onlineGUI HOWTO

Bryan Moffit
College of William and Mary

April 26", 2004
(Updated December 5 2004)

Abstract

This paper provides a description of the basic idea and functionality of the on-
lineGUI written for online Replay and Monitoring of ROOT based analyses. A de-
scription of the .cfg (configuration) files will be followed by a brief overview of the
GUI layout.

1 Introduction and Motivation

Graphical User Interfaces (GUIs) are useful for providing a user with easy access to useful
information, while keeping its more complicated and repetitive structure (e.g. methods for
drawing buttons) less visible. The primary purpose for writing the onlineGUI was to ease
the transition of Shift Workers from the use of PAW Kumacs for online analysis to the new
Hall-A analyzer which uses C++ and ROOT libraries. As a constraint, this GUI was written
to be portable to ANY analyzer that writes its histograms and output to a ROOT file.

2 Compilation and Execution

To compile and execute the onlineGUI, one must be at a ROOT CINT prompt. The may
be accomplished by running the root, or in some situations, running the analyzer’s exe-
cutable without any commandline options. Compiling the onlineGUI is accomplished with
the command:

.L online.C+

This will tell CINT to compile the onlineGUI (if the source code has changed), and load it
into memory. Execution of the onlineGUI can then be done with:

online(‘‘standard’’)

where ‘ “standard’’ (quotation marks are required) is the basename of the configuration
file (.cfg). If properly configured (explained in the next sections), one may also provide a
runnumber:

online(‘ ‘standard’’,9917)
Compilation and execution may also be done within the same command with:

.x online.C+(‘‘standard’’,9917)

2.1 Generation of sample plots

The onlineGUI also has the capability of generating a set of sample plots, for a given config-
uration and runnumber. This is done by providing one more argument on the commandline:

.x online.C+(‘‘standard’’,9917,kTRUE)
The output is a PostScript file, it’s name with the format:
sampleplots_9917.ps

Each page defined in the .cfg file is converted into a PostScipt page, with the title at the
top of each page.

3 Configuration Commands

The configuration files must be located in the same location that the onlineGUI is executed,
and must have the suffix .cfg. An example (standard.cfg) is provided in the Appendix.

rootfile

At a bare minimum, a configuration file should have an entry for the rootfile command:
rootfile ROOT.file_location

This command provides the onlineGUI with the ROOTHfile in which to find its histograms
to plot. ROOT file_location may be relative to the directory in which the onlineGUI is
executed, for example:

rootfile Afile.root
or an absolute file location can be indicated:
rootfile /adaql3/workl/rootfiles/e29110 phys.root

The relative filename location is useful for situations when only the histograms from the last
analyzed file is to be plotted. To implement this, the analysis routine creates a softlink to
Afile.root.

protorootfile

One means of informing the onlineGUI the means to construct the rootfile name and location
is with the protorootfile command:

protorootfile ROOTFILE XXXXX.root

where ROOTFILE_ is the file prefix (which may also contain absolute directory location).
When the onlineGUI is executed with a non-zero runnumber option, XXXXX is replaced with
that runnumber (the five X’s are important in the configuration, but the number of digits of
the runnumber is not).

goldenrootfile

This command notifies the onlineGUI of a rootfile that will be used to show “golden” his-
tograms, along with the current run’s histograms (this command does not work with TTree
variables). Utilize this command by simply indicating the location of this “golden” rootfile:

goldenrootfile /adaql3/workl/rootfiles/e29110 phys 9916.root

guicolor

This command provides the user with the ability to change the default background color
(lightblue, or lightgreen if the watchfile command is used). This command is particular
useful if the gui is displayed on terminals that have trouble showing the default color (e.g.
SUN terminals). Usage of this command is simple:

guicolor color

If the color is not recognized by root (using the TGClient: :GetColorByName ()), the default
onlineGUI colors will be used.

definecut

This command is only useful for drawing variables from TTrees. If a cut is used multiple
times within a configuration file, it may be desirable to use the definecut command:

definecut cut-name cut_definition

where cut_name is the name of the cut to be substituted by cut_definition. cut_definition can
be any logically expression normally used with the second option of the TTree: :Draw() com-

mand. There are no limits on how many definecut’s that can be defined in a configuration
file.

watchfile

If a rootfile is being generated from online data (sometimes gathered from the Event Transfer
(ET) system) and is periodically stored in a rootfile, the online GUI can update its canvases
every two seconds if the watchfile command is indicated. Use of this command effectively
turns the onlineGUI into an online Monitor.

