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CHAPTER 1

ENERGY AND ANGLE RECONSTRUCTION

1.1 BIGCAL CLUSTERS

Analyzer output for the BigCal is 56 by 32 matrix with energies for the each block.
For energy reconstruction we first define the cluster. our Definition of the cluster
is 5 by 5 matrix of the blocks surrounding most energetic block. To identify the
cluster the block with maximum energy is chosen (parent block). As the next step
we record the energies of blocks surrounding the maximum energy block Figure 1. 5
by 5 matrix is cut out of the BigCal and is named cluster. As the detector consists of
two parts (Protvino and RSS) with different block sizes we can have mixed clusters
where the matrix is not geometrically symmetric Figure 1. When cluster is identified
we set the energies of the 5 by 5 matrix to 0 in main matrix (56 by 32) and repeat
the procedure to obtain second, third clusters.

FIG. 1. BigCal cluster identification.
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Also it’s important to mention that several criteria were implemented for cluster
identification.

• Minimal energy of the block is greater than 10MeV

• Minimal energy of parent block is 50MeV

• Minimal cluster energy is 150MeV

• Minimum number of blocks which energy greater than 10MeV in cluster greater
than 2

Next challenge is correctly identify the coordinate of the cluster and energy of the
cluster. The traditional methods of coordinate reconstruction Eq. 1 were failing
especially when the number off cells involved was small.

∆X =
∑

i

Xi/E
2
i

1/E2
i

(1)

Bad coordinate reconstruction was affecting PMT gain calibration. To improve the
energy resolution and coordinate reconstruction of an event we used Neural Network.

1.2 NEURAL NETWORK

During the gain calibration for BigCal we noticed that π0 mass, reconstracted from
two photon events, drifts with photon energy. The effect could come either from un-
expected drift in gain parameters, from wrong coordinate reconstruction due to the
conventional clustering algorithms or the complicated dependence on gain parame-
ters. To avoid the problem with incorrect coordinate reconstruction and to take into
account the cuts on minimal energy of the BigCal block we decided to use Neural
Network(NN) method.

As the entry to the NN we used energy of the all 25 (5 by 5) blocks of the cluster
and the parent block row iX and column iY (in 32 by 56 ). Using Geant simulation
tool we generated six million of electrons and six million of photons to train the net-
work. The photons were generated to obtain right calibration of the BigCal detector.
The photon cluster differs from electron cluster due to effect of the magnetic field
on electron and the the fact that photon shower starts about one radiation length
later. The neural network was based on standard ROOT package (TMultiLayerPer-
ceptron). NN had one hidden layer with 10 neurons and three outputs dX,dY and dE
Figure 2 where dX and dY are coordinate corrections to the parent block center and
dE is energy correction to the total energy of the cluster. Neuron training functions
was chosen to be Gauss and learning method KBFGS. Figure 3 shows the coordi-
nate and energy resolutions before and after corrections. Coordinate reconstruction
resolution using NN showed about 3 times better results that conventional methods.
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FIG. 2. Neural network structure.

We also observed that to obtain no energy dependence of the pion mass we need to
use Eclust =

∑
Eiġi + ∆E instead of Eclust =

∑
Eiġi where gi is gain parameter for

the block.
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FIG. 3. Coordinate and energy resolutions before and after corrections.

1.3 POLAR AND AZIMUTH ANGLE CORRECTIONS

Neural network provided the corrected coordinates on the BigCal. Due to the mag-
netic field, the angles for charged particles at the target are different from angles
obtained from strait line connecting the target coordinate to BigCal coordinate. To
correct for the effect of magnetic field electron events were generated using GEANT
simulation with different magnetic field orientations and the correction to the straight
line angles was obtained using fit functions

(θt, φt) = (θs, φs) · 180/3.1415926+
(p1 + p2 · θs + p3 · φs + p4 · θ

2
s + p5 · φ

2
s + p6 · θs · φs)·

(p7 + p8/E + p9/E
2)·

(p10 + p11 · Xr + p12 · X
2
r )·

(p13 + p14 · Yr + p15 · Y
2
r )

where θs, φs are angles reconstructed using straight line approximation, θt,φt are
angles at the target, E is the energy of the cluster Xr and Yr are raster coordinates.
Figures 4,5 shows polar angle reconstruction using straight line approximation and
fit procedure.Figures 6,7 shows azimuthal angle reconstruction using straight line
approximation and fit procedure. Obtained angle resolutions using fit procedures
are 0.5 degree for polar angle and 1 degree for azimuthal.
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FIG. 4. Reconstruction of polar angle using fit with parallel field configuration. Red
dashed line is generated spectrum, Blue dash-dotted line is reconstructed spectrum
using straight line approximation, black solid line is reconstructed spectrum using
fit.
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FIG. 5. Reconstruction of polar angle using fit with perpendicular field configuration.
Red dashed line is generated spectrum, Blue dash-dotted line is reconstructed spec-
trum using straight line approximation, black solid line is reconstructed spectrum
using fit.
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FIG. 6. Reconstruction of azimuthal angle using fit with parallel field configuration.
Red dashed line is generated spectrum, Blue dash-dotted line is reconstructed spec-
trum using straight line approximation, black solid line is reconstructed spectrum
using fit.
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FIG. 7. Reconstruction of azimuthal angle using fit with perpendicular field configu-
ration. Red dashed line is generated spectrum, Blue dash-dotted line is reconstructed
spectrum using straight line approximation, black solid line is reconstructed spectrum
using fit.
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1.4 BIGCAL CALIBRATION

