

Thomas Jefferson National Accelerator Facility

PRFX		CREX	
Kent Paschke *	UVa	Seamus Riordan*	Argonne National Lab
Krishna Kumar	Stony Brook University	, Robert Michaels	Jefferson Lab
		Kent Paschke	UVa
Robert Michaels	Jefferson Lab	Paul Souder	Syracuse Univeristy
Paul Souder	Syracuse Univeristy	Dustin McNulty	Idaho State University
Guido Urcioli	INFN Rome	Juliette Mammei	Manitoba University
* contact persons		Silviu Covrig	Jefferson Lab
J. Mammei, J. Birchall, M. Gericke, R. Mahur University of Manito	in, W.T.H. van Oers, S. Page ba	Hampton University	M. Shabestari Mississippi State University
S. Riordan, P. Decowski, K. Kumar, University of Massachusetts	T. Kutz, J. Wexler and Ite	INFN Roma gruppo collegato Sanità alian National Institute of Health, Rome, Italy	S.K. Phillips University of New Hampshire
K. Paschke, G.D. Cates, M. Dalton, I University of Virgin	D. Keller, X. Zheng ia	M. Capogni INFN Roma gruppo collegato Sanità and ENEA Casaccia, Rome, Italy	E. Korkmaz University of Nortern British Columbia
P.A. Souder, R. Beminiwattha Syracuse Universit	, R. Holmes V. Bellini, A. Giu	sa, F. Mammoliti, G. Russo, M.L. Sperduto, C.M. Sutera INFN - Sezione di Catania	P. King, J. Roche, B. Waidyawansa Ohio University
R. Michaels, K. Allada, J. Benesch, A. Cams J. Gomez, O. Hansen, D.W. Higinbotham, C.E. S. Nanda, P. Solvignon-Slifer, B. Wojt <i>Thomas Jefferson National Acce</i>	onne, J.P. Chen, D. Gaskell, D. 1 Keppel, J. LeRose, B. Moffit sekhowski, J. Zhang <i>lerator Facility</i>	McNulty, P. Cole, T. Forest, M. Khandaker Idaho State University	C.E. Hyde Old Dominion University
Konrad Aniol California State University, I	os Angeles	Indiana University M. Mihovilovič, S. Širca	A. Blomberg, ZE. Meziani, N. Sparveris
G.B. Franklin, B. Qu Carnegie Mellon Unive	inn risity	an Institute and University of Ljubljana, Slovenia	Temple University

D. Watts, L. Zana The University of Edinburgh

P. Markowitz Florida International University

S. Kowalski, R. Silwal, V. Sulkosky Massachusetts Institute of Technology

A. Glamazdin

Kharkov Institute of Physics and Technology

T. Holmstrom

Longwood University

p2 / 22

M. Pitt Viriginia Polytechnic Institute and State University

D. Armstrong, J.C. Cornejo, W. Deconinck, J.F. Dowd, V. Gray, and J. Magee

College of William and Mary

D. Androic

University of Zagreb

Using Parity Violation

$$F_{P}(Q^{2}) = \frac{1}{4\pi} \int d^{3}r \ j_{0}(qr) \ \rho_{P}(r)$$

Parity Violating Asymmetry

$$A = \frac{\left(\frac{d\sigma}{d\Omega}\right)_{R} - \left(\frac{d\sigma}{d\Omega}\right)_{L}}{\left(\frac{d\sigma}{d\Omega}\right)_{R} + \left(\frac{d\sigma}{d\Omega}\right)_{L}} = \frac{G_{F}Q^{2}}{2\pi\alpha\sqrt{2}} \begin{bmatrix} 1 - 4\sin^{2}\theta_{W} - \frac{F_{N}(Q^{2})}{F_{P}(Q^{2})} \end{bmatrix} \approx 0$$

Weak Interaction: Sees the Neutrons T.W. Donnelly, J. Dubach, I. Sick Nucl. Phys. A 503, 589, 1989 neutron proton **Measured Asymmetry** Electric charge 1 0 Correct for Coulomb **Distortions** Weak charge 80.0 1 Weak Density at one Q² **APPLICATIONS Nuclear** Theory C. J. Horowitz Small Corrections for (Symmetry Gⁿ_F G^s_E MEC Energy) surface thickness **Atomic** Parity Violation Skin Heavy **Neutron** R_N -RP lons **Stars**

