Overview and Highlights of the JLab 6 GeV Program on Nucleon Structure Functions

> Oscar A. Rondón University of Virginia

> > Users Group Workshop JLab June 6, 2012

Inclusive Inelastic EM Scattering (Unpolarized and Spin Dependent): Structure Functions, Cross Sections, Asymmetries

Charged Inelastic Lepton-Nucleon Scattering

- Inelastic EM scattering: tool to explore structure of nuclei for over 50 years
- Use virtual photon γ^* as probe
- Best region for illuminating nucleon structure is Bjorken x > 0.1, where the γ*'s hadronic structure does not contribute to the scattering
 - This region is JLab's domain
- Talk focus is on the proton and neutron, fundamental baryons:
 - Review of inclusive scattering results

(RPP Fig. 16.1)

Inelastic e - nucleon Scattering

- Inclusive EM scattering is described in terms of the hadronic and leptonic tensors: nucleon structure and beam.
- General expression for hadronic tensor involves eleven terms:
 - six structure functions (SF's) for spin-averaged beam and target states and five for double-polarized scattering.
 - symmetries reduce these to 2 unpolarized and 2 polarized.
- Symmetric part of hadronic tensor: two SF's W_1 and W_2

$$W_{\mu\nu}^{S} = 2M \left[\frac{q^{\mu}q^{\nu}}{q^{2}} - g^{\mu\nu} \right] W_{1}(\nu, Q^{2}) + \frac{2}{M} \left[(p^{\mu} - \frac{p \cdot q}{q^{2}} q^{\mu}) (p^{\nu} - \frac{p \cdot q}{q^{2}} q^{\nu}) \right] W_{2}(\nu, Q^{2})$$

lab frame nucleon's p = (M, 0), 4-momentum transfer q = (E - E', k - k'), Q² = -q², v = E- E'; all angles relative to beam

Inelastic e - nucleon Scattering

• For polarized electrons on polarized nucleons the anti-symmetric part of the hadronic tensor adds two polarized structure functions G_1 and G_2

$$W^{A}_{\mu\nu} = 2\epsilon_{\mu\nu\lambda\sigma}q^{\lambda} \left\{ M^{2}S^{\sigma}\boldsymbol{G}_{1}(\nu, Q^{2}) + \left[M\nu S^{\sigma} - p^{\sigma}S \cdot q \right]\boldsymbol{G}_{2}(\nu, Q^{2}) \right\}$$

- target spin $S = (0, S); S/|S| = (\sin\theta_N \cos\phi_N, \sin\theta_N \sin\phi_N, \cos\theta_N)$

• The beam is represented by the symmetric, L^s and anti-symmetric L^A pieces of the leptonic tensor, for lepton mass *m* and spin *s*

$$L^{S}_{\mu\nu} = k^{\mu} k'^{\mu} k'^{\mu} + k'^{\mu} k^{\mu} - g^{\mu\nu} (k \cdot k' - m^{2})$$
$$L^{A}_{\mu\nu} = m \epsilon_{\mu\nu\lambda\sigma} s^{\lambda} (k - k')^{\sigma}$$

Structure Functions in DIS

- The four SF's G_1 , G_2 , W_1 and W_2 , contain all the information on nucleon structure that can be extracted from inclusive data
- In the high energy regime of DIS, g_1 and g_2 are expected to scale like F_1 and F_2 (up to log violations)

$$\begin{split} \lim_{Q^{2}, \nu \to \infty} M^{2} \nu G_{1}(\nu, Q^{2}) = g_{1}(x) \\ \lim_{Q^{2}, \nu \to \infty} M \nu^{2} G_{2}(\nu, Q^{2}) = g_{2}(x) \\ x = Q^{2}/(2M\nu) \end{split} \qquad \begin{aligned} \lim_{Q^{2}, \nu \to \infty} M W_{1}(\nu, Q^{2}) = F_{1}(x) \\ \lim_{Q^{2}, \nu \to \infty} \nu W_{2}(\nu, Q^{2}) = F_{2}(x) \\ \frac{F_{2}(x)}{F_{1}(x)} = 2x \quad (Callan - Gross) \end{aligned}$$

