
7
Interpretation of Results

This chapter presents first attempt of the interpretation of the measured data. The
obtained asymmetries, presented in section 6.8, will be confronted by the theoreti-
cal predictions of the Bochum/Krakow group. The comparison with the calculations

will be done separately for all three reaction channels 3 �He(�e, e �d)p, 3 �He(�e, e �p)d and
3 �He(�e, e �p)pn. A special attention wil be dedicated to the first two channels, which are
experimentally under better control. The extraction and intepretation of the asymme-
tries for the latter channel is presently confined by an inaccurate separation of the three-
body breakup from the two-body breakup channel. The comparison with the previous
double-polarization asymmetry measurement from Mainz will also be performed. In
the end, the conclusions will be drawn, together with a summery of remaining open
problems and challanges for the future work.

7.1 The two-body breakup channel 3 �He(�e, e �p)d

The experimental asymmetries shown in Figs. 6.31 to 6.33, where proton is detected

by the BigBite are hybrids, combined of the asymmetries for the reactions 3 �He(�e, e �p)d

and 3 �He(�e, e �p)pn. The relative contribution of each reaction channel is governed by
the cross-section ratio for the two processes. To isolate asymmetry corresponding to the

reaction 3 �He(�e, e �p)d, the two-body breakup events (2BBU)must be separated from the
three-body breakup events (3BBU).

This is accomplished by inspecting the missing energy histogram, where the 2BBU
events generate a peak around EMiss = 5.5MeV, while 3BBU events gather arround
EMiss = 7.7MeV. The obtained peaks are usually smeared by the radiative losses and
limited resolutions of the spectrometers. The analysis has shown (see Fig. 7.1), that
for our data these effects are soo large, that two-body breakup peak can no longer
be distinguished from the the three-body peak. This represents an important obstacle
in the interpretation of our results and requires a precise Monte-Carlo simulation of
the experiment for proper description of the measured data and comparison with the
theory.

Unfortunatelly a detailed simulation for this experiment is not yet available. In-
stead, an approximate empirical approach was considered for first approximate ex-
traction of the 2BBU asymmetries. Obtained results are shown in Fig. 7.2. In this pro-
cedure measured (e, e �p) asymmetries were plotted as a function of missing energy.
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Figure 7.1— The reconstructed distributions of missing energy EMiss for reactions
3 �He(�e, e �p)

(left) and 3 �He(�e, e �p)d and 3 �He(�e, e �d)p (right). Plots show results for both kinematical settings
Q2 ≈ 0.35, 0.25 (GeV/c)2. Due to the radiative effects and poor spectrometer resolutions, the
2BBU and 3BBU peaks in the proton channel can not be distinguished.

Figure 7.2 — Mean asymmetries, averaged over the missing momenta between pMiss =
0 − 90MeV/c, shown as a function of missing energy EMiss. Left and right plot show lon-
gitudinal and transverse asymmetries for kinematical settings Q2 = −0.23 (GeV/c)2 and
Q2 = −0.3 (GeV/c)2 respectively.

Here only events with lowmissing momentum pMiss ≤ 90MeV/cwere acknowledged.
In this limit is the 3He-wave function dominated by the S-state, which encourages a
large asymmetry in the case of the 2BBU and almost a zero asymmetry for the 3BBU
(see Sec. ?? for more detail). The measured asymmetry agree well with this hypoth-
esis. We obtain a large positive asymmetry in region of small EMiss governed by the
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2BBU, which then evetually resonates to zero, at large EMiss , where 3BBU is expected
to dominate. A negative asymmetry in the middle region EMiss ≈ 15MeV is a result of
interactions between nucleons. The Mainz experiment [31] has described this with the
FSI, that generate a strong effect in the 3BBU channel at low EMiss, which then weakens
at higher EMiss. This also explains a rapid fall of the asymmetry at EMiss ≈ 6MeV, where
the 3BBU process starts to contribute.

Figure 7.3 — The longitudinal and transverse 3 �He(�e, e �p)d asymmetries for Q2 =
−0.23 (GeV/c)2 (left) and Q2 = −0.3 (GeV/c)2 (right). The asymmetries were determined by
selecting only expertimental with EMiss ≤ 1.6MeV.