Ways to Find

Neutron Distribution and Symmetry Energy

• Theory

MFT fit mostly by data *other than* neutron densities

Neutron skin measured by APV

Robust correlation between ²⁰⁸Pb A_{PV} and the neutron skin over existing nuclear structure models

X. Roca-Maza (et al.) PRL 106 (2011) 252501

Apv in PVES provides a clean probe of the neutron distribution

PREX: A_{PV} to 3% from ²⁰⁸Pb -> r_n to 0.06 fm accuracy

CREX: A_{PV} to 2.5% from ⁴⁸Ca -> r_n to 0.02 fm accuracy

"Ab Initio" (exact microscopic) calculations of R_{skin} for ⁴⁸Ca have recently been published.

Can be compared to Density Functional Theory (the red and blue points) and Dispersive Optical Model (DOM)

Parity Experiment Method

(integrating mode)

Applications of A_{PV} at Jefferson Lab

- Nucleon Structure Strangeness s in proton (HAPPEX, G0 expts)
- Test of Standard Model of Electroweak $\sin^2 \theta_W$ e-e (MOLLER) or e-q (PVDIS) elastic e-p at low Q² (QWEAK)
- Nuclear Structure (neutron density) : PREX & CREX

Hall A High Resolution Spectrometers

Parity Quality Beam : Unique Strength of JLab

Helicity – Correlated Position Differences Plotted below $\langle X_R - X_L \rangle$ for helicity L, R $A_{raw} = A_{det} - A_{O} + \alpha \Delta_{E} + \Sigma \beta_{i} \Delta x_{i}$ Measured separately

Points: Not sign-corrected. 20-50 nm diffs. with pol. source setup & feedback

Sign flips provide further suppression : Average with signs =what experiment feels

> achieved < 5 nm

PREX-I Asymmetry $(P_e \times A)$

Asymmetry leads to R_N PREX-I has established a neutron skin at ~95 % CL

Robert Michaels, NuSYM2018

p 17 / 22

nomas Jefferson National Accelerator Facility

New PREX / CREX Scattering Chamber

- One cryo-cooled production target ladder and one calibration-target ladder.
- Improved (hard) vacuum seals
- Run PREX and CREX with one installation
- Small chamber allows efficient shielding

Detectors Developments

PREX / CREX Experiments

PREX-2: 3% stat, 0.06 fm CREX: 2.4% stat, 0.02fm

PREX-I E=1.1 GeV, 5°

A=0.6 ppm

Charge Normalization	0.2%
Beam Asymmetries	1.1%
Detector Non-linearity	1.2%
Transverse Asym	0.2%
Polarization	1.3%
Target Backing	0.4%
Inelastic Contribution	<0.1%
Effective Q ²	0.5%
Total Systematic	2.1%
Total Statistical	9%

Achieved, published

statistics limited result, systematics well under control PREX-II E=1.1 GeV, 5° A=0.6 ppm 70 μA, 25+10 days

Total Statistical	3%
Total Systematic	2%
Effective Q ²	0.4%
Inelastic Contribution	<0.1%
Target Backing	0.4%
Polarization*	1.1%
Transverse Asym	0.2%
Detector Non-linearity*	1.0%
Beam Asymmetries*	1.1%
Charge Normalization	0.1%

*Experience suggests that leading systematic errors can be improved beyond proposal

CREX E=1.9 GeV, 5° A = 2.3 ppm 150 µA, 35 + 10 days

Charge Normalization	0.1%
Beam Asymmetries	0.3%
Detector Non-linearity	0.3%
Transverse Asym	0.1%
Polarization	0.8%
Target Contamination	0.2%
Inelastic Contribution	0.2%
Effective Q ²	0.8%
Total Systematic	1.2%
Total Statistical	2.4%

p 20 / 21

PREX, C-REX : Summary

- Fundamental Nuclear Physics with many applications
- PREX-I: 9% stat. error in Asymmetry Goals: PREX-II 3% 0.06 fm, C-REX 2.4% 0.02 fm
- Systematic Error Goals Achieved
- Apparatus is under construction.
- Scheduled to run in 2019

Robert Michaels, NuSYM2018

http://hallaweb.jlab.org/parity/prex