pxz = eRBy (1)

To determine momentum, first radius of the trajectory needs to be calculated. This can

be done using the track information in the detector package together with geometrical

properties of BigBite spectrometer, by satisfying conditions

ATg ⊥ AO, OB ⊥ BD, |AO| = |BO| = R (2)

This dictates relations between points A, B, O, T g, D written in the target coordinate

system:

xO = −
zTg

xA

(zO − zA) + xA = −
zD − zB

xD − xB

(zO − zB) + xB (3)

R2 = (zO − zA)2

[

1 +

(

zTg

zA

)2
]

= (zB − zO)2

[

1 +

(

zD − zB

xD − xB

)2
]

(4)

Point B where particle exits the magnet is the intersection between an extrapolation of

the particle track in the detector-package and a effective exit-face of the magnet and can

be easily calculated. Component zA of point A corresponds to a known distance between

the target and effective entrance to the BigBite magnet. By expressing zO from (3) and

inserting it into (4), an equation for xA is obtained. In general this equation has three

complex solutions. The correct result for xA should analyticaly be a real number and

should lie within the effective field boundaries. Two additional physical constraints are

applied. Particle track should always represent a shorter arc of the circle and it should

move counter clockwise with respect to O if the magnetic field is pointing in direction of

yTg, or clockwise if the magnetic field is pointing in the opposite direction. Once knowing

the correct solution, radius R can be determined, together with a momentum pxz. A

particle flight path lxz in the x-z plane, can also be calculated using the cosine formula

for angle β = ∡AOB

lxz =
√

z2
A + x2

A + Rβ +
√

(zD − zB)2 + (xD − xB)2 ,

cosβ =
(zA − zO)(zB − zO) + (xA − xO)(xB − xO)

R2
. (5)

Using this information, all target coordinates can be directly expressed as

φTg = φDet
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θTg =
xA

zA

yTg = yDet − lxzφDet

δTg =
pxz

pc

√

1 + φ2
Tg + θ2

Tg
√

1 + θ2
Tg

L = lxz

√

1 + φ2
Tg (6)

where pc is a central momentum of BigBite spectrometer. With the presented analyti-

cal approximation of BigBite optics, resolution up to few percent can be achieved, but

decreases when away from the center of BigBite acceptance, especially for φTg . There,

fringe-fields start to affect the optics. As shown, model requires only few geometrical

parameters, but they need to be well known in order for model to work. Distances be-

tween different parts of spectrometer and sizes could be in principal determined from

the calibration with elastic events. However, the solution is not unique. Different combi-

nations of geometrical parameters could give almost identical results for BigBite target

variables, but only one combination is correct. Therefore without a good information

about geometrical properties of BigBite, analytical model will not work properly.

4.2. The matrix formalism

With this approach a prescription is obtained, that transforms detector variables

directly to the target variables. Various parameterizations are possible. For BigBite a

polynomial expansion of form

ΩTg =
∑

i,j,k

θi
Dety

j
Detφ

k
Det

7
∑

l=0

a
ΩTg

ijkl x
l
det , ΩTg ∈ {δTg, θTg, φTg, yTg} , (7)

has been considered. Although the form is polynomial, can this expansion be inter-

preted in terms of vector algebra as a scalar product of vector {xl
Det} with the vector

{θi
Dety

j
Detφ

k
Det} and a tensor-like form a

ΩTg

ijkl , were all expansion parameters are gathered.

This notation was used in our procedure and is called a transport-matrix formalism.

Knowing the optics of the spectrometer means knowing the parameters aijkl and being

aware of the limits where such a parameterization works. The polynomial expansion is

easy to handle, but one must precisely understand the contribution of the high-degree

terms. Uncontrolled inclusion of these terms can cause oscillations of the reconstructed
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variables, especially on the edges of the acceptance. A main goal is therefore to find a

well behaved low-order optical matrix that has as few high-degree terms as possible.