An almost flat asymmetry at very low missing energies indicates a dominance of
the 2BBU reaction for EMiss � 2MeV. Relaying on this assumption, the 2BBU asym-
metries were extracted from the complete set of measuremnts, by selecting only events
with EMiss ≤ 1.6MeV. Both longitudinal and transverse asymmetries were obtained.
Results for both kinematical settings are gathered in Fig. 7.3.

The determined approximate 2BBU asymmetries are ready to be challanged by
the theoretical predictions. The calculations were performed by the Bochum/Krakow
group [?]. They were able to peform calculation of asymmetries for eleven different
kinematics points, whiha are gathered in Table 7.1 and shown in Fig. 7.4. Since they are
confortable performing calculations only for Q2 � 0.3 (GeV/c)2, points were selected
to cover the whole kinematical acceptance, for setting when HRS-L is positioned at
scattering angle of θHRS−L = 12.5◦. In a section with highest statistics, selected bin was
divided even further into three smaller bins. Kinematical points forQ2 > 0.3 (GeV/c)2,
that are accessible when HRS-L positioned at θHRS−L = 14.5◦ were not yet calculated.
The theory will therefore be tested mostly with the Q2 = −0.25 (GeV/c)2 data. How-
ever, since the two kinematical settings overlap in the middle region arround Q2 =
−0.3 (GeV/c)2, some checks could also be performed with the data, that were taken
with HRS− L at θHRS−L = 14.5◦.

Beside the data used to fixate the electron kinematics and properly orient the target
(θ∗, φ∗), the calculations require as an input also momentum of detected proton p̃ and
the polar angle θp between the momentum trasfer vector �q and proton momentum �p
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Table 7.1— The list of eleven kinematic points considered in the theoretical calculations. The
points are selected to cover the whole kinematical acceptance when HRS-L is positioned at in-
plane scattering angle θHRS−L = 12.5◦. The section with highest statistics was further divided
into three smaller bins. The Bochum/Krakow group is able to predict asymmetries for each of
the points separately. The size of the momentum transfer vector q for each combination of E ,
E � and θe stated in the table was obtaied by using Mainz kinemtic calculator [116].

Kinematic Points for Theory

i E [MeV] E � [MeV] θe [deg] q [MeV/c] ω [MeV]

1 2425.5 2.235 11.35 498.2 190.5
2 2425.5 2.268 11.35 488.0 157.5
3 2425.5 2.285 11.35 485.0 140.5
4 2425.5 2.302 11.35 485.0 123.5
5 2425.5 2.335 11.35 480.0 90.5
6 2425.5 2.235 12.45 538.7 190.5
7 2425.5 2.285 12.45 526.9 140.5
8 2425.5 2.335 12.45 519.8 90.5
9 2425.5 2.235 13.55 579.8 190.5
10 2425.5 2.285 13.55 570.7 140.5
11 2425.5 2.335 13.55 567.7 90.5

Figure 7.4— The electron kinematics accesible during the E05-102 experiment. Left and right
plots show results when HRS-L was positioned at θHRS−L = 12.5◦ and 14.5◦, respectively. The
whole kinematical coverage was divided into 17 sections. Theoretical calculations were per-
formed for the centers of first 11 bins (demonstrated with circles).