• In the quark parton model g_1 and F_1 are also related to PDF's:

$$F_{1}(x) = \frac{1}{2} \sum e_{f}^{2} (q_{f}^{\uparrow}(x) + q_{f}^{\downarrow}(x))$$
$$g_{1}(x) = \frac{1}{2} \sum e_{f}^{2} (q_{f}^{\uparrow}(x) - q_{f}^{\downarrow}(x))$$

Structure Functions in Practice

- The hadronic tensor W is related to the forward Compton amplitude $T: W = 1/2\pi \text{ Im } T$
 - Inelastic EM scattering can be described in terms of photoabsorption cross sections of $J_z = \pm 1$ transverse (real or virtual) and $J_z = 0$ longitudinal (virtual only) photons

$$\frac{d^2\sigma}{d\,\Omega\,dE'} = \Gamma_T(\sigma_T + \epsilon\,\sigma_L) = \sigma_{Mott}(\frac{1}{\nu}F_2 + \frac{2}{M}F_1\tan(\frac{\theta}{2}))$$

- The SF's and absorption cross sections are related

$$F_{1} = \frac{K}{4\pi^{2}\alpha} M \sigma_{T}; \quad K = (1-x)\nu \qquad \qquad \frac{F_{2}}{F_{1}} = \frac{2x(1+\sigma_{L}/\sigma_{T})}{1+(2xM)^{2}/Q^{2}} = \frac{2x(1+R)}{1+\gamma^{2}}$$

$$F_{2} = \frac{K}{4\pi^{2}\alpha} \frac{\nu}{(\nu^{2}+Q^{2})} [\sigma_{T}+\sigma_{L}] \qquad \qquad F_{L} = \frac{K}{4\pi^{2}\alpha} \frac{Q^{2}}{\nu} \sigma_{L} = 2xF_{1}R$$

Structure Functions in Practice - II

- For polarized beam and target, the spin SF's are also related to photon cross-sections and asymmetries
 - Along the γ^* axis, the helicity of the photon-nucleon system is 3/2 or $\frac{1}{2}$ for transverse photons, $\frac{1}{2}$ for longitudinal ones
 - The spin asymmetry (SA) A_1 is defined in terms of the difference for 3/2 and $\frac{1}{2}$ helicity cross sections
 - The SA A_2 is defined in terms of the interference between initial transverse and final longitudinal amplitudes

$$A_{1} = \frac{\sigma_{T}^{(3/2)} - \sigma_{T}^{(1/2)}}{2\sigma_{T}}; \quad 2\sigma_{T} = \sigma_{T}^{(3/2)} + \sigma_{T}^{(1/2)} \qquad A_{1} = \frac{1}{F_{1}} \left(g_{1} - \gamma^{2} g_{2}\right)$$
$$A_{2} = \frac{\sigma_{TL}^{(1/2)}}{2\sigma_{T}} \leq \sqrt{\frac{(1+A_{1})}{2}} R \leq R \qquad A_{2} = \frac{1}{F_{1}} \left(g_{1} + \gamma g_{2}\right)$$

Kinematics Space

Structure Functions Program at 6 GeV Unpolarized

Spin Averaged Structure Functions

- World data and JLab contributions to spin averaged SF's
 - Precision *p*, *d* data
 - Duality in F_2
 - LT separations to get F_{L} , R
 - Duality in separated F_1, F_1
 - Moments, Higher Twists
 - "free" neutron SF's, duality
 - Nuclear SF's: *R*
 - Fits to F_1, F_2, R

Inclusive Program at 6 GeV							
Experiment	Hall	Target	Structure Function	Kinematics <i>Q</i> ² [GeV] ²			
E94-110	C	р	R	Resonances 3 - 4.5			
E99-118	C	p,d	R	DIS, Resonances 0.1 - 1.7			
CLAS e1/e2	В	p, d	F ₂	Resonances < 4.5 GeV ²			
E00-002	C	p,d	F ₂	DIS, Resonances 0.1 - 1.5			
E00-116	C	p, d	Cross sections	Resonances intermediate Q ²			
E02-109	C	d	R	Resonances, Q. elastic 0.2 -2.5			
E03-012	В	<i>n</i> in <i>d</i> (BoNuS)	F ₂ ⁿ	Spectator tagging			
E04-001 - I	С	C,Al,Fe	<i>F</i> ₂ , <i>R</i>	Resonances, Q.elastic 0.2 -2.5			
E04-001 - II	С	C,Al,Fe	<i>F</i> ₂ , <i>R</i>	Resonances, Q. elastic 0.7 - 4			
E06-009	C	d	R	Resonances, Q. elastic 0.7 - 4			

