- 1. Using SBS for new C-REx
- 2. Strange Quark Program
- 3. Parity-Violating Deep Inelastic Scattering

Robert Michaels

Jefferson Lab

INT Workshop, 2019 Weak Elastic Scattering

Thomas Jefferson National Accelerator Facility

Parity Violating Asymmetry

Electron scattering

$$A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \sim 10^{-4} \times Q^2 \sim 10^{-6}$$

Applications of A_{PV} at Jefferson Lab

- Nucleon Structure
 Strangeness s s in proton (HAPPEX, G0 expts)
- Test of Standard Model of Electroweak $\sin^2 \theta_W$

e - e (MOLLER) or e - q (PVDIS) elastic e - p at low Q² (QWEAK)

• Nuclear Structure (neutron density) : PREX, CREX

For a possible future C-REX at higher Q²

Super Bigbite Spectrometer

- Magnet: 48D48 46 cm gap, 2-3 Tesla*m
- Solid angle is 70 msr at angle 15 deg.
- GEM chambers with 70 μm resolution
- momentum resolution is 0.5% for 5 GeV/c
- angular resolution is 0.5 mr

Parameters of SBS

	$\theta_{central},$	Ω ,	D,	Hor. range,	Vert. range,
	degree	msr	meter	degree	degree
Solid angle	3.5	5	9.5	± 1.3	± 3.3
	5.0	12	5.8	± 1.9	± 4.9
	7.5	30	3.2	± 3	± 8
	15	72	1.6	± 4.8	± 12.2
	30	76	1.5	± 4.9	± 12.5
Resolution:					
Momentum =>	$\Rightarrow \frac{\sigma_p}{P} = 0.0029 + 0.0003 \times p[\text{GeV}]$				
Angular =>	$\sigma_{ heta}~=~0.14~+~1.3/p~~[{ m GeV}],~{ m mrad}$				
Momentum acceptance =>	$oldsymbol{P}$ range f	rom 2	2 - 10	, G	eV/c

Historical Review: Strange Quarks in Nucleons

- Parity violating electron scattering provides a third, independent constraint on the vector form factors of the nucleon.
- Early theoretical motivations to look for strangeness effects (s s), for example:

D.B. Kaplan, A. Manohar Nucl. Phys. B310 (1988) 527

• Here I briefly summarize the experimental and theoretical conclusions that the strangeness form factors are "small", i.e. at most a few percent of the electromagnetic FF.

Quark Currents in the Nucleon

R.D. McKeown, Phys. Lett. B **219** (1989) 140 D.H. Beck, PRD **39** (1989) 3248.

Measure
$$G^{\gamma,p}, G^{Z,p}, G^{\gamma,n}: G \sim \langle N | \sum_{i} e_{i} \overline{q}_{i} \Gamma_{\mu} q_{i} | N \rangle$$

e.g. $G^{\gamma,p}_{E,M} = \frac{2}{3} G^{u,p}_{E,M} - \frac{1}{3} (G^{d,p}_{E,M} + G^{s,p}_{E,M})$

Assume charge symmetry $G^{u,p} = G^{d,n}$ $G^{d,p} = G^{u,n}$ $G^{d,p} = G^{u,n}$ $G^{s,p} = G^{s,n}$ $G^{s,p} = G^{s,n}$ $G^{s,p} = G^{s,n}$ $G^{u}_{E,M} = (3 - 4\sin^{2}\theta_{W})G^{\gamma,p}_{E,M} - G^{Z,p}_{E,M}$ $G^{d}_{E,M} = (2 - 4\sin^{2}\theta_{W})G^{\gamma,p}_{E,M} + G^{\gamma,n}_{E,M} - G^{Z,p}_{E,M}$ $G^{s}_{E,M} = (1 - 4\sin^{2}\theta_{W})G^{\gamma,p}_{E,M} - G^{\gamma,n}_{E,M} - G^{Z,p}_{E,M}$

Measuring Strange Vector Form Factors

For spin=0,T=0 ⁴He: G^s_E only ! nuclear corrections: forward angle, low Q² only For deuterium: Enhanced G_A Back-angle quasi-elastic.