4.2.1. Direct comparison of detector variables with target coordinates

The determination of the optical matrix started with the low-order analysis in order

to get an approximate values for first few matrix elements. As in the analytical model,

BigBite magnet was assumed to be an ideal dipole. Therefore in-plane and out-of-plane

variables could be decoupled, resulting in δTg , θTg depending only on xDet , θDet, while

yTg , φTg depending only on yDet , φDet. Since each target coordinate depends only on

two detector variables, the matrix elements can be estimated via examination of 2D

histograms, showing the direct comparison of target coorinates, determined from HRS-L

data, to BigBite detector variables, using various detector-variable cuts. Since BigBite in

this approximation does not bend particles in horizontal direction, first-order polynomials

were considered to fit data for yTg and φTg, while up to third-order polynomial expansions

were applied for δTg and θTg:

δTg(x, θ) =
[

aδ
0000 + aδ

1000x + aδ
2000x

2
]

+
[

aδ
0100 + aδ

1100x + aδ
2100x

2
]

θ

+
[

aδ
0200 + aδ

1200x
]

θ2 +
[

aδ
0300 + aδ

1300x
]

θ3 (8)

θTg(x, θ) =
[

aθ
0000 + aθ

1000x + aθ
2000x

2
]

+
[

aθ
0100 + aθ

1100x + aθ
2100x

2
]

θ (9)

φTg(y, φ) = aφ
0000 + aφ

0001φ (10)

yTg(y, φ) = [ay
0001 + ay

0011y]φ + [ay
0000 + ay

0010y] (11)

Determined matrix elements are shown in column 2 of table 1. Analysis showed that

this approximation could not be used for further physics analysis, because higher order

corrections are necessary for representative results. However, low-order terms are very

robust, and would not change much when more sophisticated models with higher-degree

terms are considered. Therefore results obtained with this method could serve for testing

later, more advanced methods. In particular, to check, if calculated matrix elements,

obtained with automated numerical algorithms converge to reasnable values.

4.2.2. Numerical Methods

For the determination of BigBite optics matrix, when it is used with hadron detector

package, a special numerical method was developed, which consideres up to fourth order
7



Matrix element Direct comparison N & M SVD Simul.

a
yTg

0010 0.998013 1.029 1.00155 1.0765

a
yTg

0001 −2.80084 −2.8183 −2.7648 −3.113

a
φTg

0001 1.0† 1.03678 1.0536 1.2291

a
θTg

1000 0.49681 0.5492 0.5463 0.768

a
θTg

0100 −0.49109 −0.4896 −0.4819 −1.2317

a
δTg

1000 −0.754484 −0.71600 −0.67627 1.7961

a
δTg

0100 2.81136 2.88118 2.80163 5.1449

† a
φT g
0001 was a priori set to 1 in this approximation.

Table 1: Most important BigBite matrix-elements determined with different methods.

matrix elements. Their values are calculated using χ2-minimization, where calculated

target variables (7) are compared with the directly measured values

χ2
(

a
ΩT g

i

)

=

√

(

ΩMeasured
Tg − ΩOptics

Tg

(

xdet, ydet, θdet, φdet; a
ΩT g
i

))2

, i = 1, 2, . . . , M . (12)

The use of M matrix elements for each target variable means that a global minimum in

a M -dimensional space must be found. Numerically this is a very complex problem. For

solving this problem two techniques were considered.

The Downhill Simplex Method developed by Nedler and Mead [9] was our first choice.

Method tries to minimize a scalar-valued non-linear function of N parameters. For that

it uses only function evaluations and requires no derivative information. It is very easy to

use, thus very popular in engineering and science application for non-linear unconstrained

optimization. However, this method is not very time efficient and its convergence prop-

erties are not well understood, especially when used for minimization in more than two

dimension. It is possible that the minimization method will stop in one of the possible

local minima instead of the global minimum [11, 12]. Therefore the robustness of the

method needed to be examined.

