Overview and Highlights of the JLab 6 GeV Program on Nucleon Structure Functions

Oscar A. Rondón
University of Virginia

Users Group Workshop
JLab
June 6, 2012

Inclusive Inelastic EM Scattering
(Unpolarized and Spin Dependent):
Structure Functions, Cross Sections, Asymmetries

Charged Inelastic Lepton-Nucleon Scattering

- Inelastic EM scattering: tool to explore structure of nuclei for over 50 years
- Use virtual photon γ^{*} as probe
- Best region for illuminating nucleon structure is Bjorken $x>0.1$, where the $\gamma^{* /}$'s hadronic structure does not contribute to the scattering

- This region is JLab's domain
(RPP Fig. 16.1)
- Talk focus is on the proton and neutron, fundamental baryons:
- Review of inclusive scattering results

Inelastic e - nucleon Scattering

- Inclusive EM scattering is described in terms of the hadronic and leptonic tensors: nucleon structure and beam.
- General expression for hadronic tensor involves eleven terms:
- six structure functions (SF's) for spin-averaged beam and target states and five for double-polarized scattering.
- symmetries reduce these to 2 unpolarized and 2 polarized.
- Symmetric part of hadronic tensor: two SF's \boldsymbol{W}_{1} and \boldsymbol{W}_{2}
$W_{\mu \nu}^{S}=2 M\left[\frac{q^{\mu} q^{\nu}}{q^{2}}-g^{\mu \nu}\right] \boldsymbol{W}_{\mathbf{1}}\left(\nu, Q^{2}\right)+\frac{2}{M}\left[\left(p^{\mu}-\frac{p \cdot q}{q^{2}} q^{\mu}\right)\left(p^{\nu}-\frac{p \cdot q}{q^{2}} q^{\nu}\right)\right] \boldsymbol{W}_{\mathbf{2}}\left(\nu, Q^{2}\right)$
- lab frame nucleon's $p=(M, \mathbf{0}), 4$-momentum transfer $q=\left(E-E^{\prime}, \boldsymbol{k}-\right.$ $\left.\boldsymbol{k}^{\prime}\right), Q^{2}=-q^{2}, v=E-E^{\prime} ;$ all angles relative to beam

Inelastic e - nucleon Scattering

- For polarized electrons on polarized nucleons the anti-symmetric part of the hadronic tensor adds two polarized structure functions $\boldsymbol{G}_{\mathbf{1}}$ and $\boldsymbol{G}_{\mathbf{2}}$

$$
W_{\mu \nu}^{A}=2 \epsilon_{\mu \nu \lambda \sigma} q^{\lambda}\left\{M^{2} S^{\sigma} \boldsymbol{G}_{\mathbf{1}}\left(\nu, Q^{2}\right)+\left[M v S^{\sigma}-p^{\sigma} S \cdot q\right] \boldsymbol{G}_{2}\left(v, Q^{2}\right)\right\}
$$

- target spin $S=(0, \boldsymbol{S}) ; \boldsymbol{S} /|S|=\left(\sin \theta_{\mathrm{N}} \cos \phi_{\mathrm{N}}, \sin \theta_{\mathrm{N}} \sin \phi_{\mathrm{N}}, \cos \theta_{\mathrm{N}}\right)$
- The beam is represented by the symmetric, L^{S} and anti-symmetric L^{A} pieces of the leptonic tensor, for lepton mass m and spin s

$$
\begin{gathered}
L_{\mu \nu}^{S}=k^{\mu} k^{\prime n u}+k^{\prime \mu} k^{n u}-g^{\mu \nu}\left(k \cdot k^{\prime}-m^{2}\right) \\
L_{\mu \nu}^{A}=m \epsilon_{\mu \nu \lambda \sigma} s^{\lambda}\left(k-k^{\prime}\right)^{\sigma}
\end{gathered}
$$