Precision: F_2^{d} at high x, $Q^2 < 6 \text{ GeV}^2$

$F_{\rm L}, F_{\rm 1}$ and R from L-T separations

- Measure *e*-nucleon cross section at different *ε*
 - Get $\sigma_{\rm T}$, $\sigma_{\rm L}$ from linear fits

Moments and Higher Twists

• Beyond log scaling violations:

- Higher Twists (HT) or inverse Q^2 power corrections to SF's

- Moments of SF's are related to matrix elements of quark operators of given twist by the OPE

 - Moments expanded in power series of $(A(x)/Q^2)^{(\text{twist 2})}$ Moments integrate over full *x* range: $M_{2,L}^{(n)}(Q^2) = \int_{0}^{1} dx \, x^{n-2} F_{2,L}(x,Q^2)$
 - Contributions of resonances and elastic to moments at 6 GeV are substantial
 - Role of HT clouded by kinematic terms from operators of the same twist, but higher spin
 - "Target Mass" corrections required, or avoided with Nachtmann moments, instead of ordinary, Cornwall-Norton ones (above)

Moments of Spin Averaged SF's

- Nachtmann Moments
 - combination of <u>separated</u> SF's: F_{L} and F_{2} , etc.
 - depend on Nachtmann scaling variable ξ
- Example: 2nd. moment $M_{\rm L}^{n=2}$

$$M_{L}^{(2)}(Q^{2}) = \int_{0}^{1} dx \frac{\xi^{3}}{x^{3}} \left[\mathbf{F}_{L}(x,Q^{2}) + (\frac{3}{5}\xi - 8x) \frac{xM^{2}}{Q^{2}} \mathbf{F}_{2}(x,Q^{2}) \right]$$

$$\xi = 2x/(1 + \sqrt{1 + \gamma^{2}})$$

Moments of Spin Averaged SF's

- Nachtmann Moments
 - combination of <u>separated</u> SF's: F_{L} and F_{2} , etc.
 - depend on Nachtmann scaling variable ξ
- Example: 2nd. moment $M_{I}^{n=2}$

$$M_{L}^{(2)}(Q^{2}) = \int_{0}^{1} dx \frac{\xi^{3}}{x^{3}} \left[\mathbf{F}_{L}(x,Q^{2}) + (\frac{3}{5}\xi - 8x) \frac{xM^{2}}{Q^{2}} \mathbf{F}_{2}(x,Q^{2}) \right]$$

$$\xi = 2x/(1 + \sqrt{1 + \gamma^{2}})$$

R in Nuclei

- Interesting because R_A looks to be smaller than R_A
 - SLAC results showed $R_A - R_d = 0$
 - New Hall C data show $R_d > R_A$
 - Analysis based on fits to F_1 , F_2 and R in proton, deuteron and nuclei by P. Bosted, E.Christy and V. Mamyan

Structure Functions Program at 6 GeV Spin Dependent

Spin Dependent Structure Functions

- g_1 measured in all halls
 - NH_3 , ND_3 in all Halls
 - ³He in Hall A
- \boldsymbol{g}_2 in C and A
- Duality in g_1
- Transverse structures A_2 and g_T
- Moments and twist-3
- Sum Rules: GDH, B-C, Bjorken
- n SSF's from ³He and from d p

Inclusive Program at 6 GeV								
Experiment	Hall	Target	Measured quantity	Kinematics <i>Q</i> ² GeV ²				
94-010	A	³ He	A∥, A⊥	Resonances 0.1 - 0.9				
CLAS eg1a-b	В	p, d	All	DIS , Resonances 0.2 - 3.5				
97–103	A	³ He	A⊥	DIS 0.6 - 1.4				
97–110	A	³ He	A∥, A⊥	Elastic, Resonances 0.02 - 0.5				
99–117	A	³ He	A∥, A⊥	DIS 2.7, 3.5, 4.8				
01-006 (RSS)	С	p, d	A∥, A⊥	Resonances 1.3				
01-012	A	³ He	A∥, A⊥	Resonances 1 - 4				
CLAS eg4	В	р	All	Elastic, Resonances 0.01 - 0.5				
07-003 (SANE)	С	р	A∥, A⊥	DIS , Resonances 1.6 - 6				
06-014	A	³ He	A∥, A⊥	DIS <3>				
08-027 (g2p)	A	р	A∥, A⊥	Resonances 0.03 - 0.3				