As an alternative to simplex minimization, Singular-Value-Decomposition was consid-

ered. Function ΩTg is a linear function of parameters a
ΩT g

i . This means that (12) can
8



be written as

χ2 =

√

|A · a − b|
2
, (13)

where vector a contains all M matrix elements and vector b contains N measured values

of considered target variable. Matrix A of size N × M is filled with various products of

detector variables a
ΩT g

i for every measured event used for the calibration. Vector a that

minimizes (13) is determined using the SVD method [9? ]. It is a powerfull tool, which

is based on a theorem of linear algebra, that any N × M matrix, where number of rows

N is greater or equal to number of columns M , can be written as a product of an N ×M

column-orthogonal matrix U, an M×M diagonal matrix W filled with positively definite

singular values wi, and a transpose of an M × M orthogonal matrix V. In the case of

overdetermined system (N > M), presented in (13), it produces the best solution in the

least-square sense. Therefore no additional robustness tests are required as in previous

method. Another great adventage is, that it cannot fail [9]. Method always returns a

solution, but its quality depends on quality of the input data. The solution has the form

a =
M
∑

i=1

(

Ui · b

wi

)

Vi , (14)

4.2.3. Calibration data

During experiment various dedicated calibration measurements were made, to be used

together with developed numerical methods for the determination of the optics matrix.

yTg was calibrated using quasi-elastic carbon data made with an extensive, 40 cm long,

carbon optics-target. It consists of seven thin carbon foils, that are mounted to a plastic

frame (see Fig. 4). In addition, a slanted BeO foil is added in front of a target (as a

8th foil) which serves for the visual inspection of the position of the electron beam. For

the calibration of θTg and φTg, special set of carbon and deuterium data was considered,

where sieve-slit was put in front of a BigBite magnet. The sieve-slit collimator consists

of 81 holes that are uniformly positioned over the whole angular acceptance of the spec-

trometer. The sieve-slit also contains four larger holes for proper horizontal and vertical

orientation of the sieve and easier identification of the hole projections at the detector

package. In addition, hydrogen elastic data were used for the absolute positioning of the

sieve with respect to the optical axis of the BigBite, which can not be determined directly
9
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Figure 3: [Left] Schematics of BigBite Sieve-slit collimator, [Right] Reconstructed sieve pattern. Most

left holes are missing due to the geometrical obtacles inbetween target and BigBite.

from the quasi-elastic carbon data. The determination of the matrix elements for the

δTg was done with the hydrogen and deuterium elastic data, where particle momentum

in BigBite equals q-vector, determined by the HRS-L.

Various cuts were applied to the collected calibration data to eliminate the noise that

could influence the minimization process. Only coincidence events were consided, since

various information from HRS-L, such as target coordinates, trigger information and de-

tector variables, were required to calibrate BigBite. This was done via raw coincidence

time cut. For additional noise reduction, HRS-L acceptance cuts were applied. Finally,

in the calibration only those events were considered, that leave consistent hits in all

BigBite detectors and could be consequently joined in a single particle track inside the

detector package.
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Figure 4: [Up] Target ladder diagram with polarized 3He cell on top, 7-foil carbon optics target in

between and gasous reference cell in the bottom. Slanted BeO window was used for visual inspection of

beam position. [Down] Reconstructed vertex position yTg for the 7-foil carbon-optics target, using the

SVD technique. Red lines show the exact positions of carbon foils.

4.2.4. Vertex position

The matrix for the vertex position variable yTg was obtained using 7-foil carbon

target. The positions of carbon foils were precisely determined before the experiment.