Structure Functions in DIS

- The four SF's $\boldsymbol{G}_{\mathbf{1}}, \boldsymbol{G}_{\mathbf{2}}, \boldsymbol{W}_{\mathbf{1}}$ and $\boldsymbol{W}_{\mathbf{2}}$, contain all the information on nucleon structure that can be extracted from inclusive data
- In the high energy regime of DIS, \boldsymbol{g}_{1} and \boldsymbol{g}_{2} are expected to scale like \boldsymbol{F}_{1} and $\boldsymbol{F}_{\mathbf{2}}$ (up to \log violations)

$$
\begin{array}{rr}
\lim _{Q^{2}, v \rightarrow \infty} M^{2} v G_{1}\left(v, Q^{2}\right)=g_{1}(x) & \lim _{Q^{2}, v \rightarrow \infty} M W_{1}\left(v, Q^{2}\right)=F_{1}(x) \\
\lim _{Q^{2}, v \rightarrow \infty} M v^{2} G_{2}\left(v, Q^{2}\right)=g_{2}(x) & \lim _{Q^{2}, v \rightarrow \infty} v W_{2}\left(v, Q^{2}\right)=F_{2}(x) \\
x=Q^{2} /(2 M v) & \frac{F_{2}(x)}{F_{1}(x)}=2 x \quad(\text { Callan }- \text { Gross })
\end{array}
$$

- In the quark parton model \boldsymbol{g}_{1} and \boldsymbol{F}_{1} are also related to PDF's:

$$
\begin{aligned}
& F_{1}(x)=\frac{1}{2} \sum e_{f}^{2}\left(q_{f}^{\uparrow}(x)+q_{f}^{\downarrow}(x)\right) \\
& g_{1}(x)=\frac{1}{2} \sum e_{f}^{2}\left(q_{f}^{\uparrow}(x)-q_{f}^{\downarrow}(x)\right)
\end{aligned}
$$

Structure Functions in Practice

- The hadronic tensor W is related to the forward Compton amplitude T : $W=1 / 2 \pi \operatorname{Im} T$
- Inelastic EM scattering can be described in terms of photoabsorption cross sections of $J_{z}= \pm 1$ transverse (real or virtual) and $J_{z}=0$ longitudinal (virtual only) photons

$$
\frac{d^{2} \sigma}{d \Omega d E^{\prime}}=\Gamma_{T}\left(\sigma_{T}+\epsilon \sigma_{L}\right)=\sigma_{\text {Mott }}\left(\frac{1}{v} \boldsymbol{F}_{2}+\frac{2}{M} \boldsymbol{F}_{\mathbf{1}} \tan \left(\frac{\theta}{2}\right)\right)
$$

- The SF's and absorption cross sections are related

$$
\begin{array}{ll}
\boldsymbol{F}_{\mathbf{1}}=\frac{K}{4 \pi^{2} \alpha} M \sigma_{T} ; \quad K=(1-x) v & \frac{\boldsymbol{F}_{2}}{\boldsymbol{F}_{1}}=\frac{2 x\left(1+\sigma_{L} / \sigma_{T}\right)}{1+(2 x M)^{2} / Q^{2}}=\frac{2 x(1+\boldsymbol{R})}{1+\gamma^{2}} \\
\boldsymbol{F}_{2}=\frac{K}{4 \pi^{2} \alpha} \frac{v}{\left(v^{2}+Q^{2}\right)}\left[\sigma_{T}+\sigma_{L}\right] & \boldsymbol{F}_{L}=\frac{K}{4 \pi^{2} \alpha} \frac{Q^{2}}{v} \sigma_{L}=2 x \boldsymbol{F}_{1} \boldsymbol{R}
\end{array}
$$

Structure Functions in Practice - II

- For polarized beam and target, the spin SF's are also related to photon cross-sections and asymmetries
- Along the γ^{*} axis, the helicity of the photon-nucleon system is $3 / 2$ or $1 / 2$ for transverse photons, $1 / 2$ for longitudinal ones
- The spin asymmetry $(\mathrm{SA}) \boldsymbol{A}_{1}$ is defined in terms of the difference for $3 / 2$ and $1 / 2$ helicity cross sections
- The SA \boldsymbol{A}_{2} is defined in terms of the interference between initial transverse and final longitudinal amplitudes

$$
\begin{array}{ll}
\boldsymbol{A}_{1}=\frac{\sigma_{T}^{(3 / 2)}-\sigma_{T}^{(1 / 2)}}{2 \sigma_{T}} ; 2 \sigma_{T}=\sigma_{T}^{(3 / 2)}+\sigma_{T}^{(1 / 2)} & \boldsymbol{A}_{1}=\frac{1}{F_{1}}\left(g_{1}-\gamma^{2} g_{2}\right) \\
\boldsymbol{A}_{2}=\frac{\sigma_{T L}^{(1 / 2)}}{2 \sigma_{T}} \leq \sqrt{\frac{\left(1+A_{1}\right)}{2}} R \leq \boldsymbol{R} & \boldsymbol{A}_{2}=\frac{1}{F_{1}}\left(g_{1}+\gamma g_{2}\right)
\end{array}
$$