Duality in g_1

- Bloom Gilman duality for spin SF's
 - Local Duality only above $\Delta(1232)$
 - Global duality (for $W > \pi$ threshold, or from elastic) obtains above $Q^2 > 1.8 \text{ GeV}^2$
 - seen in p, d, and ³He
 - DIS SSF's from PDF's extrapolated with target mass corrections

Duality in g_1

- Bloom Gilman duality for spin SF's
 - Local Duality only above $\Delta(1232)$
 - Global duality (for $W > \pi$ threshold, or from elastic) obtains above $Q^2 > 1.8 \text{ GeV}^2$
 - seen in p, d, and ³He
 - DIS SSF's from PDF's extrapolated with target mass corrections

Tranverse Polarized Scattering: Unlocking Twist-3

- In tranverse polarized DIS two types of operators contribute at the same order to the Compton amplitude
 - twist-2 operators, i.e. the familiar handbag diagram
 - twist-3 operators, which correspond to qgq correlations

Fig. 10.3. DIS interaction involving quark-gluon correlation.

 $\frac{d^2 \sigma^{(\uparrow \rightarrow)}}{d \Omega dE'} - \frac{d^2 \sigma^{(\downarrow \rightarrow)}}{d \Omega dE'} = \frac{4 \alpha^2 E'}{Q^2 E} E' \sin \theta \cos \phi \Big[M G_1(\nu, Q^2) + 2 E G_2(\nu, Q^2) \Big]$

- direct access to twist-3 via \boldsymbol{g}_2 :
 - "Unique feature of spin-dependent scattering" (R. Jaffe)

Transverse Spin Structure Function

• g_2 is combination of twist-2 and twist-3 components:

$$g_{2}(x,Q^{2}) = g_{2}^{WW}(x,Q^{2}) + \overline{g}_{2}(x,Q^{2})$$
$$= -g_{1}(x,Q^{2}) + \int_{x}^{1} \frac{dx'}{x'} g_{1}(x',Q^{2}) - \int_{x}^{1} \frac{dx'}{x'} \frac{\partial}{\partial x'} \left[\frac{m}{M} h_{T}(x',Q^{2}) + \xi(x',Q^{2}) \right]$$

- Wandzura-Wilczek g_2^{WW} depends on g_1 ; chiral odd transversity h_T is twist-2; ξ represents quark-gluon correlations (twist-3)
- $\boldsymbol{\xi}$ has two twist-3 contributions (JHEP 11 (2009) 093). For m << M $\overline{\boldsymbol{g}}_2 = 1/2 \sum_i e_i^2 [\tilde{\boldsymbol{g}}_T^i - \int_x^1 \frac{dx'}{x'} (\hat{\boldsymbol{g}}_T^i - \tilde{\boldsymbol{g}}_T^i)]; \quad \tilde{\boldsymbol{g}}_T = q \, g \, term, \quad \hat{\boldsymbol{g}}_T = Lorentz \, invariance$ - Transverse spin SF \boldsymbol{g}_T measures spin distribution normal to γ^* $\boldsymbol{g}_T = \boldsymbol{g}_1 + \boldsymbol{g}_2 = \int_x^1 \frac{dx'}{x'} [\boldsymbol{g}_1 - \frac{\partial}{\partial x'} (\frac{m}{M} h_T + \xi)] = \frac{\nu}{\sqrt{Q^2}} F_1(x, Q^2) \boldsymbol{A}_2(x, Q^2)$

Polarized SF g_2

Spin Asymmetry A_2

• DIS A_2^{p} not zero:

- signal of transverse momentum

More DIS $A_2^{3\text{He}}$ coming (E06-014)

х

Transverse Spin SF g_{T}

- DIS $\boldsymbol{g}_{\mathrm{T}}^{\mathrm{p}} = \boldsymbol{g}_{1} + \boldsymbol{g}_{2}$ not zero
 - SANE data covers high x

