Discussion with Doug

Miha Mihovilovic

29. oktober 2008

1 Ratios between the central momenta of the spectometer

My basic formula for fitting data:

$$
\begin{equation*}
(1+\delta) E_{c}+\Delta E_{L o s s}=\frac{E_{0}}{1+\frac{E_{0}}{M}(1-\cos \theta)} \tag{1}
\end{equation*}
$$

To stabilize my fits I have decided to calculate the ratios between the central momenta of the spectrometer, using the Tantalum data from different kinematics:

$$
\begin{equation*}
\frac{\left(1+\delta^{1}\right) E_{c}^{1}+\Delta E_{\text {Loss }}}{\left(1+\delta^{i}\right) E_{c}^{i}+\Delta E_{\text {Loss }}}=\frac{\frac{E_{0}}{1+\frac{E_{0}}{M}\left(1-\cos \theta^{1}\right)}}{\frac{E_{0}}{1+\frac{E_{0}}{M}\left(1-\cos \theta^{i}\right)}} \approx 1 \tag{2}
\end{equation*}
$$

where $i=2,3,4, \ldots$ and denotes characterizes different kinematics. Assuming that right side of the equation is approximately 1 , we get:

$$
\begin{equation*}
\left(1+\delta^{1}\right) E_{c}^{1}+\Delta E_{\text {Loss }}=\left(1+\delta^{i}\right) E_{c}^{i}+\Delta E_{\text {Loss }} \tag{3}
\end{equation*}
$$

Because energy losses are same on both sides of the equation, we can eliminate them and finally get:

$$
\begin{equation*}
\frac{\left(1+\delta^{1}\right)}{\left(1+\delta^{i}\right)}=\frac{E_{c}^{i}}{E_{c}^{1}} \tag{4}
\end{equation*}
$$

I have used these ratios in my fitting functions. When I calculate these ratios I get the following values:

Ratio $\frac{E_{c}^{i}}{E_{c}^{1}}$	Scat.Angle	Value
HRSL-2	24.0	1.0
HRSL-3	28.3	0.99388
HRSL-4	28.3	0.99388
HRSL-5	32.5	0.98695
HRSL-6	16.0	1.0
HRSR-All	All Angles	0.990914

2 Energy Loss calculation

To calculate the energy losses of the electrons Mceep uses the Bethe-Bloch equation which should be used only for heavy ions and not for electrons. I have examined what is the difference between the energy losses calculated with the Electron-Bethe-Bloch formula and Hadron-Bethe-Bloch formula. The results of my simulation are shown in the graphs 1-4. From these results we can conclude that difference between these two formulas is very small. Therefore it is all the same which formula we use to calculate the energy losses. I have decided to use the same formula as Mr. Ulmer did and got the following results:

Target	E_{0} without energy losses	E_{0} with energy losses	$\Delta E_{\text {Loss }}$
$L H_{2}$	348.442	347.181	1.261
$L D_{2}$	354.1237	352.709	1.4147
${ }^{1} 2 C$-single foil	359.000	358.569	0.431
${ }^{1} 2 C$-optics	359.000	358.462	0.538
Ta	359.934	359.587	0.347

Slika 1: Energy losses for the Hydrogen target

Slika 2: Energy losses for the Deuterium target

Slika 3: Energy losses for the Carbon target

Slika 4: Energy losses for the Tantalum target

3 Results - Fitting only H and Ta

When I fit my fitting function only to the H and Ta data, I get the following results:

$$
\begin{array}{r}
E_{c}^{1}=356.415 \mathrm{MeV} \\
E_{0}^{H R S L}=362.917 \pm 0.117 \mathrm{MeV} \\
E_{0}^{H R S R}=362.925 \pm 0.100 \mathrm{MeV} \tag{7}
\end{array}
$$

4 Results - Fitting all data points

When I use all data to fit my function, I get the following results:

$$
\begin{array}{r}
E_{c}^{1}=356.56 \mathrm{MeV} \\
E_{0}^{H R S L}=363.059 \pm 0.105 \mathrm{MeV} \\
E_{0}^{H R S R}=363.06 \pm 0.082 \mathrm{MeV} \tag{10}
\end{array}
$$

