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Abstract

The techniques for optical calibration of Jefferson Lab’s large-acceptance magnetic hadron

spectrometer, BigBite, have been examined. The most consistent and stable results were

obtained by using a method based on singular value decomposition. In spite of the

complexity of the optics, the particles’ positions and momenta at the target have been

precisely reconstructed from the coordinates measured in the detectors by means of a

single back-tracing matrix. The technique is applicable to any similar magnetic spec-

trometer and any particle type. For 0.55GeV/c protons, we have established the vertex

resolution of 1.2 cm, angular resolutions of 7mrad and 16mrad (in-plane and out-of-plane,

respectively), and a relative momentum resolution of 1.6%.
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1. Introduction

One of the recent acquisitions in experimental Hall A of the Thomas Jefferson Na-

tional Accelerator Facility (TJNAF) is the BigBite spectrometer. It was previously used

at the NIKHEF facility for the detection of electrons [1, 2]. At Jefferson Lab, BigBite has

been re-implemented as a versatile spectrometer that can be instrumented with various

detector packages optimized for the particular requirements of the experiments. Big-

Bite complements the High-Resolution Spectrometers, which are part of the standard

equipment of Hall A [3]. Adding BigBite allows one to devise more flexible experimental

setups involving double- and even triple-coincidence measurements.

In 2005, the BigBite spectrometer was first used in Hall A as the hadron arm in the

E01-015 experiment, which investigated nucleon-nucleon short-range correlations [4, 5].

In 2006, it was instrumented as the electron arm for the measurement of the neutron

electric form factor (experiment E02-013 [6]). In 2008 and 2009, it has been used in

two large groups of experiments spanning a broad range of physics topics. We studied

near-threshold neutral pion production on protons (experiment E04-007 [7]) and mea-

sured single-spin asymmetries in semi-inclusive pion electro-production on polarized 3He

(experiments E06-010 and E06-011 [8–11]). In the same period, we also measured paral-

lel and perpendicular asymmetries on polarized 3He in order to extract the gn2 polarized

structure function in the deep-inelastic regime (experiment E06-014 [12]), and measured

double-polarization asymmetries in the quasi-elastic processes 3 ~He(~e, e′d), 3 ~He(~e, e′p),

and 3 ~He(~e, e′n) (experiment E05-102 [13]). In 2011, the investigation of short-range cor-

relations has been continued in the E07-006 experiment [14] exploring the repulsive part

of the nucleon-nucleon interaction.

BigBite is a non-focusing spectrometer consisting of a single dipole with large mo-

mentum and angular acceptances (the details are presented in Section 2). The magnetic

optics of such spectrometers tend to become complicated towards the edges of their

acceptances, especially for the momentum and the dispersive angle. It was not clear

from the outset that particle momentum and interaction vertex reconstruction could be

accomplished by using a single procedure for all momenta.

The calibration presented in this paper allows for a full description of BigBite optics by

means of a single reconstruction matrix. The method was developed and successfully used
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with the data obtained in the E05-102 experiment with the detector package configured

for hadrons (Section 3), but it is applicable to any magnetic spectrometer with a similar

optical configuration and any particle type. Various calibration procedures are discussed

in Section 4.

2. The BigBite spectrometer

The BigBite spectrometer [1] consists of a single room-temperature dipole magnet,

shown in Fig. 1. Energizing the magnet with a current of 518A results in a mean

field density of 0.92T, corresponding to a central momentum of pc = 0.5GeV/c and a

bending angle of 25◦. The magnet is followed by a hadron detector package consisting of

two multi-wire drift chambers (MWDC) [15, 16] for particle tracking and two planes of

scintillation detectors (denoted by dE and E) [17] for triggering, particle identification,

and energy determination.

Target cell

Beam

Helmholtz coils

Sieve-slit
collimator

Magnet

MWDCs

scintillators
(dE, E planes)

Figure 1: The BigBite spectrometer on its support frame. BigBite consists of a dipole magnet, followed

by the detector package assembled from a pair of multi-wire drift chambers (MWDC) and two scintillator

planes (dE and E). The directions of the incoming electron beam and the scattered particles, the target

cell, and the Helmholtz coil (holding field) assembly are also shown.
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Each MWDC consists of six planes of wires. The wires in the first two planes are

aligned horizontally, while the wires in the third and fourth planes are oriented at an

angle of 60◦ with respect to the dispersive direction. The wires of the last two planes

are oriented at −60◦. The wire planes in the first and the second MWDC contain 141

and 200 wires, respectively. The spacing between the wires in all planes is 1 cm. The

intrinsic spatial resolution of the MWDCs is about 100µm and 200µm for the dispersive

and non-dispersive coordinates, respectively, and about 0.15mrad and 0.35mrad for the

dispersive and non-dispersive angles, respectively.