Kinematics Space

Structure Functions Program at 6 GeV Unpolarized

Spin Averaged Structure Functions

- World data and JLab contributions to spin averaged SF's
- Precision p, \boldsymbol{d} data
- Duality in F_{2}
- LT separations to get F_{L}, R
- Duality in separated $F_{1}, F_{\text {L }}$
- Moments, Higher Twists
- "free" neutron SF's, duality

Inclusive Program at 6 GeV				
Experiment	Hall	Target	Structure Function	Kinematics $Q^{2}[\mathrm{GeV}]^{2}$
E94-110	C	p	R	$\begin{gathered} \text { Resonances } \\ 3-4.5 \end{gathered}$
E99-118	C	p, d	R	DIS, Resonances
CLAS e1/e2	B	p, d	F_{2}	Resonances < $4.5 \mathrm{GeV}^{2}$
E00-002	C	p, d	F_{2}	$\begin{gathered} \text { DIS, Resonances } \\ 0.1-1.5 \end{gathered}$
E00-116	C	p, d	Cross sections	Resonances intermediate Q 2
E02-109	C	d	R	Resonances, Q. elastic 0.2-2.5
E03-012	B	$n \text { in } d$ (BoNuS)	$F_{2}{ }^{\text {n }}$	Spectator tagging
E04-001-I	C	C,AI,Fe	F_{2}, R	Resonances, Q.elastic 0.2-2.5
E04-001-II	C	C,AI,Fe	F_{2}, R	Resonances, Q. elastic 0.7-4
E06-009	C	d	R	$\begin{gathered} \text { Resonances, Q. elastic } \\ 0.7-4 \end{gathered}$

- Nuclear SF's: \boldsymbol{R}
- Fits to F_{1}, F_{2}, R

Precision: $F_{2}{ }^{\mathrm{d}}$ at high $x, Q^{2}<6 \mathrm{GeV}^{2}$

F_{L}, F_{1} and R from L-T separations

- Measure e-nucleon cross section at different ε
- Get $\sigma_{\mathrm{T}}, \sigma_{\mathrm{L}}$ from linear fits

Moments and Higher Twists

- Beyond log scaling violations:
- Higher Twists (HT) or inverse Q^{2} power corrections to SF's
- Moments of SF's are related to matrix elements of quark operators of given twist by the OPE
- Moments expanded in power series of $\left(A(x) / Q^{2}\right)^{(\text {twist - 2) }}$
- Moments integrate over full x range: $\quad M_{2, L}^{(n)}\left(Q^{2}\right)=\int_{0}^{1} d x x^{n-2} F_{2, L}\left(x, Q^{2}\right)$
- Contributions of resonances and elastic to moments at 6 GeV are substantial
- Role of HT clouded by kinematic terms from operators of the same twist, but higher spin
- "Target Mass" corrections required, or avoided with Nachtmann moments, instead of ordinary, Cornwall-Norton ones (above)

Moments of Spin Averaged SF's

- Nachtmann Moments
- combination of separated SF's: $\boldsymbol{F}_{\mathrm{L}}$ and $\boldsymbol{F}_{\mathbf{2}}$, etc.
- depend on Nachtmann scaling variable ξ
- Example: 2nd. moment $M_{\mathrm{L}}{ }^{n=2}$

$$
\begin{aligned}
& M_{L}^{(2)}\left(Q^{2}\right)=\int_{0}^{1} d x \frac{\xi^{3}}{x^{3}} \\
& \quad\left[\boldsymbol{F}_{L}\left(x, Q^{2}\right)+\left(\frac{3}{5} \xi-8 x\right) \frac{x M^{2}}{Q^{2}} \boldsymbol{F}_{\mathbf{2}}\left(x, Q^{2}\right)\right] \\
& \xi=2 x /\left(1+\sqrt{1+\gamma^{2}}\right)
\end{aligned}
$$