(see Fig. ??) for each selected bin in missing momentum pMiss. Considering the conser-
vation of energy and momentum in the non-relativistic limit, the θp is used to calculate
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Figure 7.5 — The two dimensional histograms showing the relation between prot5on angle
θp and its kinetic energy Tp ≈ p2/2Mp for each of the selected bins in pMiss. For these plots
only section of data, surrounding the 4th kinematics point, were considered (see Fig. 7.4). The
lengths of obtained bands are controlled by the remaining spread in ω and �q. Black lines
show solutions of Eq.(7.2) for a given pMiss and |�q| = 485.0MeV/c. Circles show (θp, p̃) pairs
considered in the theoretical calculations. For a selected kinematic point, the events with very
low missing momenta are not permited. Hence, theoretical point is missing in the histogram
for pMiss = 6MeV.
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Figure 7.6 — The two dimensional histograms showing the relation between prot5on angle
θp and its kinetic energy Tp ≈ p2/2Mp for each of the selected bins in pMiss. For these plots
only section of data, surrounding the 4th kinematics point, were considered (see Fig. 7.4). The
lengths of obtained bands are controlled by the remaining spread in ω and �q. Black lines
show solutions of Eq.(7.2) for a given pMiss and |�q| = 485.0MeV/c. Circles show (θp, p̃) pairs
considered in the theoretical calculations.
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the momentum of the detected proton p, independently of the input parameter p̃:

Conservation of Energy : ω+M3He = Mp +MMiss +
�p2

2Mp

+
�pMiss2

2MMiss

, (7.1)

Conservation of Momentum : �p2
Miss = �q2 + �p2 − 2|�p| |�q| cosθp . (7.2)

Here, pMiss andMMiss are the momentum and mass of the undetected deuteron. Insert-
ing Eq.(7.2) into Eq.(7.1), a quadratic equation for the proton momentum p is obtained:

p =
(2Mpq cos θpq)±

�
(2Mpq cos θpq)2 − 4(Mp +MMiss)(Mpq2 − 2MpMMiss −H)

2(Mp +MMiss)
,

whereH = ω+M3He−Mp−MMiss. Equation has two solutions, and algorithm chooses
the closest to the p̃. This way the input parameter p̃ serves only for selecting the physi-
cal solution of the equation. This kinematical walk arround is utilized as an protection
mechanism before any non-physical input combinations of p̃ and the polar angle θp.

In the analysis, the correct pairs (θp, p̃) for each pMiss bin were obtained from the
corresponding two-dimensional histograms. Here, only data located within a square
box arround the selected kinematics point (see Fig. 7.4) were considered . The obtained
distributions for the 4th kinematical bin are demostrated in Figs. 7.5 and 7.5. In spite
of the tight kinematical cuts, the accepted events still have some freeedom in ω and
�q. Consequently, data for each pMiss bin are not gathered in a single point, but form a
band. The shape of the band is dictated by the Eq. 7.2, while its length is governed by
the spread in omega and �q. The pairs (θp, p̃) conidered in the calculations are marked
with circles, and represent points, where all the data would be gathered, if the chosen
kinematical region would be reduced to an infinitizimally small section of data around
the chosen kinematical point. Unfortunatelly such narrow cuts not be performed on
data, because then all the statistics would be lost.

Once the input data was available, the theoreticians could perform calculations for
all eleven kinematic points. For each target orientation and each bin in missing mo-
mentum, they generated asymmetry as a function of the angle φp (see Fig. ??). The cal-
culated longitudinal and transverse asymmetry for the 4th kinmeatic point are shown
in Figs. 7.7 and 7.8, respectively.

The experimental results are not separated in terms of bins in φp. The theoretical
calculations must therefore be averaged over the angle φp in order to be able to com-
pared them to the measured asymmetries. This procedure is not trivial, since the φp

distribution depends strongly on both, selected kinematical point and pMiss. Fig. 7.9
shows the φp distribution for various pMiss, obtained for 4

th kinematic point. In the
region of low missing momenta, angles around φp ≈ 180◦ dominate. However, when
moving towards the highermissingmomenta, the events with phip ≈ 90◦, 270◦ become
superior . Since the theoretical asymmetries for pMiss ≥ 100MeV/c have a strong an-
gular dependence, is a proper averaging over the φq crucial for correct interpretation
of the calculations.

The appropriate averaging of the calculated asymmetries was achieved by gener-
ating the φp histograms for each pMiss in all eleven kinematic regions. The obtained
distributions were then considered as weights in the weighted average formula, that
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Figure 7.7— The theoretical predictions for the longitudinal 3 �He(�e, e �p)d asymmetry ALong =
A(θ∗ = 68◦, φ∗ = 0◦) as a function of an angle φp between reaction and scattering plane, for
missing momenta pMiss ≤ 300MeV. Presented asymmetries correspond to the results for the
kinematics bin No. 4. Calculations were provided by the Bochum/Krakow group [?].