The dE- and E-planes (also called the trigger planes) each consist of 24 plastic scin-

tillator bars. The bars are 50 cm long and 8.6 cm wide. For the dE-plane, thinner bars

(0.3 cm) were used to detect low-energy particles, while for the E-plane, a thickness of

3 cm was chosen to allow for the detection of more energetic particles. The light pulses

in each bar were detected by photomultiplier tubes mounted at each end of the bar. To

double the spatial and momentum resolution, the bars in the E-plane are offset from

those in the dE-plane by one half of the bar width (4.3 cm).

3. Experimental details and data

The E05-102 experiment was performed in Hall A [3] at Jefferson Lab. In the experi-

ment, a polarized 3He target was used in conjunction with the polarized continuous-wave

electron beam. Scattered electrons were detected by the left High Resolution Spectrom-

eter (HRS) in coincidence with protons and deuterons that were detected by BigBite.

A variety of kinematic settings were employed (Table 1), with the momentum-transfer

vector ~q pointing towards BigBite. This ensured that the protons and deuterons from

elastic and quasi-elastic scattering were always within its acceptance.

The core component of the polarized 3He target was a pressurized cylindrical glass

cell with a length of 40 cm and a diameter of 1.9 cm (see Fig. 2). The thickness of the

glass cylinder was 1.7mm, while the thickness of the end windows was 140µm. The gas

in the cell was polarized to approximately 60% by hybrid spin-exchange optical pumping

[18, 19] driven by an infra-red laser system. The direction of the nuclear polarization

was maintained by three pairs of Helmholtz coils surrounding the cell.
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Table 1: Kinematics settings of the E05-102 experiment (the incoming electron energy Ebeam and the

angles of the HRS and BigBite spectrometers with respect to the beam direction).

Setting Ebeam Scattering angle
label [GeV/c] HRS [◦] BB [◦]

1-pass 1.245 17.0 −74.0

2-pass 2.425 12.5 −75.0
14.5 −82.0

3-pass 3.606 12.5 −75.0
17.0 −74.0

In addition to the 3He helium target, a 40 cm-long multi-foil carbon target was used

for calibration, as described below. It consists of seven 0.252mm-thick carbon foils

mounted to a plastic frame (Fig. 2) which are preceded by a single slanted BeO foil for

beam positioning. Below the multi-foil target, a dummy (reference) cell was installed

that could be either evacuated or filled with hydrogen, deuterium, or nitrogen.
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��������������������������������������������������������������������������������������������������

Polarized 3He Target

To Pumping Chamber

6.7cm

7−Foil Carbon Optics Target

Reference Cell
40cm

8.1cm

Beam Direction

BeO
0.252mm

Figure 2: The target system including the polarized 3He cell at the top, the multi-foil carbon optics

target, and the reference cell at the bottom. The slanted BeO foil is used for visual inspection of the

beam impact point.

For the optics calibration of BigBite, a special set of measurements was performed

with a 4 cm-thick lead sieve-slit collimator positioned at the entrance to the BigBite

magnet (see Fig. 1). The sieve-slit collimator has 82 circular holes that are almost

uniformly positioned over the whole acceptance of the spectrometer, Fig. 3 (left). The

collimator also contains four elongated holes used to remove ambiguities in horizontal
5
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Figure 3: [Left] Schematics of the BigBite sieve-slit collimator. [Center, right] Sieve pattern recon-

struction by using the simplex method and the SVD, respectively (see subsubsection 4.2.2). The SVD

technique resolves more holes and yields a much clearer pattern. The holes at the left edge are missing

due to geometrical obstacles between the target and BigBite.

and vertical orientation and to allow for easier identification of the hole projections at

the detector package.

Prior to any optics analysis, a series of cuts were applied to the collected calibration

data to eliminate noise. A HRS-BigBite coincidence trigger system was used to acquire

electron-proton and electron-deuteron coincidences, at typical rates between 700Hz and

1 kHz. True coincidences were selected by applying a cut on the raw coincidence time.

The backgrounds were further reduced by PID and HRS acceptance cuts. Finally, only

those events that produce consistent hits in all BigBite detectors, and could consequently

be joined to form single particle tracks, were selected.

4. Methods of optical calibration

The purpose of optical calibration is to establish the mapping between the detector

variables that are measured directly, and the target variables corresponding to the actual
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physical quantities describing the particle at the reaction vertex. In the MWDCs, two

position coordinates (xDet and yDet) and two angles (θDet and φDet) are measured. From

this information, we wish to reconstruct the location of the interaction vertex (yTg), the

in-plane and out-of-plane scattering angles (φTg and θTg), and the particle momentum

relative to the central momentum (δTg = (pTg − pc)/pc). This can be done in many

ways. We have considered an analytical model as well as a more sophisticated approach

based on transport-matrix formalism, with several means to estimate the reliability of

the results and the stability of the algorithms.