Moments of Spin Averaged SF's

- Nachtmann Moments
- combination of separated SF's: $\boldsymbol{F}_{\mathrm{L}}$ and $\boldsymbol{F}_{\mathbf{2}}$, etc.
- depend on Nachtmann scaling variable ξ
- Example: 2nd. moment $M_{\mathrm{L}}{ }^{n=2}$

$$
\begin{aligned}
& M_{L}^{(2)}\left(Q^{2}\right)=\int_{0}^{1} d x \frac{\xi^{3}}{x^{3}} \\
& \quad\left[\boldsymbol{F}_{L}\left(x, Q^{2}\right)+\left(\frac{3}{5} \xi-8 x\right) \frac{x M^{2}}{Q^{2}} \boldsymbol{F}_{2}\left(x, Q^{2}\right)\right] \\
& \xi=2 x /\left(1+\sqrt{1+\gamma^{2}}\right)
\end{aligned}
$$

\boldsymbol{R} in Nuclei

- Interesting because R_{A} looks to be smaller than R_{d}
- SLAC results showed $R_{\mathrm{A}}-R_{d}=0$
- New Hall C data show $R_{d}>R_{\mathrm{A}}$
- Analysis based on fits to F_{1}, F_{2} and R in proton, deuteron and nuclei by P. Bosted,
 E.Christy and V. Mamyan

Structure Functions Program at 6 GeV Spin Dependent

Spin Dependent Structure Functions

- g_{1} measured in all halls
- $\mathrm{NH}_{3}, \mathrm{ND}_{3}$ in all Halls
- ${ }^{3} \mathrm{He}$ in Hall A
- g_{2} in C and A
- Duality in g_{1}
- Transverse structures A_{2} and $g_{\text {T }}$
- Moments and twist-3
- Sum Rules: GDH, B-C, Bjorken
- n SSF's from ${ }^{3} \mathrm{He}$ and from $d-p$

Inclusive Program at 6 GeV					
Experiment	Hall	Target	Measured quantity	Kinematics $Q^{2} \mathrm{GeV}^{2}$	
94-010	A	${ }^{3} \mathrm{He}$	$\mathrm{A} \\|$, $\mathrm{A} \perp$	$\begin{gathered} \text { Resonances } \\ 0.1-0.9 \end{gathered}$	
CLAS egla-b	B	p, d	A\\|	$\begin{gathered} \text { DIS, Resonances } \\ 0.2-3.5 \end{gathered}$	
97-103	A	${ }^{3} \mathrm{He}$	A_{\perp}	$\begin{gathered} \text { DIS } \\ 0.6-1.4 \end{gathered}$	
97-110	A	${ }^{3} \mathrm{He}$	$A \\|, A_{\perp}$	Elastic, Resonances $0.02-0.5$	
99-117	A	${ }^{3} \mathrm{He}$	$A \\|, A_{\perp}$	$\begin{gathered} \text { DIS } \\ 2.7,3.5,4.8 \end{gathered}$	
01-006 (RSS)	C	p, d	$A_{\\|}, A_{\perp}$	Resonances 1.3	
01-012	A	${ }^{3} \mathrm{He}$	$A_{\\|}, A_{\perp}$	Resonances $1-4$	
CLAS eg4	B	p	A\\|	Elastic, Resonances 0.01-0.5	
07-003 (SANE)	C	p	$A \\|, A_{\perp}$	$\begin{aligned} & \text { DIS, Resonances } \\ & 1.6-6 \end{aligned}$	
06-014	A	${ }^{3} \mathrm{He}$	$A \\|, A \perp$	$\begin{aligned} & \text { DIS } \\ & <3> \end{aligned}$	
08-027 (g2p)	A	p	$A_{\\|}, A_{\perp}$	$\begin{gathered} \text { Resonances } \\ 0.03-0.3 \end{gathered}$	

Duality in g_{1}

- Bloom - Gilman duality for spin SF's
- Local Duality only above $\Delta(1232)$
- Global duality (for $W>\pi$ threshold, or from elastic) obtains above $Q^{2}>1.8 \mathrm{GeV}^{2}$
- seen in p, d, and ${ }^{3} \mathrm{He}$
- DIS SSF's from PDF's extrapolated with target mass corrections

