DRAFT BigCal resolution for SANE O. Rondon

The resolution of BigCal required to measure the spin asymmetries in SANE should be as close as possible to the proposal's 5% \sqrt{E} [GeV]. However, the actual available resolution will depend on the condition of the glass at the end of the *GEp*-III experiment, and the effectiveness of the procedure used to repair the radiation damage.

In order to estimate the minimum acceptable resolution, some physics criteria need to be considered:

- the measurement of d_2 integrates over the inelastic scattering region up to

 $x(W=\pi_{\text{threshold}})$, so the inelastic and elastic contributions to the asymmetries can be clearly separated. This implies that the highest measured x bin should have no elastic contamination. This can be achieved if the upper edge of the bin is defined to be at least one sigma away from x = 1, in terms of W. If the resolution dW is poor, the upper limit of the d_2 integral may need to be lower than $x(W=\pi_{\text{threshold}})$. But it should be kept in mind that, although the integral is weighted by x^2 , the potential loss of x range is partly compensated by the decrease of g_2 as it approaches x = 1.

- the proposed test of local spin duality depends on the ability to resolve resonance regions. At the proposed resolution, the lowest W that could be included was about 1.35 GeV, so only the higher resonances could be tested. But the *RSS* results show that local spin duality does not obtain, and it is specially absent for the range $M \le W \le 1.4$ GeV. For spin duality it would not be important to resolve better than about 400 MeV in W at W = M, so this requirement is less demanding than that of the d_2 integral.
- The extrapolation of A_1 to x = 1 improves with high x data, but it is less affected by the resolution in x since the highest bin could include the elastic point.

Therefore, the main question seems to be what is the highest value of x that can be measured with minimal elastic asymmetry contamination, to determine a purely inelastic result for d_2 , given an effective scattered electron energy resolution.

The proposal's Table 2 lists the resolutions that could be achieved assuming the glass can be calibrated at the 5% \sqrt{E} [GeV]. A more detailed version of that table is given below as Table 1, which shows the values of the resolutions in final energy E^n , x, Q^2 and W and the upper edge of the highest inelastic x bin, calculated for the expected CEBAF energies at the time of the run and for representative values of Q^2 , corresponding to angles in the range covered by BETA. This table is the starting reference for comparisons with worsened resolution examples.

	Rad 'D'amage?									
	u	σ√(E') =	5%							
	E	E'	θ	Q ²	W	х	dE'=σE'	dx	dQ ²	dW
Bin center	5.910	2.994	32.3	5.473	0.9383	1.000	0.087	0.059	0.167	0.171
Bin edge	5.910	2.735	32.3	4.999	1.356	0.839	0.083	0.048	0.159	0.113
Bin center	5.910	2.509	32.3	4.586	1.636	0.718	0.079	0.040	0.152	0.090
	5.910	2.442	39.2	6.508	0.9383	1.000	0.078	0.055	0.215	0.189
Bold = x max	5.910	2.251	39.2	6.000	1.322	0.874	0.075	0.048	0.206	0.129
	5.910	2.082	39.2	5.550	1.586	0.773	0.072	0.042	0.198	0.103
Energies in	5.910	2.171	43.4	7.017	0.9383	1.000	0.074	0.054	0.244	0.201
GeV	5.910	2.011	43.4	6.500	1.303	0.888	0.071	0.047	0.234	0.139
	5.910	1.868	43.4	6.039	1.557	0.796	0.068	0.043	0.225	0.112
	4.720	2.688	31.8	3.813	0.9383	1.000	0.082	0.072	0.123	0.144
	4.720	2.468	31.8	3.500	1.267	0.828	0.079	0.056	0.117	0.102
	4.720	2.274	31.8	3.225	1.498	0.703	0.075	0.046	0.112	0.083
	4.720	2.133	40.6	4.855	0.9383	1.000	0.073	0.063	0.170	0.162
	4.720	1.977	40.6	4.500	1.236	0.874	0.070	0.054	0.164	0.118
	4.720	1.838	40.6	4.184	1.451	0.774	0.068	0.047	0.158	0.097
	4.720	1.860	46.0	5.366	0.9383	1.000	0.068	0.061	0.200	0.173
	4.720	1.734	46.0	5.000	1.218	0.892	0.066	0.054	0.193	0.129
	4.720	1.619	46.0	4.671	1.424	0.803	0.064	0.048	0.186	0.106
		Ta	able 1. F	Proposa	l resolut	ions				

A study of the response to radiation damage of the TF1 glass used in BigCal was reported in [¹]. An expression representing the energy resolution, including the reduction of glass transparency $R = A_d/A_0$, where A_d and A_0 are the PMT responses to light produced in damaged and undamaged glass in terms of R and the detected particle's energy E is given there as Eq. (8)

$$\frac{\sigma_E}{E} = .01 \sqrt{1 + \frac{10}{\sqrt{E}} + 10 \ln^2(R) + \frac{33}{RE}}$$

There is a typo in the publication, where the last term is given as 30R/E. The *R* in the numerator typo is easy to spot because it would imply improved resolution with reduced transparency ($0 < R \le 1$). Also, 30 should actually be 10/.3 and the coefficient of $\ln^2 R$ is really 100/9. Figure 4 of the reference can only be reproduced with the expression as given above, as is shown on Figure 1 below, which displays the resolution for energies from 5 to 200 GeV, which are shown in the reference, plus two extra curves for 1 and 2 GeV, that are relevant to SANE. The terms in the expression are numerical values for parameters that have relative uncertainties of 10% to 20%.