Figure 7.8 — The theoretical predictions for the transverse 3 �He(�e, e �p)d asymmetry ATrans =
A(θ∗ = 156◦, φ∗ = 0◦) as a function of an angle φp between reaction and scattering plane, for
missing momenta pMiss ≤ 300MeV. Presented asymmetries correspond to the results for the
kinematics bin No. 4. Calculations were provided by the Bochum/Krakow group [?].
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Figure 7.9—The distributions
of φp at different pMiss, de-
termined for the events gath-
ered around the 4th kine-
matic point. At low missing
momenta, the angles aroung
φp = 180◦ dominate, while
at high missing momenta,
events with φp ≈ 90◦, 270◦

prevail.

was utilized for averaging of the asymmetries:

A(pMiss) =

�
φi
p
A(pMiss, φ

i
p)Nφi

p
�

φi
p
Nφi

p

,

whereφi
p goes over all bins in theφp(pMiss) distribution andNφi

p
represents the number

of events in each of the bins. A(pMiss, φ
i
p) represent calculated asymmetries shown in

Figs. 7.7 and 7.8, while A(pMiss) is the resulting average asymmetry for a particular
pMiss.

After the average asymmetries were calculated for all pMiss available for a selected
kinematic point, they could be compared to the theory. Separate comparisons were
done for each kinematic points. Such comparisons are only approximate since each of
the eleven calculated asymmetry describes only one section of data, while the experi-
mental asymmetries represent an average over whole acceptance. For a rigorous com-
parison, further averaging needs to be perfored over whole kinematical acceptance,
combining the theoretical asymmetries of all eleven kinematic points. This requires
an understanding of the asymmetry behavior in the region inbetween two calculated
points. The interpolation of the calculated asymmetries to the whole kinematic accep-
tance has not been addressed yet and represents one of the challanges for the future
work.

In spite of these open problems, the comparison of the predictions for individ-
ual kinematic points to the data already provides us with some important findings.
Fig. 7.10 shows the comparison of the data to the calculations for the most populated
kinematical point No. 4. It is also the only point, which can provide information on the
asymmetries at lowmissing momenta. For all other kinematic points provide informa-
tion only for higher missing momenta. The calculated asymmetry seems to agree well
with the measurements in the low missing momentum region. The theoretical calcula-
tions and measured data behave similarly also at higher missing momenta. However,
the experimtal asymmetry ALong seems to be descreasing much faster to zero than the
calculated one. The inspection of the rest of the calculations has shown, that predicted
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asymmetry in all the kinematical bins remains at ACalc.Long ≈ 0.04, or even increase to
higher values. Some examples are shown in Figs. ??. This means, that exprimental
asymmetries at high missing momnta could not be properly described by this theory,
even with the proper averaging of the calculations over the whole acceptance. Iden-
tical problems appear also when the calculations for 9th, 10th and 11th kinematic point
were confronted with the Q2 = −0.35 (GeV/c)2 measurements. Results are shown in
Fig. ?? Finding the reason for this persisting discrepancy between the data and the
theory therefore presents another dare that needs to be resolved in the future.

Figure 7.10—

7.2 Relation to elastic scattering on �p

In a very simple picture, the 3He ground-state can be imagined as a bound state of
a deuteron and a proton. In this case the spin-part of the 3He wave-function can be
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Figure 7.11—

Figure 7.12—

expressed in terms of Clebsh-Gordan coeficients as:

|J = 1/2,mJ = 1/2�3He =

�
2

3
|J = 1,mJ = 1�d |J = 1/2,mJ = −1/2�p

−

�
1

3
|J = 1,mJ = 0�d |J = 1/2,mJ = 1/2�p , (7.3)

where J and mJ represent the spin of a particle and the size of its third compponent,
respectively. The expression (7.3) can now be utilized to estimate the polarization of
the unbound proton inside the nucleus. When the 3He nucleus is polarized along the
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z-axis, the proton polarization Pp can be written as:

Pp = 3He �1/2, 1/2| 2 σ̂
p
z P3He |1/2, 1/2�3He = P3He

�
2

3

�

−
2

2

�

+
1

3

�
2

2

��

= −
1

3
P3He ,

where P3He is the effective polarization of the helium, and σ̂
p
z is the Pauli matrix, consid-

ered for projecting proton spin to the z-axis. When 3He is 100% polarized, the proton
polarization is Pp ≈ −33.3%. The negative sign of polarization means, that proton spin
is predominantly oriented in the direction opposite to the nuclear spin.