- $\boldsymbol{g}_{\mathrm{T}}, \boldsymbol{F}_{\mathrm{L}}$ evolutions similar but non-trivial
 - no simplifications possible at NLO (NPB 608 (2001) 235)

OPE for Polarized SF's

• C-N moments of g_1 and g_2 connected by OPE to twist-2 and twist-3 matrix elements a_N and d_N

$$\Gamma_{1}^{(N)} = \int_{0}^{1} x^{N} g_{1}(x, Q^{2}) dx = \frac{1}{2} a_{N} + O(M^{2}/Q^{2}), \qquad N = 0, 2, 4, \dots$$

$$\Gamma_{2}^{(N)} = \int_{0}^{1} x^{N} g_{2}(x, Q^{2}) dx = \frac{N}{2(N+1)} (d_{N} - a_{N}) + O(M^{2}/Q^{2}), \qquad N = 2, 4, \dots$$

- twist-3 d_2 mean color-magnetic field along spin
 - $d_{\mathbf{n}}$ is shorthand for $\tilde{d}_n = \sum_i d_i^n(\mu^2) E_{i,3}^n(Q^2/\mu^2, \alpha_s(\mu^2))$
 - At low-moderate Q^2 Nachtmann moments are needed to obtain dynamic twist-3 matrix elements (no target mass effects to $O(M^8/Q^8)$)

$$d_{2}(Q^{2}) = \int_{0}^{1} dx \,\xi^{2} \left(2\frac{\xi}{x} g_{1} + 3\left(1 - \frac{\xi^{2} M^{2}}{2Q^{2}}\right) g_{2} \right) \Rightarrow_{Q^{2} \to \infty} \int_{0}^{1} dx \, x^{2} (2g_{1} + 3g_{2})$$

d_{2} from RSS Third Moments

x ranges	Proton	Deuteron	Neutron
Measured			
CN	0.0057±0.0013	0.0082±0.0019	0.0031±0.0019
Nachtmann	0.0037±0.0010	0.0048±0.0015	0.0015±0.0012
0 < x < 1			
CN	0.0364±0.0028	0.0170±0.0035	-0.0180±0.0031
Nachtmann	0.0104±0.0014	0.0027±0.0019	-0.0075±0.0021

- Calculated moments at $\langle Q^2 \rangle = 1.3 \text{ GeV}^2$, in three regions:
 - measured 0.32 < x < 0.82; elastic (quasi-el. for deuteron);
 - unmeasured x < 0.32, suppressed by x^2 .
- Non-zero d_{γ} for both nucleons (total errors shown)
 - Neutron approximated as D-state corrected d p (good to O(1%))
- Ratios Nachtmann/CN < 1: large contribution of kinematic HT

Resonances d_2

- Plots show contribution of resonances to d_2 CN integral
 - Data at $Q^2 < \sim 4 \text{ GeV}^2$ need Nachtmann integrals
 - Must also add Nachtmann elastic: dominant $Q^2 < 2 \text{ GeV}^2$

The JLab SF Program goes on

- New results from recent and older SF experiments still to come
- Experiments in all Halls at 11 GeV
- Jefferson Lab Angular Momentum Collaboration (JAM)
 - theorists and experimentalists effort to "study the quark and gluon spin structure of the nucleon by performing global fits of PDFs".
 - unique CEBAF capabilities in measuring small cross sections at extreme kinematics, the JAM spin PDFs are particularly tailored for studies at <u>large Bjorken x</u>, as well as the <u>resonance-DIS transition</u> region at low and intermediate W and Q^2 .
 - http://wwwold.jlab.org/theory/jam/

Credits

- F_2^d : PRC 73 045205 (2006)
- Separated F_1 : E. Christy and W. Melnitchouk, arXiv:1104.0239v2
- $F_{\rm L}$: AIP Conf.Proc. 1369 (2011) 137
- $M_{\rm L}$: P. Monaghan, APS Spring 2012
- $M_{\rm L}, M_{\rm 1}, M_{\rm 2}$: arXiv:1104.0239v2
- $R_{c} R_{d}$: AIP Conf. Proc. 1369 (2011) 137
- eg1b duality: PRC 75 035203 (2007)