Quasi-elastic protons from scattering on the multi-foil carbon target were used to

calibrate yTg; the same target was also used to calibrate θTg and φTg when the sieve-

slit collimator was in place. In turn, elastic protons and deuterons (from hydrogen and

deuterium targets) were used to calibrate θTg and δTg. The δTg matrix elements could

also be determined by quasi-elastic events from 3He under the assumption that the energy

losses are well understood.

4.1. The analytical model

In the BigBite magnet, the magnetic field is oriented in the yTg direction (see Fig. 4).

Field mapping has shown [1] that the field density is almost constant inside the magnet,

with fringe fields that decrease exponentially outside of the magnet. In the analytical

model, the true field was approximated by a constant field within the effective field

boundaries, while edge effects were neglected. Under these assumptions all target coor-

dinates were calculated by applying a circular-arc approximation [22] of the track inside

the field: the particle transport was divided into free motion (drift) in the (y, z) plane

and circular motion in the (x, z) plane (see Fig. 4), described by the Lorentz equation

py = const , pxz = eRBy .

To determine the momentum, the radius R of the trajectory needs to be calculated first.

This can be done by using the track information obtained from the detector package,

combined with the geometrical properties of BigBite. A few reference points are needed,

as shown in Fig. 4; the point Tg represents the position of the particle at the target, and

D corresponds to the point where the particle hits the detector package. The point B at

which the particle exits the magnet is the intersection between the extrapolated particle
7
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Figure 4: The schematic of the dispersive (top) and non-dispersive (bottom) planes of the BigBite

spectrometer. Small angular deflections in the non-dispersive plane occur if the particle trajectory is not

perpendicular to the effective field boundary [2, 20, 21]. At the entrance to the magnet, they are at most

18mrad (close to the acceptance boundaries in the dispersive direction). At the exit field boundary, the

effect acts in the opposite sense and partially cancels the deflection at the entrance.
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track through the detector package and the effective exit face of the magnet. Similarly,

the point A lies at the intersection of the effective entrance face of the magnet and the

particle track from the target. The point O is the center of the circular trajectory. In

order for all these points to correspond to a single particle track through the spectrometer,

the conditions

ATg ⊥ AO , OB ⊥ BD , |AO| = |BO| = R ,

must be satisfied. In the target coordinate system, this becomes

xO = −
zTg

xA

(zO − zA) + xA = −
zD − zB
xD − xB

(zO − zB) + xB , (1)

R2 = (zO − zA)
2

[

1 +

(

zTg

zA

)2
]

= (zB − zO)
2

[

1 +

(

zD − zB
xD − xB

)2
]

. (2)

The coordinates xB and zB of B, and the coordinates xD and zD of D can be directly

calculated from the information obtained by the detector package. The position of the

target (xTg , zTg) is known. The coordinate zA of A corresponds to the known distance

between the target center and the effective field boundary at the entrance to the magnet.

By expressing zO from Eq. (1) and inserting it into Eq. (2), an equation for xA is obtained

which has three complex solutions in general. The physically meaningful result for xA

should be real and lie within the effective field boundaries. Two additional physical

constraints are applied. The particle track should always represent the shortest possible

arc of the circle (the arc between A and B in Fig. 4). Moreover, the track should bend

according to the polarity of the particle and orientation of the magnetic field. From xA,

the radius R and the momentum pxz can be calculated. The particle flight path lxz in the

(x, z) plane can also be calculated by using the cosine formula for the angle β = ∡AOB,

lxz =
√

x2
A + z2A +Rβ +

√

(xD − xB)2 + (zD − zB)2 ,

cosβ =
(xA − xO)(xB − xO) + (zA − zO)(zB − zO)

R2
.

By using this information, all target coordinates can be expressed as

φTg = φDet ,

θTg =
xA

zA
,

yTg = yDet − lxzφDet ,
9



δTg =
pxz
pc

√

1 + φ2
Tg + θ2Tg

√

1 + θ2Tg

,

L = lxz

√

1 + φ2
Tg ,

where pc is the central momentum and L is the total flight-path of the particle.

With the analytical approximation, resolutions of a few percent can be achieved, but

they deteriorate when moving towards the edges of the acceptance where the fringe fields

begin to affect the optics. This is particularly true for φTg. Figure 5 (left) shows the

reconstructed mass of the neutron from the process 2H(e, e′p)n, obtained by using the

analytical model. The relative resolution is 0.35%. The 3.7MeV/c2 offset is caused by

the errors in the energy loss calculation and inherent limitations of the model.