Figure 1 also shows that even for perfectly transparent glass, the resolution is about 6.6% at 1 GeV, indicating that the proposal's 5% value may be on the favorable end of the range allowed by the uncertainties in the parameterization of the resolution. Table 2 shows the same information shown on Table 1, based on the above expression with R = 1. The last column shows the resolution calculated with the above parameterization, which

is about 30% worse than the proposal's.

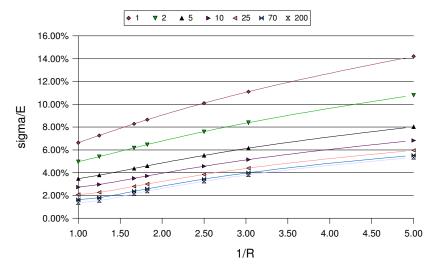


Figure 1. Energy resolution as a function of glass transparency for energies from 1 to 200 GeV.

		Rad 'D'ama	age?									
R=Ar/A0	1	D	σ√(E'=1) = 6.6	63%								
With Theta Constant:		E	E'	θ	Q ²	W	х	dE'=σE'	dx	dQì	dW	dE'(Rad. D)
Elastic	Bin center	5.910	2.871	33.7	5.702	0.9383	1.000	0.085	0.084	0.251	0.253	0.123
	Bin edge	5.910	2.518	33.7	5.000	1.499	0.785	0.079	0.062	0.165	0.147	0.114
	Bin center	5.910	2.231	33.7	4.431	1.831	0.642	0.075	0.049	0.154	0.112	0.106
		5.910	2.324	41.0	6.729	0.9383	1.000	0.076	0.077	0.227	0.276	0.108
	Bold = x max	5.910	2.072	41.0	6.000	1.443	0.833	0.072	0.063	0.214	0.167	0.101
		5.910	1.862	41.0	5.392	1.756	0.710	0.068	0.053	0.202	0.129	0.095
		5.910	2.058	45.3	7.229	0.9383	1.000	0.072	0.075	0.257	0.290	0.101
		5.910	1.850	45.3	6.500	1.414	0.853	0.068	0.064	0.243	0.180	0.095
		5.910	1.675	45.3	5.884	1.715	0.740	0.065	0.055	0.231	0.140	0.089
		4 700	0.010	00.0	0.000	0.0000	1 000	0.001	0.400	0.400	0.010	0.110
		4.720		32.9	3.960	0.9383	1.000	0.081	0.100	0.129	0.210	0.116
		4.720		32.9	3.500	1.382	0.773	0.076	0.071	0.120	0.133	0.108
		4.720		32.9	3.122	1.660	0.625	0.072	0.055	0.113	0.103	0.101
		4.720		42.1	5.004	0.9383	1.000	0.072	0.087	0.179	0.231	0.101
		4.720	-	42.1	4.500	1.331	0.835	0.068	0.070	0.169	0.153	0.095
		4.720		42.1	4.074	1.589	0.712	0.065	0.059	0.161	0.121	0.089
		4.720	-	47.7	5.511	0.9383	1.000	0.067	0.084	0.209	0.245	0.093
		4.720	1.618	47.7	5.000	1.304	0.859	0.064	0.071	0.199	0.167	0.088

Table 2. Resolutions based on Eq. (8) of [1] for perfect light transmission.

The statistical errors on d_2 for the proposal's resolution and a ~7% effective resolution comparable to that obtained using the *R* dependent formula, are shown on Table 3. The errors have been estimated SANE's GEANT simulation, based on the nominal beam energies 6 GeV and 4.8 GeV. The loss of high *x* range does not seem to have a significant impact on the measurement.