1.4.1 Gain Calibration

To calibrate BigCal gains we used neutral pions. The pions were selected from the
sample by choosing events with two non-charged clusters(no Cerenkov). In addition
we applied cuts on minimal energy of the cluster Ecluster > 0.6 GeV and number
of cells in cluster with non-zero energy Ncell > 4 for better position reconstruction.
Using neural network the energies of the clusters were corrected for arbitrary gain
parameters and invariant mass of the events were calculated for the events. Invariant
mass of the event was assigned to the most energetic block in cluster. The assumption
is that the most energetic cluster is responsible for mass shift. Then the peak position
was fitted and divided to neutral pion mass. The obtained parameter was chosen as
next gain parameter. The procedure was repeated multiple times until the parameters
brought to convergence. The neural network was crucially in obtains the correct angle
and energy correction. Figure 8 illustrates the pion mass resolution obtained by this
procedure. This resolution is erectly proportional to energy resolution of the clusters.
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FIG. 8. Reconstructed π0 mass from energy deposited in BigCal. An energy resolution
of 8.2% has been observed.

1.4.2 Time Calibration

During the first part of the experiment BigCal was opening the trigger therefore
the Čerenkov time was affected by the row of the bigcal which triggered the event.
Figure 9 a) shows Čerenkov timing distribution versus triggered rows of BigCal
(without correction) for one of the Čerenkov mirrors. The region corresponding to
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the peaks corresponds to geometrical projection of the mirror to BigCal. To decrease
the background after the cut each row was fitted with Gauss function and shifted
to zero position. This procedure decreased width of one dimensional distribution.
Constants were implemented into database. Figure 9 b) shows the same distribution
after alignment.

FIG. 9. Čerenkov timing peak versus BigCal triggered row a)-uncorrected,
b)-corrected.

1.5 LIFE TIME CORRECTIONS

During the experiment we have lost one of the triggers information. This made
impossible calculation of the life time in conventional way for positive helicity events.

l =
Ntriggers

Nscalers

(2)

As the solution we used the scaler and trigger information of negative helicity only.
For each run we constructed the life time corresponding to negative helicity versus
the number of the electrons from the number of recorded events. The distribution
was parametrized using second order polynomial. Figure 10 shows the distribution
of lifetime versus number of recorded triggers for negative helicity events for one of
the runs. The fitted histogram is the profile of the distribution. The obtained fits
were used to calculate the life time for negative and positive helicity events using
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only the the number of recorded electrons. To decrease the uncertainty due to the
fit, the region of the fit was set as good region. Everything out of that region are not
used in the analysis. The procedure were done for each analyzed run to take into
account any changes from run to run (like efficiency of the detectors, thresholds, or
dead channels).
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FIG. 10. Life time dependence on number of recorded triggers for negative helicity
events. The fitted histogram is the profile of the distribution.

1.6 PAIR SYMMETRIC BACKGROUND

One of the important contributions to physics asymmetry comes from pair symmetric
background. Neutral pions are produced inside of the target from direct electropro-
duction and from Bremsstrahlung spectra. These pions decay through dalitz decay
and produce electron-positron (e−,e+) pair directly or decay into two photons which
then convert to the pair. As Čerenkov detector is not able to distinguish between
electrons from direct scattering and electrons originated due to pions, the calculated
asymmetry is diluted by the number of electrons or positrons from pair and affected
by the pair asymmetry(if any).

Acalc =
N+ − N− + N+

p − N−

p

N+ + N− + N+
p + N−

p

= Aphys · d
p
f + Apair · (1 − dp

f ) (3)

where

dp
f =

N+ + N−

N+ + N− + N+
p + N−

p

(4)
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is dilution factor originated due to the background and

Aphys =
N+ − N−

N+ + N−

(5)

Apair =
N+

p − N−

p

N+
p + N−

p

(6)

are physics and pair asymmetry.

1.6.1 Pair symmetric Asymmetry

Pair symmetric asymmetry originates from the neutral pion asymmetry. So as the
first step for the pair symmetric contribution corrections we calculated the neutral
pion asymmetry using experimental data obtained from the experiment. For this
purpose we used two photon events from BIGCAL to reconstruct neutral pions.
Final asymmetry obtained from the data are consistent with 0.

1.6.2 Dilution due to Pair Symmetric Background

As it was mentioned above we had two major sources of pair symmetric background.
The first main source was electrons-positrons originated at the target due to decay of
the neutral pions (from electro and photo -production). In this case due to magnetic
field we are detecting only either electron or positron the other particle is swept away
from the detectors.The second source of the pair is from pair production of photons in
the material out of main magnetic field. The photon are converted in the material to
electron-positron pair and as the effect of magnetic field is small the pair is detected
as one cluster with larger energy than in the first case.