newpage and its subcommands

Th newpage command tells the onlineGUI that the next set of commands are defined for
the selected canvas. Used alone, the onlineGUI will determine the number of pads required
to plot all of the indicated histograms. The user may opt to tell the GUI the layout of the
pads in the canvas with the command:

newpage COLUMNS ROWS

where COLUMNS and ROWS are positive, non-zero integers. One may also indicate that
the plots are to have a log-scale along the Y-axis with the command:

newpage COLUMNS ROWS logy

A title for the present canvas can be indicated with the subcommand:
title Canvas Title

Any subcommand provided (besides the title subcommand) after newpage is then inter-
preted as a histogram in the ROOT file to be plotted. Any TH1, TH2, TH3 objects may be
plotted by just referring to their object name, for example (for plotting Rsalal0):

newpage 1 1 logy
title Just one TH1D
RsalalO

If the .cfg contains the goldenrootfile command, one may opt to exclude this specific
histogram from being shown along with the “golden” histogram by including noshowgolden,

e.g.

newpage 1 1 logy
title Just one TH1D
RsalalO noshowgolden

Any expression normally used in a TTree::Draw() can also be plotted with a similar
command (for asym_bcm1):

newpage 1 1 logy
title Tree Variable
asym_bcml

The onlineGUI will automatically determine if the object name provided is one derived from
THI1, or is a Tree Variable. One limitation of this method, is that one may not use the same
tree variable name in separate trees. If this is the case, the onlineGUI will just plot the
variable in the first tree in which it finds that variable.

A second option may be used as a cut to that histogram, and may contain a definecut
name that has been defined. For example:

definecut AsymmetryCut abs(asym_bcml)<5000

newpage 1 3
title Tree Variables
asym_bcml ok_cut
asym_bcml AsymmetryCut

asym_bcml:asym_bcm?2 ok_cut&& (AsymmetryCut)

More advanced commands for drawing TTree variables include:

-title “Title” Replaces the default TTree::Draw() title with that specified within
quotes. Note that the quatation marks are vital for this option to
work correctly.

-tree TreeName Informs the onlineGUI which tree to find the variables it needs to
draw. This option is effective when drawing complicated functions of
T'Tree variables.. E.g.
abs(asym_bcml) :m_ev_ num -tree P

-type DrawType Informs the onlineGUI how to draw the specifed variables.

Types include: scat, box, prof
If this option is not specified for 2D plots, the box
type will be used.

Finally, one can utilize the macro subcommand to draw more complicated/complex his-
tograms within the canvas. This method is quite useful because one still has the ability to
pass command optics to the macro. The macro must be located in the same directory that
the onlineGUI is executed. An example is shown below (with the name of the histogram
passed to the macro routine vdc_plot.C(TString)):

newpage 2 2
title Macro Draw
macro vdc_draw.C(‘ ‘Luleff’’)
macro vdc_draw.C(‘ ‘Lu2eff’’)
macro vdc_draw.C(‘ ‘Lvieff’’)
macro vdc_draw.C(¢ ‘Lv2eff’’)

// Contents of vdc_plot.C
void vdc_plot(TString vHist) {

TH1D *vdc = (TH1D*)gDirectory->Get(vHist);

gStyle->SetOptStat(0);
vdc->SetMinimum(0.8) ;

vdc->Draw() ;

4 Helper Routines

The onlineGUI utilizes two Helper Routines in order to obtain information that may be
specific to the type of ROOT analysis performed. These routines must be located in the
same directory that the onlineGUI is executed. A compilation error will occur if these files
do not exist.

GetRootFileName.C

This routine supplies a ROOT filename, if the onlineGUI is run with a non-zero runnumber
option. NOTE: The protorootfile, if present in the configuration file, will override this
routine. In the case that this routine uses a class that is not included in the standard ROOT
libraries, the shared library that contains this class must be loaded before the onlineGUI is
executed. An example of this routine is shown below. In this case, TaFileName is a C++
Class specific to the Parity Analysis (PAN).

#include "src/TaFileName.hh"

TString GetRootFileName(UInt_t runnumber)
{

TaFileName: :Setup (runnumber, "standard");

TString filename = (TaFileName ("root")).Tstring();
return filename;

GetRunNumber.C

This routine supplies a runnumber for the current ROOT file. The same situation regarding
the loading the shared libraries in the previous subroutine, applies here. In the following
example, THaRun is a C++ class specific to the Hall-A Analyzer.

#include "/opt/analyzer-1.1/src/src/THaRun.h"

UInt_t GetRunNumber ()
{

THaRun* runinfo = (THaRun*)gROOT->FindObject("Run_Data;1");
if (runinfo==NULL) return O;

return runinfo->GetNumber () ;

}

If there is not a method contained with a user’s analyzer to retrieve the run number of the
rootfile, one should write a routine that simply returns 0.