20 year World-Wide Effort on Strange Quarks

SAMPLE

open geometry, integrating, back-angle only

Open geometry

Fast counting calorimeter for background rejection

Forward and Backward angles

Precision spectrometer, integrating

Forward angle, also ⁴He at low Q²

Fast counting with magnetic spectrometer + TOF for background rejection

Forward and Backward angles over a range of Q²

Kinematics of World Data

A4

Open geometry

Fast counting calorimeter for background rejection

 G_{F}^{s} + 0.23 G_{M}^{s} at Q² = 0.23 GeV² $G_{E}^{s} + 0.10 G_{M}^{s}$ at $Q^{2} = 0.1 GeV^{2}$ G_{M}^{s} , G_{A}^{e} at $Q^{2} = 0.23 \text{ GeV}^{2}$

Fast counting with magnetic spectrometer + timing for background rejection

 $G_{F}^{s} + \eta G_{M}^{s}$ over Q² = [0.12,1.0] GeV² G_{M}^{s} , G_{A}^{e} at Q² = 0.23, 0.62 GeV²

HAPPEX G_{F}^{s} + 0.39 G_{M}^{s} at Q^{2} = 0.48 GeV² Precision spectrometer, integrating

 $G_{E}^{s} + 0.08 G_{M}^{s}$ at $Q^{2} = 0.1 \text{ GeV}^{2}$ G_{F}^{s} at Q² = 0.1 GeV² (⁴He) G_{F}^{s} + 0.48 G_{M}^{s} at Q^{2} = 0.62 GeV²

Example: HAPPEx

Clean separation of elastic events by HRS optics

Large dispersion & heavy shielding reduce backgrounds at focal plane

→ Locate detector over elastic line and integrate the flux

Brass-Quartz Integrating Cerenkov Shower Calorimeter

Example: HAPPEx ¹H Results (2005) Asymmetry (ppm) **Parity Violating Asymmetry** 0 A_{raw} correction ~3 ppb **Helicity Window Pair Asymmetry** # Pairs = 25.3 M -3 **RMS = 538** 10⁶ 5 10 0 10⁵ 10⁴ 10³ 10² ±0.04 (syst) 10 1000 2000 3000 4000 -4000 -3000 -2000 -1000 0 Uncorrected Detected Asymmetry (ppm)

 $Q^2 = 0.1089 \pm 0.0011 GeV^2$

 A_{raw} = -1.58 ppm \pm 0.12 (stat)

Combining results from forward-angle proton scattering (similar beam energies)

Additional data at backward angles, and ²H and ⁴He target

Qweak result consistent with Std. Model w/ no strangeness $A_{-} = -226.5 \pm 7.3 \pm 5.8 \ ppb, \ at < Q^2 > = 0.0248$

Combining results from forward-angle proton scattering (similar beam energies)

• Additional data at backward angles, and ²H and ⁴He target

Summary: Strange Quarks in Protons

•

- Strange form factors arise from quantum fluctuations: s s pairs
- Experimentally, these form factors are small, less than a few percent of proton EM FF.
 - Precise, direct lattice QCD agree (T. Doi, et al) agree with earlier "lattice + chiral extrapolation" (Leinweber and Thomas) and with experiment.

T. Doi, *et.al.* Phys Rev D **80** (2009) 094503 (xQCD Collaboration)

Deep Inelastic Scattering

- Parity violation arises from axial couplings either at the electron or at the quark.
- PVDIS emphasizes the latter: the quark's chirality preference when participating in the in the weak force.

$$2C_{2u} - C_{2d}$$

- This has been measured twice in 40 years.
 - SLAC E122
 - JLAB 2009 -- factor of 5 improvement

PVDIS Formalism

For deuterium (isoscalar), neglecting sea quarks.

Unique sensitivity to these

$$A_{PV} = \left(\frac{3G_{F}Q^{2}}{10\sqrt{2}\pi\alpha}\right) \left[(2C_{1u} - C_{1d}) + Y_{3}(2C_{2u} - C_{2d})\right]$$

$$C_{1u} = 2 g_{A}^{e} g_{V}^{u}$$
 $C_{1d} = 2 g_{A}^{e} g_{V}^{d}$

$$C_{2u} = 2 g_{V}^{e} g_{A}^{u}$$
 $C_{2d} = 2 g_{V}^{e} g_{A}^{d}$

PVDIS at 6 GeV (Jefferson Lab)

Spokespersons: Xiaochao Zheng, Paul Reimer, and Bob Michaels

- 100uA, 90% polarized beam on a 20cm liquid deuterium target
- Measured two DIS points: Q²=1.085 and 1.901 GeV²
- Ran in Nov-Dec. 2009
- four publications
 - Nature (main result)
 - Archival paper
 - Resonances
 - Specialized DAQ

Limit on new eq VA contact interactions

Contact Interaction Limits from LHC (PDG)

No access to AV or VA terms

PVES is complementary to collider searches

Future: PVDIS Program with SoLID @ 12 GeV

"Solenoid Large Intensity Device"

The 2015 LONG RANGE PLAN for NUCLEAR SCIENCE

Future: PVDIS Program with SoLID @ JLab 12 GeV