For that a special geodetic survey was used with accuracy (≤ 100 µm). This enables

a precise yTg calibration. Which foil did particles detected in BigBite came from, was

determined from HRS-L vertex information. This way can detector variables for each

coincidence event be directly correlated to the particle position at the target. When (7)

is written out for yTg, a linear equation for each event can be formed

yTg
Measured
(n) = yTg

Optics
(n)

= ay
0000 + ay

0001φ(n) + ay
0002φ

2
(n) + ay

0003φ
3
(n) + · · ·
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+ ay
0010y(n) + ay

0020y
2
(n) + ay

0030y
3
(n) + ay

0040y
4
(n) + · · ·

+ ay
0100θ(n) + ay

0200θ
2
(n) + ay

0300θ
3
(n) + ay

0400θ
4
(n) + · · ·

+ ay
1000x(n) + ay

2000x
2
(n) + ay

3000x
3
(n) + ay

4000x
4
(n) + · · ·

+ ay
1111x(n)θ(n)y(n)φ(n) , n = 1, · · ·N (15)

where N is the number of coincidence events considered in the analysis. The overde-

termined set of equations (15) is a direct comparison of a reconstructed vertex position

yOptics
Tg to the measured value yMeasured

Tg . Initially a consisten polynomial expansion to

fourth-degree (i + j + k + l ≤ 4) was considered, which depends on 70 different matrix

elements ay
ijkl. Using this ansatz in (12), χ2-minimization function is written, serving

as a input for simplex method. To be certain, that minimization will not stop in one of

the potential local minima, robustness of the method was examined. This was done by

checking the convergence of the minimization algorithm for a large number of randomly

chosen initial sets of parameters (see Fig. 5). The result could be trusted, if (12) con-

verges to same value for the majority of initial condidions. Small variations in χ2 are

allowed. They are caused by small matrix elements which are irrelevant for yTg, but

are set so some non-zero value to additionally minimize χ2 in a particular minimization

process. These matrix elements could be easily identified and excluded when doing the

robustness checks, because they are unstable and converge to a different value in each

minimization process. In addition, Monte-Carlo simulation was considered for selection

of the relevant matrix elements. In the end 25 least changing matrix elements were kept

in the yTg matrix.

Next, SVD method was used to determine matrix elements for yTg. Linear set of

equations (15) first needs to be re-written into an appropriate form (13):



































1 φ(1) · · · x(1)θ(1)y(1)φ(1)

1 φ(2) · · · x(2)θ(2)y(2)φ(2)

1 φ(3) · · · x(3)θ(3)y(3)φ(3)

...
...

. . .
...

1 φ(N−2) · · · x(N−2)θ(N−2)y(N−2)φ(N−2)

1 φ(N−1) · · · x(N−1)θ(N−1)y(N−1)φ(N−1)

1 φ(N) · · · x(N)θ(N)y(N)φ(N)



















































a0000

a0001

...

a1111

















=



































yTg(1)

yTg(2)

yTg(3)

...

yTg(N−2)

yTg(N−1)

yTg(N)



































, (16)
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Figure 5: Robustness checks of simplex minimization method for chosen matrix elements a
ΩT g

ijkl
. The

analysis was done for 100 initial randomly chosen conditions, for each target coordinate. The fact that

the vast majority of the initial conditions converge to a single value, is an indication of the robustness

of the method.

where vector a contains M unknown matrix elements, vector b contains N measured

values of yTg, and matrix A is filled with the products of detector variables, that ac-

company matrix elements in the polynomial expansion (15) for each considered event.

Once knowing matrix A, singular value decomposition was preformed and solution for

ay
ijkl found. The SVD analysis also began with thye initial 70 matrix elements. Since the

solution, returned by this method, always represents the global minimum of χ2-function,
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Method successfully converges to a single χ2 value for wide range of initial conditions. Solution with

smallest χ2 represents the result used in the optics-matrix.

rubustness checks were not required. To extract the most relevant matrix elements, SVD

method was not applied to one combined set of data (as in simplex method), but was

used on each sets of experimental data seperately. From the comparison of the matrix-

elements obtained with different calibration data, those that were changing less than

100 %, were selected. Matrix-elements that were changing more, should not be consid-

ered, since optics-matrix needs to be valid for all accumulated data. In the end 20 best

matrix-elements were considered. With them analysis was done once more, to determine

their final values. Calibration results are shown in figure 4. The values of most important

elements are listed in table 1.

