where we considered, that in the extreme relativistic limit $Q^{2}=4 E E^{\prime} \sin ^{2} \frac{\theta_{e}}{2}$ and $v_{0}=$ $4 E E^{\prime} \cos ^{2} \frac{\theta_{e}}{2}$. The term in the square brackets represent the usual Mott cross-section, with α being the fine-structure constant. This cross-section can now be used to determine the experimentally interesting asymmetry for the pd breakup. Inserting Eq. (2.14) into Eq. (2.4) one gets:

$$
\begin{equation*}
A_{p d}=\frac{v_{T^{\prime}} R_{T^{\prime}}+v_{\mathrm{T}^{\prime}} \mathrm{R}_{\mathrm{T}^{\prime}}}{v_{\mathrm{L}} \mathrm{R}_{\mathrm{L}}+v_{\mathrm{T}} \mathrm{R}_{\mathrm{T}}+v_{\mathrm{T}} \mathrm{R}_{\Pi T}+v_{\mathrm{T}} \mathrm{R}_{\mathrm{T}}} . \tag{2.15}
\end{equation*}
$$

If the quantization axis of the ${ }^{3} \overrightarrow{\mathrm{He}}$ is not pointing in the direction of the \vec{q} but in the direction given by the angles $\left(\theta^{*}, \phi^{*}\right)$, then the ${ }^{3} \mathrm{He}$ state can be written as:

$$
\left|\Psi_{3^{\mathrm{He}}}\left(\mathrm{~m}, \theta^{*}, \phi^{*}\right)\right\rangle=\sum_{m^{\prime}} D_{m^{\prime} \mathfrak{m}}^{(1 / 2)}\left(\phi^{*}, \theta^{*}, 0\right)\left|\Psi_{3^{\mathrm{He}}}\left(\mathrm{~m}^{\prime}\right)\right\rangle
$$

where $\left|\Psi_{3^{\mathrm{He}}}\left(\mathrm{m}^{\prime}\right)\right\rangle$ is quantized in direction of \vec{q}, and $D_{m^{\prime} m}^{(1 / 2)}\left(\phi^{*}, \theta^{*}, 0\right)$ are the spherical rotations [38]. Considering this in the calculation of the matrix elements for the nuclear transitional currents, one obtains an expilicit $\left(\theta^{*}, \phi^{*}\right)$ dependence of the following nuclear structure functions [39]:

$$
\begin{align*}
\mathrm{R}_{\mathrm{fi}}^{\pi L} & =\tilde{R}_{\mathrm{fi}}^{\pi L} \sin \theta^{*} \sin \phi^{*} \\
\mathrm{R}_{\mathrm{fi}}^{T^{\prime}} & =\tilde{R}_{\mathrm{fi}}^{T^{\prime}} \cos \theta^{*} \tag{2.16}\\
\mathrm{R}_{\mathrm{fi}}^{\Pi L^{\prime}} & =\tilde{R}_{\mathrm{fi}}^{\pi L^{\prime}} \sin \theta^{*} \cos \phi^{*},
\end{align*}
$$

where $\tilde{R}_{f i}^{T L}, \tilde{R}_{\mathrm{fi}}^{T^{\prime}}$ and $\tilde{R}_{f i}^{T L^{\prime}}$ reprents the reduced nuclear structure functions, which no longer depend on the target orientation. Independent of the $\left(\theta^{*}, \phi^{*}\right)$ remain the nuclear structure functions $R_{f i}^{\top}$, $R_{f i}^{\mathrm{L}}$ and $R_{\mathrm{fi}}^{T T}$. Considering Eqs. 2.16 in Eq. 2.15, the asymemtry for the (pd) breakup can be expressed as:

$$
\begin{equation*}
A_{\mathrm{pd}}\left(\theta^{*}, \phi^{*}\right)=\frac{v_{\mathrm{T}} \tilde{R}_{\mathrm{fi}}^{\top} \cos \theta^{*}+v_{\mathrm{T}^{\prime}} \tilde{R}_{\mathrm{fi}}^{\mathrm{T}^{\prime}} \sin \theta^{*} \cos \phi^{*}}{v_{\mathrm{L}} \mathrm{R}_{\mathrm{L}}+v_{\mathrm{T}} \mathrm{R}_{\mathrm{T}}+v_{\Pi \mathrm{T}} \mathrm{R}_{\Pi}+v_{\mathrm{TL}} \tilde{R}_{\mathrm{fi}}^{\pi /} \sin \theta^{*} \sin \phi^{*}} . \tag{2.17}
\end{equation*}
$$

An analogous approach can be utilized to obtain the asymmetry for the three-body breakup of ${ }^{3} \mathrm{He}$, where initial nucleus decays into two protons and a neutron. This time two reaction products remain undetected. Consequently, an additional integration over the direction of the relative momentum of the two undetected nucleons $\hat{p}_{\text {pn }}$ is required in the expression for the asymmetry [26]:

$$
\begin{equation*}
A_{p p n}=\frac{\int d \hat{p}_{\mathrm{pn}}\left(v_{\mathrm{T}^{\prime}} \mathrm{R}_{\mathrm{T}^{\prime}}+v_{\mathrm{T}^{\prime}} \mathrm{R}_{\mathrm{T}^{\prime}}\right)}{\int \mathrm{d} \hat{\mathrm{p}}_{\mathrm{pn}}\left(v_{\mathrm{L}} \mathrm{R}_{\mathrm{L}}+v_{\mathrm{T}} \mathrm{R}_{\mathrm{T}}+v_{\mathrm{T}} \mathrm{R}_{\mathrm{T}}+v_{\mathrm{T}} \mathrm{R}_{\mathrm{TL}}\right)} . \tag{2.18}
\end{equation*}
$$

In order to predict the behaviour of the asymmetries $A_{p d}$ and $A_{p p n}$, the response functions, given with Eqs. (2.13) must be know. Hence, the transitional nuclear currents J_{μ} must be determined, which describe transition of the hadronic system from the initial state $\left({ }^{3} \mathrm{He}\right)$ to the final hadronic states (pd, ppn), after an interaction with a virtual photon. There are various approaches for obtaining these currents [24, 25, 26]. Predictions made for E05-102 experiment are based on the Faddeev type calculations [26]. Calculations were performed for both longitudinal and transverse spin oriatations, providing us with predictions for both A_{x} and A_{z} asymmetrires.