To estimate the contribution of pair symmetric background we used epc code [2]
to generate neutral pion photo and electro production at the target. Then using
GEANT we propagated the decay particles through the detector setup. Obtained
energy and coordinate distribution of the pair-symmetric background is not uniform
due to the strong magnetic field at the target. Then we divided the BIGCAL face
to 100 equal sized areas and calculated dilution factor for each side separately. Final
correction is the function of coordinates at BIGCAL and energy of the cluster. Figure
11 shows fair agreement between full Monte Carlo, which includes contribution from
pair-symmetric background and electroproduction, and data for different coordinate
bins on BigCal.

At the same time we also checked if the number of expected neutral pions is close
to experimental observation. To select pion events we used 2 cluster events with
energies above 1GeV(to have almost the same condition on cluster energy cut as in
experiment and to avoid issues with threshold), no Čerenkov hit for both clusters,
and trigger condition (clusters should be located in different quarters of the BigCal).
In addition we removed edges of the BigCal by applying cuts on |Xclust| < 52 and
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FIG. 11. Energy distribution for two different parts of BigCal. Round circles
shows data, solid line shows Monte Carlo(MC) simulation of electron scattering and
pair-symmetric background, dashed line shows MC simulation of electron scattering
only and dash dot line shows MC simulation of pair-symmetric background only.

|Yclust| < 100 for both clusters. We also applied the cut on number of cells in the
cluster to be Ncell > 4 cells. Figure 12 shows a) Energy spectrum of generated neutral
pions using two cluster reconstruction, b) Energy spectrum of the reconstructed
charged particles with hit in Čerenkov , c) reconstructed neutral pions from data, d)
Energy spectrum of the reconstructed charged particles with hit in Čerenkov from
data. The ratio of MC pions to MC charged particles is 0.0037 while ratio for data
is 0.0017. This difference can come from trigger efficiency, detector efficiency and
the channels with higher thresholds. Data shows almost factor of 2 less pions than
prediction from MC. The discrepancy can come from due to extra background which
creates hit in Čerenkov or third cluster in BigCal.

1.7 INTERNAL RADIATIVE CORRECTIONS

Internal radiative corrections in inclusive and semi-inclusive DIS off polarized protons
were performed using POLRAD 2.0 [1]. Due to lack of good experimental data in
the region of interest as an input to POLRAD we used several models which are
based on either current knowledge of parton distribution functions (Leader 2006,
AAC) or global fit to existing data (CLAS Model) and several toy models which are
based on some observations from our data. Toy models were based on distributions
of 1/νg1/F1 and 1/ν2g2/F1. Experimental data showed very small dependence of
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FIG. 12. Figure a) Energy spectrum of generated neutral pions using two cluster
Reconstruction, b) Energy spectrum of the reconstructed charged particles with hit
in Čerenkov , c) reconstructed neutral pions from data, d) Energy spectrum of the
reconstructed charged particles with hit in Čerenkov from data.

1/νg1/F1 and 1/ν2g2/F1 versus 1/ν distributions for different Q2. Figure 13 shows
1/νg1/F1 and 1/ν2g2/F1 obtained from data after multiple iterations with POLRAD
2.0 using toy model 0 for g1 and and g2. Curves represent different fits using

• g1 Model 0 - 1
ν

g1

F1

= 1
ν
· p1

• g1 Model 1 - 1
ν

g1

F1

= 1
ν
∗

(p1∗
1

ν
4
+p2)

(p1∗
1

ν
4
+p3)

• g1 Model 2 - 1
ν

g1

F1

= 0.6
ν
∗

(p1∗
1

ν
4
+p2)

(p1∗
1

ν
4
+p3)

• g2 Model 0 - 1
ν

g2

F1

= 1
ν2 · p1

• g2 Model 1 - 1
ν

g2

F1

= 1
ν2 · p1 + 1

ν
· p2

which were used in different combinations to estimate systematic errors from internal
radiative correction. Several iterations were performed using this models to achieve
stability of the correction for A1 and A2. As a starting point we obtain g1 and g2

from fit to uncorrected data. Using the results we calculate the corrections to A1

and A2. Then we refit g1 and g2 and repeat the procedure. Figure 14 shows that
A1 and A2 corrections converge after about 3 iterations. Figure 15 shows internal
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radiative corrections to A1 and A2 versus Bjorken x for different models including
AAC, Leader and CLAS. It is important to note that the correction to data and the
uncertainty increases at low x. As final corrections we will use results obtained from
CLAS fit.
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FIG. 13. 1/νg1/F1 and 1/ν2g2/F1 obtained from data after multiple iterations with
POLRAD 2.0 using toy model 0 for g1 and and g2. Curves represent different toy
model fits.
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FIG. 14. A1 and A2 internal radiative correction versus number of iterations for one
data poin using g1 model 2 and g2 model 0.
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FIG. 15. A1 and A2 internal radiative correction versus Bjorken x.
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