4.2.5. Angular coordinates

The relative optics calibration of the angular variables θTg and φTg was done with a

use of sieve-slit data. With a use of sieve-slit collimator only particles going throught the

holes could reach BigBite detectors. Others were stopped in 4 cm thick material of the slit.

Particles coming from different holes could be well seperated and localized at the focal

plane. Knowing the detector coordinates and the precise position of the corresponding

hole in the sieve, target variables could be calculated. Considering reaction point at the
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Figure 7: Layout of sieve-slit collimator relative to the target. Particle track going through a particular

hole in the sieve is a difference between the position in the sieve-hole and position of the reaction-point.

BigBite is positioned at ΦBB = −75◦ with respect to the beam direction.

target (see Fig. 7), θTg and φTg can be expressed as

tanφTg =
ySieve − yTg

zSieve − zTg
, tan θTg =

xSieve − xTg

zSieve − zTg
(17)

Knowing values of target variables, set of linear equations (7) can be written for con-

sidered events and matrix-elements determined using both numerical approcahes. For

the calibration with the simplex method 30 matrix elements for θTg and 68 for φTg were

considered. Robustness checks for both angular variables were made to ensure a global

minima. The SVD analysis again started with 70 matrix-elements which were then re-

duced to 31 for θTg and to 39 for φTg, considering only least changing matrix elements.

Fig. 3 shows reconstructed sieve pattern. The majority of holes are reconstructed. Some

are missing, because of specific geometric constraints during the calibration experiment

that obscured them. Once sieve pattern was reconstructed, absolute calibration had

to be preformed, to correct for any BigBite missalignment and misspointing. For that

hyrdogen-elastic data were used. Comparing direction of q-vector from HRS-L with the

calculated values θTg and φTg, zero-order matrix elements could be properly determiend
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Figure 8: Calibration of in-plane and out-of-plane angles by comparing θTg, φTg from HRS-L and

BigBite.

and offsets corrected. In addition, precise distance between the target and collimator

could be determiend, which could not be precisely measured due to physical obstacles

during experiment. Sieve slit was positioned 1.13 m away from the target.

4.2.6. Momentum

The calibration of δTg variable was done via comparison of the q-vector to the re-

constructed BigBite momentum by using elastic scattering of electrons on hydrogen and

deuterium. In the analysis δTg was considered only as a function of xDet and θDet.

Terms with yDet and φDet could be neglected, since δTg depends mostly on the out-of-

plane variables. In addition, use of in-plane coodrinates in the analysis could result in

bad matrix, due to strong φTg dependence of elastic data. Considering only xDet , θDet

matrix elements δTg can be expressed as

qHRSL − ∆Loss

pCentral
− 1 = δTg = aδ

0000 + aδ
1000xDet + aδ

0100θDet + · · · . (18)

In order to obtain an optics-matrix, that is valid for all kinds of particles (protons and

deuterons), energy-losses ∆Loss for particle transport through target enclosure and Big-

Bite had to be well known and under control. For the estimation of losses Bethe-Bloch

formula [10] was considered. Since energy-losses were significant Bethe-Bloch formula
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had to be integrated over complete particle track, for each type of particles and each ini-

tial momentum. Resulting corrections that were considered in (18) are shown in figure 9.
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Figure 9: [Left] Proton and deuteron momentum losses inside the target and the total momentum losses

to the MWDCs. [Right] The momentum resolution is increased significatnly with proper consideration

of momentum losses.