This naive model of the 3He can be further used to approximately describe the two-

body electrodisintigration process 3 �He(�e, e �p)d at low missing momenta. In this limit,
the virtual photon interacts only with a proton, while leaving the deuteron as a spec-
tator at rest (see Sec. ??). By neglecting any ineraction between proton and deuteron,
this process can be simpifiled to the elastic scattering of electrons on polarized proton

target �p(�e, e �p). This means, that the extracted 3 �He(�e, e �p)d asymmetries at pMiss ≈ 0,
should agree with the elastic proton asymmetry A�e�p, corrected for the effective proton
polarizatiom inside the 3He:

A2BBU(pMiss = 0, θ∗, φ∗) ≈ −
1

3
A�e�p(θ

∗, φ∗) . (7.4)

Figure 7.13—

To test this hypothesis, the asymmetry ratios A2BBU/A�e�p were calculated for four
data points closest to the pMiss = 0 (see Fig. 7.2). The elastic asymmetries corresponding
to the selected datapoints were calculated using Eq. (??), and are shown in Fig. 7.13
(left). Determined ratios are presented in Fig. 7.13 (right). Results are nicely gathered
around the predicted value (green line). By calculating the average value of four data
points (blue line), the effective polarization of the proton was estimated to be:

�Pp� = −0.299± 0.0173 ,

which agrees well with value predicted in Eq. (7.4). This speeks in favor of the devised

toy model and indicates that behaviour of the 3 �He(�e, e �p)d asymmetries at lowmissing
momenta are understood.
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7.3 The three-body breakup channel 3 �He(�e, e �p)pn

Figure 7.14 — The theoretical predictions for the longitudinal 3 �He(�e, e �p)pn asymmetry
ALong = A(θ∗ = 68◦, φ∗ = 0◦) as a function of an angle φp between reaction and scattering
plane, for missing momenta pMiss ≤ 300MeV. Presented asymmetries correspond to the results
for the kinematics bin No. 4. Calculations were provided by the Bochum/Krakow group [?].

As already disscussed in Sec. At the moment only MCEEP is available.

7.4 Relation to previous results

7.5 The deuteron channel 3 �He(�e, e �d)p
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Figure 7.15—The theoretical predictions for the transverse 3 �He(�e, e �p)pn asymmetry ATrans =
A(θ∗ = 156◦, φ∗ = 0◦) as a function of an angle φp between reaction and scattering plane, for
missing momenta pMiss ≤ 300MeV. Presented asymmetries correspond to the results for the
kinematics bin No. 4. Calculations were provided by the Bochum/Krakow group [?].

Figure 7.16—
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Figure 7.17—
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Figure 7.18—
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Figure 7.19—The theoretical predictions for the longitudinal 3 �He(�e, e �d)p asymmetryALong =
A(θ∗ = 73◦, φ∗ = 0◦) as a function of an angle φp between reaction and scattering plane, for
missing momenta pMiss ≤ 300MeV. Presented asymmetries correspond to the results for the
kinematics bin No. 11. Calculations were provided by the Bochum/Krakow group [?].

Figure 7.20— The theoretical predictions for the transverse 3 �He(�e, e �d)p asymmetry ATrans =
A(θ∗ = 163◦, φ∗ = 0◦) as a function of an angle φp between reaction and scattering plane, for
missing momenta pMiss ≤ 300MeV. Presented asymmetries correspond to the results for the
kinematics bin No. 11. Calculations were provided by the Bochum/Krakow group [?].
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