Missing Mass [GeV/c^2]
0.92 0.93 0.94 0.95 0.96 0.97

ev
en

ts

0

1000

2000

3000

4000

5000
Anal. model

SVD method

Neutron mass

p [GeV/c]
0.45 0.50 0.55 0.60 0.65 0.70

- 
p)

/p
 

H
R

S
(q

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03
Protons (analytical)
Protons (matrix)
Deuterons (analytical)
Deuterons (matrix)

Figure 5: [Left] The reconstructed mass of the undetected neutron (missing mass) from the process

2H(e, e′p)n by using the analytical model and the matrix-formalism (SVD) approach. The width (sigma)

of the peak determined with the analytical model is 3.3MeV/c2 (corresponding to 0.35% relative res-

olution). The width of the peak reconstructed by the SVD method is 4MeV/c2. [Right] The absolute

calibration of δTg as a function of the particle momentum measured by BigBite. The relative resolu-

tion of δTg is better in the analytical model than in the matrix method, but the absolute momentum

calibration is inferior to the matrix approach, except in the narrow region around p ≈ 0.55GeV/c.

The analytical method requires just a few geometry parameters, but these need to

be known quite accurately. Had no survey been performed, the sizes of spectrometer
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components and the distances between them could be obtained, in principle, by calibrat-

ing with elastic events. However, the solution is not unique. Different combinations of

parameters have been shown to yield almost identical results for the target variables,

while only one combination is correct.

4.2. The matrix formalism

In spite of its shortcomings, the analytical model is a good starting point. Due to its

simplicity, it can be implemented and tested quickly, and lends itself well to online esti-

mation of the experimental data. For the off-line analysis, a more sophisticated approach

based on the transport matrix formalism is needed. In this approach, a prescription is

obtained that transforms the detector variables directly to the target variables. Various

parameterizations of this transformation are possible. We have adopted a polynomial

expansion of the form [23, 24]

ΩTg =
∑

i,j,k,l

a
ΩTg

ijkl xi
Det θ

j
Det y

k
Det φ

l
Det , ΩTg ∈ {δTg, θTg, φTg, yTg} . (3)

Knowing the optics of a spectrometer is equivalent to determining the expansion coef-

ficients a
ΩTg

ijkl (the so-called optical “matrix”) and establishing the limitations of such a

parameterization.

Ideally, one would like to obtain a single optical matrix with full reconstruction func-

tionality for all particle species and momenta, with as few high-order terms as possible.

In a large-acceptance spectrometer like BigBite, this represents a considerable challenge.

In particular, one must clearly understand the contributions of the high-order elements.

Uncontrolled inclusion of these terms typically causes oscillations of the reconstructed

variables at the edges of the acceptance. In the following, we discuss the procedure of

constructing the optical matrix in which special attention is devoted to checking the

convergence of the method and estimating the robustness of the matrix elements.

4.2.1. Decoupled description

The determination of the optical matrix starts with a low-order analysis in order to

estimate the dominant matrix elements. As in the analytical model, the BigBite magnet

is assumed to be an ideal dipole. This assumption decouples the in-plane and out-of-
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plane variables, resulting in the simplification that δTg and θTg depend only on xDet and

θDet, while yTg and φTg depend only on yDet and φDet.

Since each target coordinate depends only on two detector coordinates, the matrix

elements were estimated by examining two-dimensional histograms of target coordinates

(as given by the HRS) versus BigBite detector variables, using various detector-variable

cuts. Since BigBite in this approximation does not bend horizontally, only first-order

polynomials were utilized to fit the data for yTg and φTg, while expansions up to third-

order were applied for δTg and θTg:

δTg(x, θ) =
[

a
δTg

0000 + a
δTg

1000x+ a
δTg

2000x
2
]

+
[

a
δTg

0100 + a
δTg

1100x+ a
δTg

2100x
2
]

θ

+
[

a
δTg

0200 + a
δTg

1200x
]

θ2 +
[

a
δTg

0300 + a
δTg

1300x
]

θ3 ,

θTg(x, θ) =
[

a
θTg

0000 + a
θTg

1000x+ a
θTg

2000x
2
]

+
[

a
θTg

0100 + a
θTg

1100x+ a
θTg

2100x
2
]

θ ,

φTg(y, φ) = a
φTg

0000 + a
φTg

0001φ ,

yTg(y, φ) =
[

a
yTg

0001 + a
yTg

0011y
]

φ+
[

a
yTg

0000 + a
yTg

0010y
]

.

The calculated matrix elements are shown in the second column of Table 2. The a
φTg

0001 ma-

trix element was set to 1 since there is no in-plane bending. This approximation could

not be used for further physics analysis because higher-order corrections are needed.

However, the low-order terms are very robust and do not change much when more so-

phisticated models with higher-order terms are considered. The results obtained by using

this method serve as a benchmark for more advanced methods, in particular as a check

whether the matrix elements computed by automated numerical algorithms converge to

reasonable values.