- g_1^n duality: PRL 101 182502 (2008)
- Hall A g_2^n : P. Solvignon, Ph.D. thesis
- Hall C g_2^{p} : P.RL 105 (2010) 101601
- $A_2^{3\text{He}}$: P. Solvignon, Ph.D. thesis
- SANE A_2^{p} , g_T : H. Baghdasaryan and the Analysis team
- d₂^{p,n}: K. Slifer, Seminar, Argonne N.
 L., 2009

Extras

SF scaling

Sum Rules

- First moment of g_2 (Burkhardt-Cottingham S. R.) $\Gamma_2(Q^2) = \int_0^1 g_2(x, Q^2) dx = 0$
- Free of QDC radiative and target mass corrections (Kodaira et al. PLB345(1995) 527)
 - RSS full (solid), measured (open)
 - Hall A E01—012 (preliminary) E97-110, E94-010
 - *SLAC E155x*

(From K. Slifer)

Sum Rules

• First moment of g_1 (extended GDH or Ellis-Jaffe sum rule)

$$\overline{\Gamma_1}(Q^2) = \int_0^{1-el} g_1(x, Q^2) dx$$
$$= \frac{1}{36} ((a_8 + 3a_3)C_{NS} + 4a_0C_S)$$

Twist-3 and the Burkhardt-Cottingham Sum Rule

- BC sum rule $\Gamma_2 = 0 = \Gamma_2^{WW} + \overline{\Gamma}_2 + \Gamma_2(el)$
 - dispersion relation not from OPE, free from gluon radiation, TMC's
 - twist-2 part $\Gamma_2^{WW} \equiv 0$
- BC is higher-twist + elastic

$$- \Gamma_2 = \Gamma_2(\text{unm.}) + \Gamma_2(\text{measur.}) + \Gamma_2(\text{el})$$
$$- \Lambda \overline{\Gamma_2} = \Gamma_2 - \overline{\Gamma_2}(\text{u}) = \overline{\Gamma_2}(\text{measur.}) + \Gamma_2(\text{el})$$

- $\Delta \Gamma_2 \neq 0$: assuming BC, implies significant HT at $x < x_{\min}$, <u>or</u>, if twist-3 ~ 0 at low *x*,
 - BC fails: isospin dependence? nuclear effects?

Spin Asymmetries of the Nucleon Experiment - SANE (TJNAF E07-003)

<u>PHYSICS</u>: proton spin structures $g_2(x, Q^2)$ and $A_1(x, Q^2)$ for $2.5 \le Q^2 \le 6.5 \text{GeV}^2$, $0.3 \le x_{Bj} \le 0.8$

Measure inclusive double polarization nearorthogonal asymmetries to:

- access *quark-gluon* correlations using LO twist-3 effects (*d*, quark matrix element)
- compare with Lattice QCD, QCD sum rules, bag model, chiral quarks
- test nucleon models (x dependence) and Q^2 evolution
- explore $A_1(x \rightarrow 1)$; test polarized local duality

METHOD:

- CEBAF 4.7 & 5.9 GeV polarized electrons
- Solid polarized ammonia target
- **BETA**, novel large solid angle (.2 sr) electron telescope:
 - calorimeter + gas Cherenkov + tracking

Took data in Hall C Jan-March 2009

Big Electron Telescope Array – BETA

- **BigCal** lead glass calorimeter: main detector used in *GEp-III*.
- Tracking Lucite hodoscope
- Gas Cherenkov: pion rejection
- Tracking fiber-on-scintillator forward hodoscope
- BETA specs
 - Effective solid angle = 0.194 sr
 - Energy resolution $9\%/\sqrt{E(\text{GeV})}$
 - 1000:1 pion rejection
 - angular resolution ~ 1 mr
- Target field sweeps low *E* background
 - 180 MeV/c cutoff

Lucite Hodoscope

Tracker

Cherenkov

Polarized Target

- Dynamic Nuclear Polarized ammonia (NH₃, <P> ~ 70% in beam) and deuterated ammonia (ND₃, <P> 20-30%)
 - Wide range of field orientations
- Target used in six experiments before SANE:
 - SLAC E143, E155, E155x (g_2)
 - JLab GEn98, GEn01, RSS
- Damaged coils successfully repaired in Nov. '08 by JLab staff with Oxford Inst. help
- Down but not out.