Ref. [1] also states that the radiation damage to the glass transparency has an exponential dependence on the number of incident particles. Specifically, for TF1 glass, *R* is reduced

by 1/e after a dose of $(5\pm1)\times10^{10}$ 30 GeV pions. Although particles of this energy are not present in our case (the damage decreases with decreasing particle energy,) it can be used to get a crude estimate of the dose received by BigCal in the period starting on Feb. 6, 2008 at 17:10 (EPICS time) and ending on Feb. 10, at 1:42. During this period, the EPICS logger shows that the Hall received about 7 h of 35µA beam and 72 of 40 µA beam, or a maximum charge of 10.5 C. A report by Wei Luo [²] indicates that the glass

response decreased by 20% during that period, so the number of equivalent pions absorbed by BigCal is

$$N \pi = -5 \times 10^{10} \ln 0.8 = 1.1 \times 10^{10}$$

or 1×10^{9} /C. This allows us to estimate the maximum radiation damage we can expect for BigCal at the end of *GEp*-III, corresponding to a charge of about 180 C, or 18×10^{10} pions

$$R = e^{\left(\frac{-18 \times 10^{10}}{5 \times 10^{10}}\right)} = e^{-3.6} = 0.027$$

As expected, BigCal's glass will be essentially opaque. However, [2] also reports that the UV light treatment of BigCal's glass in March resulted in an improvement that can be fitted to project a better than 65% transparency after 30 days of irradiation, assuming a 7% initial transmission of LED light. Since the fit is exponential, the difference between $a \sim 3\%$ and a 7% starting values is a matter of a few additional hours.

Q ² range	<q2></q2>	Lowest W	Resolution	High x	d2 error
GeV ²	GeV ²	GeV	σ √(E')		(stat)
2.5 - 3.5	3.107	1.100	5.0%	0.713	3.6%
	3.107	1.350	6.6%	0.713	3.6%
	3.107	1.480	8.0%	0.713	3.6%
3.5 - 4.5	4.069	1.100	5.0%	0.929	2.4%
	3.998	1.350	6.6%	0.825	2.5%
	3.951	1.480	8.0%	0.776	2.8%
4.5 - 5.5	4.890	1.100	5.0%	0.940	3.4%
	5.014	1.350	6.6%	0.842	3.6%
	5.000	1.480	8.0%	0.796	3.8%
5.5 - 6.5	5.912	1.100	5.0%	0.909	6.7%
	5.922	1.350	6.6%	0.879	7.6%
	5.928	1.480	8.0%	0.837	7.8%

Table 3. Upper edges of highest x bin and expected statistical errors for the indicated ranges of Q^2 ,

Based on these estimates and the apparent equality of LED and cherenkov light transmission observed in the BigCal UV treatment tests, Table 4 shows the same information as Table 2, for R = 0.65. The corresponding impact on the statistical precision is shown on Table 3.

Rad 'D'amage?												
R=Ar/A0	0.65	D	σ√(E'=1) =7	.98%								
With Theta Constant:		Е	E'	θ	Q ²	W	х	dE'=σE'	dx	dQì	dW	dE'(Rad. D)
Elastic	Bin center	5.910	2.793	34.6	5.849	0.9383	1.000	0.084	0.099	0.309	0.307	0.145
	Bin edge	5.910	2.388	34.6	5.000	1.578	0.756	0.077	0.071	0.168	0.166	0.132
	Bin center	5.910	2.072	34.6	4.340	1.935	0.603	0.072	0.055	0.156	0.125	0.121
		5.910	2.246	42.2	6.875	0.9383	1.000	0.075	0.092	0.235	0.335	0.127
	Bold = x max	5.910	1.960	42.2	6.000	1.514	0.809	0.070	0.073	0.219	0.191	0.117
		5.910	1.730	42.2	5.295	1.852	0.675	0.066	0.060	0.205	0.146	0.109
		5.910	1.982	46.7	7.371	0.9383	1.000	0.070	0.090	0.266	0.353	0.118
		5.910	1.748	46.7	6.500	1.480	0.832	0.066	0.074	0.250	0.208	0.110
		5.910	1.556	46.7	5.786	1.807	0.708	0.062	0.064	0.235	0.159	0.103
		4.720	2.558	33.7	4.058	0.9383	1.000	0.080	0.118	0.133	0.254	0.138
		4.720	2.206	33.7	3.499	1.449	0.742	0.074	0.080	0.122	0.151	0.126
		4.720	1.928	33.7	3.059	1.750	0.584	0.069	0.060	0.114	0.115	0.116
		4.720	1.999	43.2	5.107	0.9383	1.000	0.071	0.103	0.184	0.281	0.119
		4.720	1.761	43.2	4.500	1.390	0.810	0.066	0.081	0.173	0.176	0.110
		4.720	1.567	43.2	4.004	1.671	0.677	0.063	0.067	0.163	0.137	0.103
		4.720	1.729	49.0	5.612	0.9383	1.000	0.066	0.100	0.216	0.298	0.109
		4.720	1.541	49.0	5.000	1.359	0.838	0.062	0.082	0.204	0.192	0.102
		4.720	1.383	49.0	4.490	1.628	0.717	0.059	0.070	0.193	0.151	0.096

Table 4. Resolutions for reduced light transmission.

- 1 A. Inyakin et al. NIM 215 (1983) 103
- 2 Wei Luo, private communication