4.2.2. Higher order matrix formalism

For the determination of the optics matrix a numerical method was developed in

which matrix elements up to fourth order were retained. Their values were calculated by

using a χ2-minimization scheme, wherein the target variables calculated by Eq. (3) were

compared to the directly measured values,

χ2
(

a
ΩTg

i

)

=

√

(

ΩMeasured
Tg − ΩOptics

Tg

(

xDet, yDet, θDet, φDet; a
ΩTg

i

))2

, i = 1, 2, . . . ,M . (4)

The use of M matrix elements for each target variable means that a global minimum in

M -dimensional space must be found. Numerically this is a very complex problem; two
12



Table 2: The dominant matrix elements of the BigBite optics model (Eq. (3)) determined by a decoupled

description (subsubsection 4.2.1), by simplex minimization (N&M), and by singular value decomposition

(SVD, subsubsection 4.2.2).

Matrix Decoupled N&M SVD
element description

a
yTg

0010 [m/m] 0.998 1.024 0.917

a
yTg

0001 [m/rad] −2.801 −2.839 −2.766

a
φTg

0001 [rad/rad] 1.000 1.052 0.9517

a
θTg

1000 [rad/m] 0.497 0.549 0.551

a
θTg

0100 [rad/rad] −0.491 −0.490 −0.484

a
δTg

1000 [1/m] −0.754 −0.716 −0.676

a
δTg

0100 [1/rad] 2.811 2.881 2.802

techniques were considered for its solution.

Our first choice was the downhill simplex method developed by Nelder and Mead

[25, 26]. The method tries to minimize a scalar non-linear function of M parameters

by using only function evaluations (no derivatives). It is widely used for non-linear

unconstrained optimization, but it is inefficient and its convergence properties are poorly

understood, especially in multi-dimensional minimizations. The method may stop in one

of the local minima instead of the global minimum [28, 29], so an additional examination

of the robustness of the method was required.

The set of functions ΩTg is linear in the parameters a
ΩTg

i . Therefore, Eq. (4) can be

written as

χ2 =

√

∣

∣

∣A~a−~b
∣

∣

∣

2

, (5)

where the M -dimensional vector ~a contains the matrix elements a
ΩTg

i , and the N -

dimensional vector ~b contains the measured values of the target variable being consid-

ered. The elements of the N × M matrix A are various products of detector variables

(θiDety
j
Detφ

k
Detx

l
Det) for each measured event. The system A~a = ~b in Eq. (5) is overdeter-

mined (N > M), thus the vector ~a that minimizes the χ2 can be computed by singular

value decomposition (SVD). It is given by A = UWV T, where U is a N × M column-
13



orthogonal matrix, W is a M ×M diagonal matrix with non-negative singular values wi

on its diagonal, and V is a M ×M orthogonal matrix [26, 27]. The solution has the form

~a =

M
∑

i=1

(

~Ui ·~b

wi

)

~Vi .

The SVD was adopted as an alternative to simplex minimization since it produces the

best solution in the least-square sense, obviating the need for robustness tests. Another

great advantage of SVD is that it can not fail; the method always returns a solution, but

its meaningfulness depends on the quality of the input data. The most important leading-

order matrix elements computed by using both techniques are compared in Table 2.

5. Calibration results

5.1. Vertex position

The matrix for the vertex position variable yTg was obtained by analyzing the protons

from quasi-elastic scattering of electrons on the multi-foil carbon target. The positions

of the foils were measured by a geodetic survey to sub-millimeter accuracy, allowing for

a very precise calibration of yTg. The vertex information from the HRS was used to

locate the foil in which the particle detected by BigBite originated. This allowed us

to directly correlate the detector variables for each coincidence event to the interaction

vertex. When Eq. (3) is written for yTg, a linear equation for each event can be formed:

yTg
Measured
(n) = yTg

Optics
(n) = ay0000 + ay0001φ(n) + ay0002φ

2
(n) + ay0003φ

3
(n) + · · ·

+ ay0010y(n) + ay0020y
2
(n) + ay0030y

3
(n) + ay0040y

4
(n) + · · ·

+ ay0100θ(n) + ay0200θ
2
(n) + ay0300θ

3
(n) + ay0400θ

4
(n) + · · ·

+ ay1000x(n) + ay2000x
2
(n) + ay3000x

3
(n) + ay4000x

4
(n) + · · ·

+ ay1111x(n)θ(n)y(n)φ(n) , (6)

where n = 1, 2, . . . , N , and N is the number of coincidence events used in the analysis.

The overdetermined set of Eqs. (6) represents a direct comparison of the reconstructed

vertex position yOptics
Tg to the measured value yMeasured

Tg . Initially a consistent polynomial

expansion to fourth degree (i+j+k+ l ≤ 4) was considered, which depends on 70 matrix

elements ayijkl. Using this ansatz in Eq. (4) defines a χ2-minimization function, which
14



serves as an input to the simplex method. To be certain that the minimization did not

converge to one of the local minima, the robustness of this method was examined by

checking the convergence of the minimization algorithm for a large number of randomly

chosen initial sets of parameters (see Fig. 6).
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Figure 6: [Left] Robustness checks of the simplex minimization method for select matrix elements a
ΩTg

ijkl
.