5 GUI Layout

Radio B
Buttons | blumi1:ev_num {{ev_num>1000)} |
Canvas - %o d
Title 15000 —
10000 —
& Blumi vs event number 5000 —
Mok Asym: Flumi =
 Narm ssym: Flumi corr B .:. S .
e : T AN ol i | S R <107
sym: Flumi vs BCOM1 0 500 1000 1500
blumi2:ev_num {{ev_num>1000)} |
15000 — :
- mE it o
C P Eél?‘:":"i“:':':n::l:n:m::l:n:l
100000— i Do.iiio ol Tnnont Tttt Sl
Update 5000 — i
Button C :
I Z
= 1 i 1 R . R i 1 . <10
/V 0 500 1000 1500
Current
Canvas
Friy et - Fun #1500 Print To E”el
Navigation EXIT Run Print
Buttons Button Number Button

The onlineGUI layout for a sample configuration is shown above. On the left-hand-side,
radio buttons indicate which canvas is currently shown along with their canvas title. Each
radio button is “click-able” to allow for non-consecutive navigation.

An update button containing a picture Wile E. Coyote (Super Genius) is not just “eye-
candy”. It’s function is to redraw the current canvas (useful if the macro subcommand is
changed during onlineGUI execution). OR if the watchfile is defined in the configuration
file, this button will clear all canvases so that they can be filled starting with the most recent
events.

On the bottom of the GUI, the Next and Prev navigation buttons allow the user to go
back and forth through the canvases one at a time. The Exit GUI button closes the GUI.
And the Print to File button brings up a Save File dialog box:

7

Save in |':5] pan

2] svpics [Joutput [onir,
Cacws dpandb Fpan

L:]analyzerjanguin I:lpanguin Epan__
L:]cudaclass L_jresults Epan__
[:]db !:lsrc D #ron
[C3doe Cutits 2 e
[Cdrmacra [Fibpar so G+ et

4] | A

File name: I Save |
Files of type: | &1l files (%) =l Cancel |

allowing one to save the current canvas as a GIF, PostScript, Encapsulated PostScript,
ROOT macro, or a histogram object contained within a ROOTFILE. This button is particularly
useful for generating example online histograms for Shift Workers to cross-check with current
runs.

6 Known Limitations/Bugs

The current version of the onlineGUI was used during the Jefferson Laboratory experiments:
E00-110 and E03-106 (DVCS on the proton and neutron). The only observed bug has been
when the onlineGUI is executed in the same CINT window after a Hall-A analyzer process
has executed. Exiting CINT with the .q command results (sometimes) in an interpreter
error. This behavior does not manifest itself if the same is done with the Parity Analyzer.

The only known limitation at this time, is that scatterplots performed when issuing a
Tree::Draw(), cause a memory leak. This bug was fixed in ROOT versions > 4.00/04.

If you have a comment or suggestion, please contact Bryan Moffit(moffit@jlab.org).

7 Appendix: A sample configuration file

Configuration file for the online GUI

This file is for checking luminosity monitor data

All lines containing "#" are treated as comments (ignored)
Last line MUST be blank.

Multiple spaces are treated as one space.

Only Tree variables are in the PAN rootfile.

(No histograms)

The default rootfile to look for.
rootfile pan.root

If the onlineGUI is run with the runnumber option,
replace the X’s below with the runnumber.
protorootfile /adaqll/workl/parity/parity04_XXXXX_standard.root

Some defined cuts

only view events greater than 1000 in the R tree.
definecut evcut (ev_num>1000)

only view the last 900 pairs in the P tree.
definecut asymevcut (Entries$-Entry$)<900

Uncomment this line to monitor events as they are written to the rootfile
#watchfile

Begin the canvas definitions

newpage 1 2
title Blumi vs event number
blumil:ev_num evcut -title ¢ ‘BLumil’’
blumi2:ev_num evcut -title ¢ ‘BLumi2’’

newpage 1 2
title Norm Asym: Flumi
asym_n_flumil (asymevcut)&&ok_cut -title ¢‘FLumil’’
asym_n_flumi2 (asymevcut)&&ok_cut -title ¢ ‘FLumi2’’

newpage 1 1
title Norm Asym: Flumi corr
asym_n_flumil:asym_n_flumi2 (asymevcut)&&ok_cut

newpage 1 2
title Asym: Flumi vs BCM1
asym_flumil:asym_bcml (asymevcut)&&ok_cut
asym_flumi2:asym_bcml (asymevcut)&&ok_cut