Elastic data, available for calibration, covered only half of the BigBite momentum ac-

ceptance. They include data between 450 MeV/c and 700 MeV/c. To calibrate low-

momentum region from 200 MeV/c to 450 MeV/c additional calibration data were re-

quired. For that quasi-elastic 3He data were considered using the infomration from the

dE- and E-planes. Knowing the scintillator properties, the energy-deposit in each plane

could be directly connected to a particle momentum. In particular we were interested

in the particle momentum at the well defined point, where particles have just enough

energy to exit the scintillators. This is known as a punch-through point. Beside punch-

through points two other points with exactly known energy-deposit in dE- and E-planes

were considered (see Fig. 10). With the momentum information from these points, com-

plete momentum calibration was possible. For the determination of δTg matrix elements

both numerical approaches were again considered. Due to limitations with available

data, search for most stable matrix-elements with the SVD method was not performed.

A complete expansion to fifth-order was considered in both techiques. However, since
17



only two-variable dependence was considered this represents 21 different matrix elements.

Comparison of the most relevant matrix elements for both numerical approaches is show

in table 1. Fig. 10 also shows that δTg matrix is well-behaved, since the reconstructed

momentum agrees with the simulation for the complete momentum acceptance of BigBite

for both protons and deuterons.
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Figure 10: [Left] Energy-losses in a thin 3mm dE-plane vs. energy-losses in a thicker 3 cm E-plane.

Punch-through points, where protons and deuterons have just enough energy to penetrate through both

scintillation planes are clearly visible. Black boxes show sections of events with precisely determined

momentum, that were used in the δTg calibration. [Right] Energy-losses in E-plane scintillator as a

function of particle momentum for 3He data. Deuterons can be clearly distinguished from protons.

Measurements agree well with the simulation, shown with dashing line.

4.2.7. Resolution of the results

The quality of the BigBite optics was also studied. The resolution of vertex-position

was estimated from the difference between reconstructed yTg and the true position at the

target, by taking the width (sigma) of the obtained distribution. The analysis was done

using 1 GeV and 2 GeV quasi-elastic carbon data. Fig. 11 shows resolution as a function

of particle momentum. The width of the peak decreases with the increasing momentum,

reaching the best resolution σTgy
= 1.0 cm at p = 0.55 GeV/c. The worsening of the

resulution at momenta p ≥ 0.6 GeV/c is caused by the errors in the optics matrix. Due
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to small amount of available data for high momenta, matrix could not be precisely cali-

brated for that momentum reagion.
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Figure 11: Resolution of yTg, θTg, φTg and δTg as a function of particle momentu, detected in BigBite.

Resolution of the θTg and φTg was estimated from their comparison to the correspond-

ing angles determined from the momentum-transfer vector ~q, using elastic hydrogen and

deuterium data. The direction of ~q is calculated from the HRS-L data. The resolution
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of calculated θ~q
Tg and φ~q

Tg follow relations

dθ~q
Tg ≈ cscΦHRSdθHRS, dφ~q

Tg ≈ csc ΦHRS

[

csc ΦHRS −
EBeam

EHRS

]

dφHRS , (19)

where EHRS is the central momentum of the HRS-L spectrometer and ΦHRS its central

scattering angle. With the nominal resolution of HRS-L spectrometer [3] is the resolution

of q-vector direction estimated to (≥ 5 mrad) for the vertical angle and to (≥ 0.43 mrad)

for the horizontal angle. This contributions were subtracted in squares from calculated

peak widths to get final BigBite resolution. Results are shown in Fig. 11 as a function of

particle momentum. Resolution strong momentum dependence is caused by the multiple-

scattering [? ], happening inside the spectrometer and the target. Multiple-scattering

also explains different resolution for protons and deuterons, since peak broadening stronly

depends on the particle mass. Biggest contribution comes from air inside BigBite and

target cell-wall. It is estimated to 7 mrad (sigma) for 550 MeV/c protons and to 13 mrad

for 550 MeV/c deuterons.

The resolution of δTg....

5. Summary
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