The analysis was done for a large set of randomly chosen initial conditions for each target coordinate.

The fact that the vast majority of the initial conditions converge to a single value is an indication of the

robustness of the method. [Right] The values of the χ2-function before and after simplex minimization

for all four target coordinates. The method converges to a single χ2 value for a wide range of initial

conditions (note the log scales). The solution with the smallest χ2 represents the result used in the

optics-matrix.

The results were considered to be stable if the χ2 defined by Eq. (4) converged to the

same value for the majority of initial conditions. Small variations in χ2 were allowed: they

are caused by small matrix elements which are irrelevant for yTg, but have been set to

non-zero values in order to additionally minimize χ2 in a particular minimization process.

These matrix elements could be easily identified and excluded during the robustness

checks because they are unstable and converge to a different value in each minimization.

Ultimately only 25 matrix elements that had the smallest fluctuations were kept for the

yTg matrix.

The SVD method was used next. To compute the matrix elements for yTg, the linear
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set of Eqs. (6) first needs to be rewritten in the form A~a = ~b used in Eq. (5):


































1 φ(1) · · · x(1)θ(1)y(1)φ(1)

1 φ(2) · · · x(2)θ(2)y(2)φ(2)

1 φ(3) · · · x(3)θ(3)y(3)φ(3)

...
...

. . .
...

1 φ(N−2) · · · x(N−2)θ(N−2)y(N−2)φ(N−2)

1 φ(N−1) · · · x(N−1)θ(N−1)y(N−1)φ(N−1)

1 φ(N) · · · x(N)θ(N)y(N)φ(N)
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,

where ~a contains M unknown matrix elements ayijkl to be determined by the SVD, ~b

contains N measured values of yTg, and A is filled with the products of detector variables

accompanying the matrix elements in the polynomial expansion of Eq. (6) for each event.

The SVD analysis also began with 70 matrix elements, but was not applied to one

combined data set as in the simplex method in order to extract the most relevant ones.

Rather, it was used on each set of data separately. From the comparison of the matrix

elements obtained with different calibration data sets, only the elements fluctuating by

less than 100% were selected. Although this choice appears to be arbitrary, the results

do not change much by modifying this criterion, for example, by including elements with

as much as ±1000% fluctuation. The final set of matrix elements contained only 20

of the best entries. With these elements, the entire analysis was repeated in order to

calculate their final values. The most relevant elements are listed in Table 2. The result

of the calibration of yTg is shown in Fig. 7.

5.2. Angular coordinates

For the calibration of the angular variables θTg and φTg, a set of quasi-elastic data

on carbon and deuterium targets taken with the sieve-slit collimator was analyzed. The

particles that pass through different holes can be well separated and localized at the

detector plane.

By knowing the detector coordinates and the accurate position of the corresponding

hole in the sieve, the target variables can be calculated. From the reaction point at the

target (see Fig. 8), θTg and φTg can be calculated:

tanφTg =
ySieve − yTg

zSieve − zTg
, tan θTg =

xSieve − xTg

zSieve − zTg
.
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Figure 7: The reconstructed vertex position (reaction point) for the multi-foil carbon target and the

empty cell of the production target, by using the SVD technique. The vertical dashed lines indicate

the actual positions of the carbon foils and the empty-cell beryllium windows. The small shoulder to

the right of the reconstructed empty-cell entry window is due to the stream of 4He gas used to cool the

window at the beam impact point.

By using the values of the target variables, a set of linear equations has been writ-

ten for all measured events, and matrix elements determined by using both numerical

approaches. In the simplex method, 30 matrix elements for θTg and 68 elements for φTg

were retained. Robustness checks for both angular variables were repeated to ensure that

the global minimum had been reached.

The SVD analysis also started with 70 matrix elements, which were ultimately re-

duced to 37 for θTg and 51 for φTg, again taking into account only those elements that

fluctuated by less than 100%. Figure 3 (right) shows the reconstructed sieve pattern.

The majority of the holes are reconstructed, except those obscured by parts of the exper-

imental apparatus due to specific geometric constraints during the experiment. In order

to demonstrate the effect of gradually excluding redundant matrix elements, Fig. 9 shows

the reconstructed top row of the sieve-slit collimator holes when the elements with up to
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Figure 8: Position of the sieve-slit collimator relative to the target. The vector of the particle track

through a particular hole in the sieve is the difference of the position vector at the hole and the reaction-

point vector. BigBite is positioned at −75◦ with respect to the beam direction. Other settings are listed

in Table 1.

±1000%, ±100%, and ±20% fluctuations are retained. There is virtually no difference

in the reconstructed pattern when all elements exceeding the ±100% fluctuations are

dropped, while errors start to appear when those fluctuating by less than ±100% are

dropped.