Duality in g_{1}

- Bloom - Gilman duality for spin SF's
- Local Duality only above $\Delta(1232)$
- Global duality (for $W>\pi$ threshold, or from elastic) obtains above $Q^{2}>1.8 \mathrm{GeV}^{2}$
- seen in p, d, and ${ }^{3} \mathrm{He}$
- DIS SSF's from PDF's extrapolated with target mass corrections

Tranverse Polarized Scattering: Unlocking Twist-3

- In tranverse polarized DIS two types of operators contribute at the same order to the Compton amplitude
- twist-2 operators, i.e. the familiar handbag diagram
- twist-3 operators, which

Fig. 10.3. DIS interaction involving quark-gluon correlation. correspond to $q g q$ correlations

$$
\frac{d^{2} \sigma^{(\uparrow \rightarrow)}}{d \Omega d E^{\prime}}-\frac{d^{2} \sigma^{(\downarrow \rightarrow)}}{d \Omega d E^{\prime}}=\frac{4 \alpha^{2} E^{\prime}}{Q^{2} E} E^{\prime} \sin \theta \cos \phi\left[M G_{1}\left(\nu, Q^{2}\right)+2 E G_{2}\left(\nu, Q^{2}\right)\right]
$$

- direct access to twist-3 via g_{2} :
- "Unique feature of spin-dependent scattering" (R. Jaffe)

Transverse Spin Structure Function

- g_{2} is combination of twist-2 and twist-3 components:

$$
\begin{gathered}
\boldsymbol{g}_{2}\left(\boldsymbol{x}, Q^{2}\right)=\boldsymbol{g}_{2}^{W W}\left(\boldsymbol{x}, Q^{2}\right)+\bar{g}_{2}\left(x, Q^{2}\right) \\
=-g_{1}\left(x, Q^{2}\right)+\int_{x}^{1} \frac{d x^{\prime}}{x^{\prime}} g_{1}\left(x^{\prime}, Q^{2}\right)-\int_{x}^{1} \frac{d x^{\prime}}{x^{\prime}} \frac{\partial}{\partial x^{\prime}}\left[\frac{m}{M} h_{T}\left(x^{\prime}, Q^{2}\right)+\xi\left(x^{\prime}, Q^{2}\right)\right]
\end{gathered}
$$

- Wandzura-Wilczek $\boldsymbol{g}_{2}{ }^{\mathrm{wW}}$ depends on $\boldsymbol{g}_{\boldsymbol{1}}$; chiral odd transversity $\boldsymbol{h}_{\mathrm{T}}$ is twist-2; $\boldsymbol{\xi}$ represents quark-gluon correlations (twist-3)
- $\boldsymbol{\xi}$ has two twist-3 contributions (JHEP 11 (2009) 093). For $m \ll M$

$$
\bar{g}_{2}=1 / 2 \sum_{i} e_{i}^{2}\left[\tilde{g}_{T}^{i}-\int_{x}^{1} \frac{d x^{\prime}}{x^{\prime}}\left(\hat{g}_{T}^{i}-\tilde{g}_{T}^{i}\right)\right] ; \quad \tilde{g}_{T}=q \mathrm{~g} \text { term, } \hat{g}_{T}=\text { Lorentzinvariance }
$$

- Transverse spin $\mathrm{SF} \boldsymbol{g}_{\mathrm{T}}$ measures spin distribution normal to γ^{*}

$$
\boldsymbol{g}_{T}=g_{1}+g_{2}=\int_{x}^{1} \frac{d x^{\prime}}{x^{\prime}}\left[g_{1}-\frac{\partial}{\partial x^{\prime}}\left(\frac{m}{M} h_{T}+\xi\right)\right]=\frac{v}{\sqrt{Q^{2}}} F_{1}\left(x, Q^{2}\right) \boldsymbol{A}_{2}\left(x, Q^{2}\right)
$$

Polarized $\mathrm{SF} \boldsymbol{g}_{2}$

- \boldsymbol{g}_{2} in Hall A (below) and Hall C

Spin Asymmetry \boldsymbol{A}_{2}

- DIS $\boldsymbol{A}_{2}{ }^{\mathrm{p}}$ not zero:
- signal of transverse momentum

More DIS $\boldsymbol{A}_{2}{ }^{3 \mathrm{He}}$ coming (E06-014)

