
SoLID Simulation Forward Issues

Seamus Riordan
Stony Brook University

seamus.riordan@stonybrook.edu

March 26, 2015

Seamus Riordan — March 2015 SoLID Simulation 1/9

Personal Issues and Lessons Learned

mySQL server interface for general development arduous - need
connectivity to read in geometry, get field map parameters, and
decode results. Is a shared and largely uncontrolled space

Storing floating point intermediately as text is a poor practice

EVIO primary output - Present structure hasn’t supported arrays,
only been used as intermediate before getting translated to ROOT
trees, and is the only option

Has no intrinsic physics generators, no good method to handle
weighted generators, asymmetries

Building is intensely cumbersome and has wasted lots of time -
many dependencies and environment variables required and are not
optional (big packages like Qt and obscure separate packages like
EVIO)

Requests for features don’t go to people responsible to
collaboration, features in future versions don’t meet our needed
reponse time scales

Our code spread across at least three repositories

Methods to overcome these are workarounds and kludges

Seamus Riordan — March 2015 SoLID Simulation 2/9

Personal Issues and Lessons Learned II

Mixing inputs between command line (which can get really
long), multiple text files, and SQL is messy

Useful GUIs are critical

Frequent, dramatic changes in code base are frustrating and
obnoxious

Small tweaks to code base and experimentation are very useful

Having to require redudundant values from multiple sources
and requiring “by hand” consistancy at various stages
between multiple parties is a recipe for wasting time

JLab is difficult to deal with about anything requiring external
access and has a tendancy to not care about user needs
outside of their firewall

Seamus Riordan — March 2015 SoLID Simulation 3/9

Things I’ve learned from other projects

Retrospection of all inputs, code base, and build environment has saved me lots
of time and debugging frustration

Simple build systems that allow optional packages and “just work” on anything
with Geant4 and ROOT installed saves me a lot of time supporting other users

Structuring general geometries with a few (or more) numerical inputs is not
necessarily “bad”, especially for lots of small variations on a similar theme

GDML is a pain to work with for complex geometries

Users will force you to work across lots of different environments and don’t
typically have the skills to solve build problems on their own and frequently
can’t install dependencies themselves

git is a really great versioning system for this type of work - github managed
JLab repositories I think have been very successful

CMake is widely installed but can be a bit esoteric for complicated situations,
however so far has only required one knowledgable person and “just works”

Seamus Riordan — March 2015 SoLID Simulation 4/9

Framework Issues and Wish Lists

Things that I would like in a simulation

Being able to run locally and out of the box -
no required external servers, no offsite servers
(but as optional is probably desirable)

Can build and run with minimal external
libraries

Output goes (at least) directly to ROOT, but
also must be readable as pseudodata into
analysis framework

All input (especially geometry configuration)
is saved with output, is immutable, and in a
“comparable” way

No redundant inputs (or at least minimized)

Analysis framework can get all it needs to
know about how to handle simulation from
the simulation output

Digitization stages are optional, maybe even
a separate analysis stage

Run Info

Metadata

Run Info

Metadata

Complete

database

SoLID Unified

Simulation/Analysis

Framework

Database

(text, sql?, ...)

DB API

Input Macro

IO

Read once

DetectorConstruction

Geant4/ROOT

Simulation ROOT output
CODA DAQ Binary

(real data)

SoLID analyzer

sim decoder DAQ decoder

Event processing
Relevant

database

parameters

IO

Tracks,

clusters,

PID info,

etc

Friends

Friends

Final Output ROOTfile

Hits,

detector

output

Complete

database

Hits,

detector

output

Event−by

event

Sim data/

truth data

Seamus Riordan — March 2015 SoLID Simulation 5/9

Issues to be considered

Common databasing between simulation and analysis
framework

Need to examine potential analysis frameworks - likely to drive
what we want for a simulation
Robust SQL is important, text files do have their advantages,
abstracting to multiple systems with a common storage
class/format might be something to shoot for (makes many
“practical” problems external to software development)
Databasing tools will need to be developed with this

How to incorporate generators

How to “mix” events

Often want combined results from many single electrons
through target, or that with different generator

Seamus Riordan — March 2015 SoLID Simulation 6/9

Issues to be considered - II

Input minimization - scheme needs to be carefully designed

How geometry is handled - some get very complicated (see
baffles)

Output standardization - scheme needs to be carefully
designed

Digitization handling

Separate packages or optional flags?
How far does handling go?
Keep analysis framework “agnostic”?

GUI and response visualization development

Repository and code management

Do we fork something for collaboration control if we use any
existing framework?

Seamus Riordan — March 2015 SoLID Simulation 7/9

Generators

Generators are available for lots of processes
Not sure if this is an issue for now

Prevertex external radiation,
MS included

Moller

ep elastic

Internal radiation included

DIS with APV

Inelastic (Christy/Bosted)

Ported to C, could include
APV

π+/−

Wiser fits with EPA and
Tiator/Wright

Hyperons forthcoming

Pythia and Hall D
generators will be important

Seamus Riordan — March 2015 SoLID Simulation 8/9

FIN

Seamus Riordan — March 2015 SoLID Simulation 9/9

Recreation

root [1] .ls

TFile** remollout_ep_6.root

TFile* remollout_ep_6.root

KEY: TTree T;1 Geant4 Moller Simulation

KEY: remollRunData run_data;1

root [2] run_data->Print()

git repository info

commit 8a5fff7008edeb3543c7899da86c67bbe5eb1856

Merge: 818f894 4365e2d

Author: Seamus Riordan <sriordan@physics.umass.edu>

Date: Tue Mar 5 14:19:07 2013 -0500

Merge branch ’master’ into optical

optical

.... Seamus Riordan — March 2015 SoLID Simulation 9/9

Recreation

git checkout 8a5fff7008edeb3543c7899da86c67bbe5eb1856

will restore to that version
To extract built GDML files

root [3] run_data->RecreateGDML()

or

root [3] run_data->RecreateGDML("new path")

Seamus Riordan — March 2015 SoLID Simulation 9/9