The quality of the sieve-pattern reconstruction was examined by comparing the cen-

ters of the reconstructed holes with their true positions. Figure 10 shows that, with the

exception of a few holes near the acceptance edges, these deviations are smaller than

2mm in the vertical, and smaller than 4mm in the horizontal direction. This is much

less than the hole diameter, which is 19.1mm.

Once the sieve pattern was reconstructed, an absolute calibration had to be performed

to correct for any BigBite misalignment and mispointing. For that purpose hydrogen and

deuterium elastic data were used. By comparing the direction of the momentum transfer

vector from the HRS to the calculated values of θTg and φTg, the zero-order matrix

elements could be properly determined and the offsets corrected. In addition, the precise

distance between the target and the sieve-slit collimator was obtained, which we were
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Figure 9: The reconstructed positions of the holes in the top row of the sieve-slit collimator, computed

from φTg. The quality of the reconstruction depends on the number of included matrix elements. There

is almost no difference when the elements fluctuating by up to ±1000% are retained (70 elements, dotted

lines) or only those that fluctuate by up to ±100% (51 elements, full line). The quality deteriorates if

too many elements are dropped (i.e. keeping 18 elements fluctuating by less than ±20%, dashed lines).

not able to measure precisely due to physical obstacles between the target and BigBite.

The sieve slit was positioned 1.13m away from the target.

5.3. Momentum

The matrix elements for the δTg variable were obtained by using data from elastic

scattering of electrons on hydrogen and deuterium for which the particle momentum in

BigBite should be exactly the same as the momentum transfer ~q given by the HRS. We

assumed that δTg depends only on xDet and θDet, while the dependencies involving yDet

and φDet were neglected. Furthermore, the use of in-plane coordinates in the analysis for

δTg could result in a bad matrix due to the strong φTg dependence inherent to elastic

scattering (events strongly concentrated at one edge of the acceptance). Considering

only xDet and θDet matrix elements, δTg can be expressed as

δTg =
qHRS −∆Loss

pc
− 1 = aδ0000 + aδ1000xDet + aδ0100θDet + · · · . (7)
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Figure 10: Distribution of vertical (∆X) and horizontal (∆Y ) deviation of the center of each recon-

structed sieve-slit hole from its true position. Observed deviations are much smaller than the diameter

of a hole, which is 19.1mm. The horizontal and vertical histograms (top and right axis labels, respec-

tively) represent the distributions in the horizontal and vertical directions.

In order to obtain the optics matrix applicable to all types of particles, energy losses

∆Loss for particle transport through the target enclosure and materials within the BigBite

spectrometer were studied carefully. The energy losses were estimated by the Bethe-Bloch

formula [30], but since the losses were significant, the formula had to be integrated over

the complete particle track for each particle type and each initial momentum. The two

largest contributions to the total momentum loss came from the target cell walls and from

the air between the target and the detectors. (The latter losses could be alleviated by

using a helium bag between the target and the detectors, but its benefits were estimated

to be insignificant for the E05-102 experiment.) The resulting corrections that were taken

into account in Eq. (7) are shown in Fig. 11 (left).

The elastic data available for calibration (momentum range approximately 0.45GeV/c

to 0.7GeV/c) covered only about half of the BigBite momentum acceptance. To calibrate

the low-momentum region from 0.2GeV/c to 0.45GeV/c, we used protons from quasi-

elastic scattering on 3He by exploiting the information from the scintillator dE- and

E-planes; the deposited particle energy in each plane was directly mapped to the particle

momentum, based on known properties of the scintillator material. The punch-through
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Figure 11: [Left] Momentum losses of protons and deuterons inside the target and the total momentum

losses up to the MWDCs. [Right] Quality of reconstructed momentum for elastic protons and deuterons.

If energy losses are not taken into account, two peaks are visible (center and right histograms summed

to the full curve). With proper inclusion of energy losses both peaks merge into one (left histogram),

resulting in better momentum resolution.

point, corresponding to the particular momentum at which the particle has just enough

energy to penetrate the scintillators, served as a reference.

Beside the proton punch-through point, two other points with exactly known energy

deposits in the dE- and E-planes were identified, as illustrated in Fig. 12. With the

additional information from these points, a complete momentum calibration was possible.

To compute the δTg matrix elements, both numerical approaches described above were

used. Since the available data were rather sparse, the search for the most stable matrix

elements was not performed and a complete expansion to fifth order was considered

in both techniques. Since only a two-variable dependency was assumed, a complete

description was achieved by using only 21 matrix elements.

The comparison of the most relevant matrix elements obtained from both numerical

approaches is again shown in Table 2. Figure 12 (right) shows that the δTg matrix is

well under control. The reconstructed momentum agrees with the simulation of energy

losses inside the scintillation planes for the complete momentum acceptance of BigBite,

for both protons and deuterons. Figure 5 shows the missing-mass peak for the 2H(e, e′p)n
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process. The resolution of the reconstructed neutron mass is approximately 4MeV/c2.
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Figure 12: [Left] The energy losses in the thin (3mm) scintillator dE-plane versus the energy losses in

the thicker (3 cm) E-plane. The punch-through points, at which the protons and deuterons have just

enough energy to penetrate both scintillation planes, are clearly visible. The black boxes show sections

of events with precisely determined momenta that were used in the δTg calibration. [Right] Particle

momentum as a function of energy losses in the E-plane for 3He data. The deuterons can be clearly

distinguished from the protons. The measurements agree well with the simulation (dot-dashed line).

5.4. Resolution

The quality of the BigBite optics was also studied. The resolution of the vertex

position was estimated from the difference between the reconstructed yTg and the true

position at the target by taking the width (sigma) of the obtained distribution. This

part of the analysis was done by using 2-pass (2.425GeV beam) quasi-elastic carbon

data. The extracted values for the resolution of yTg in different momentum bins can be

parameterized as

σyTg
≈ 0.01

(

1 +
0.02

p4

)

,

where the particle momentum is in GeV/c and the result is in meters. It is best at the

upper limit of the accepted momentum range (about p = 0.7GeV/c) where it amounts to

σyTg
= 1.1 cm. The deterioration of the resolution at lower momenta is due to multiple

scattering [30] in the air inside BigBite.
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Figure 13: The absolute resolution of φTg and the relative momentum resolution as functions of the

momentum measured by BigBite, obtained by the SVD method. Irreducible multiple-scattering con-

tributions, mostly due to the air within BigBite, are shown by full and dashed lines for deuterons and

protons, respectively.

The resolutions of θTg and φTg were estimated by comparing them to the correspond-

ing angles as determined from the momentum transfer ~q in elastic scattering on hydrogen

and deuterium. The direction of ~q is given by the electron kinematics and determined by

HRS spectrometer. The corresponding HRS resolutions have been studied in [31]. Based

on these values, the resolution of the reconstructed ~q was estimated to be 6mrad and

0.3mrad for the vertical and horizontal angles, respectively. These contributions were

subtracted in quadrature from the calculated peak widths, yielding the final resolutions

attributable to BigBite. The result for φTg is shown in Fig. 13 (left). The strong mo-

mentum dependence of the resolution is again caused by multiple scattering in the target

and the spectrometer. Different resolutions for deuterons and protons occur because the

peak broadening in multiple scattering strongly depends on the particle mass (at a given

momentum). The biggest contributions come from the air inside BigBite. In a typical

kinematics of the E05-102 experiment, the resolutions of φTg and θTg are σφTg
≈ 7mrad

and σθTg
≈ 16mrad for 0.55GeV/c protons, and approximately σφTg

≈ 11mrad and

σθTg
≈ 13mrad for 0.6GeV/c deuterons. (Due to multiple scattering, these resolutions

are clearly much larger than the intrinsic MWDC resolutions mentioned in Section 2.)
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The resolution of δTg = (p−pc)/pc was also determined from elastic data by compar-

ing the magnitude of ~q to the momentum reconstructed by BigBite. The analysis was

done separately for the hydrogen and deuterium data sets. Figure 13 (right) shows the

relative momentum resolution σp/p as a function of momentum. The relative momen-

tum resolution is approximately 1.6% for 0.55GeV/c protons, and 2% for 0.6GeV/c

deuterons. Figure 5 (right) shows the absolute resolution of δTg.

6. Summary

We have described the optics calibration of the BigBite spectrometer that was used

to detect hadrons in the E05-102 experiment at Jefferson Lab. While the methods have

been developed and applied to one spectrometer under very specific physical conditions,

the same procedures can be applied to any spectrometer with a similar magnetic config-

uration and acceptance.

Two different approaches were considered: an analytical model that treats BigBite

as an ideal dipole and a matrix formalism. The former approach results only in modest

resolutions; still, resolutions of a few percent can be achieved by a suitable choice of

parameters. The latter approach allows for a more precise calibration. Two numerical

methods were used to determine the matrix elements, but the one based on singular value

decomposition delivered better and more reliable results.

The vertex resolution for protons was found to be 1.2 cm at 0.55GeV/c along the

whole 40 cm target length. The resolution deteriorates significantly at lower momenta

due to multiple scattering in the target, air, and detector material. The corresponding

angular resolution is 7mrad for the in-plane angle φTg and 16mrad for the out-of-plane

angle θTg. The angular resolution worsens at lower momenta due to multiple scattering,

with the effect more pronounced for deuterons. The relative momentum resolution for

0.55GeV/c protons (best case) has been estimated to be 1.6%.

For 0.6GeV/c deuterons (best case), we obtained the resolutions of 2% (momentum),

11mrad (φTg), and 13mrad (θTg).
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