Transverse Spin SF $\boldsymbol{g}_{\mathrm{T}}$

- DIS $g_{\mathrm{T}}{ }^{\mathrm{p}}=g_{1}+g_{2}$ not zero
- SANE data covers high x
- $\boldsymbol{g}_{\mathrm{T}}, \boldsymbol{F}_{\mathrm{L}}$ evolutions similar but non-trivial
- no simplifications possible at NLO (NPB 608 (2001) 235)

OPE for Polarized SF's

- C-N moments of \boldsymbol{g}_{1} and \boldsymbol{g}_{2} connected by OPE to twist-2 and twist-3 matrix elements $\boldsymbol{a}_{\mathrm{N}}$ and $\boldsymbol{d}_{\mathrm{N}}$

$$
\begin{array}{ll}
\Gamma_{1}^{(N)}=\int_{0}^{1} x^{N} g_{1}\left(x, Q^{2}\right) d x=\frac{1}{2} a_{N}+O\left(M^{2} / Q^{2}\right), & N=0,2,4, \ldots \\
\Gamma_{2}^{(N)}=\int_{0}^{1} x^{N} g_{2}\left(x, Q^{2}\right) d x=\frac{N}{2(N+1)}\left(\boldsymbol{d}_{N}-a_{N}\right)+O\left(M^{2} / Q^{2}\right), \quad N=2,4, \ldots
\end{array}
$$

- twist-3 d_{2} - mean color-magnetic field along spin
- $\boldsymbol{d}_{\mathbf{n}}$ is shorthand for $\tilde{d}_{n}=\sum_{i} d_{i}^{n}\left(\mu^{2}\right) E_{i, 3}^{n}\left(Q^{2} / \mu^{2}, \alpha_{s}\left(\mu^{2}\right)\right)$
- At low-moderate Q^{2} Nachtmann moments are needed to obtain dynamic twist-3 matrix elements (no target mass effects to $O\left(M^{8} / Q^{8}\right)$)

$$
\boldsymbol{d}_{2}\left(Q^{2}\right)=\int_{0}^{1} d x \xi^{2}\left(2 \frac{\xi}{x} g_{1}+3\left(1-\frac{\xi^{2} M^{2}}{2 Q^{2}}\right) g_{2}\right) \Rightarrow_{Q^{2} \rightarrow \infty} \int_{0}^{1} d x x^{2}\left(2 g_{1}+3 g_{2}\right)
$$

\boldsymbol{d}_{2} from RSS Third Moments

x ranges	Proton	Deuteron	Neutron
Measured			
CN	0.0057 ± 0.0013	0.0082 ± 0.0019	0.0031 ± 0.0019
Nachtmann	0.0037 ± 0.0010	0.0048 ± 0.0015	0.0015 ± 0.0012
$0<x<1$			
CN	0.0364 ± 0.0028	0.0170 ± 0.0035	-0.0180 ± 0.0031
Nachtmann	$\mathbf{0 . 0 1 0 4} \pm \mathbf{0 . 0 0 1 4}$	$\mathbf{0 . 0 0 2 7} \pm \mathbf{0 . 0 0 1 9}$	$\mathbf{- 0 . 0 0 7 5} \pm \mathbf{0 . 0 0 2 1}$

- Calculated moments at $\left\langle Q^{2}\right\rangle=1.3 \mathrm{GeV}^{2}$, in three regions:
- measured $0.32<x<0.82$; elastic (quasi-el. for deuteron);
- unmeasured $x<0.32$, suppressed by x^{2}.
- Non-zero $\boldsymbol{d}_{\mathbf{2}}$ for both nucleons (total errors shown)
- Neutron approximated as D-state corrected $d-p(\operatorname{good}$ to $O(1 \%))$
- Ratios Nachtmann/CN < 1: large contribution of kinematic HT

Resonances \boldsymbol{d}
 2

- Plots show contribution of resonances to $\boldsymbol{d}_{\mathbf{2}} \mathrm{CN}$ integral
- Data at $Q^{2}<\sim 4 \mathrm{GeV}^{2}$ need Nachtmann integrals
- Must also add Nachtmann elastic: dominant $Q^{2}<2 \mathrm{GeV}^{2}$

The JLab SF Program goes on

- New results from recent and older SF experiments still to come
- Experiments in all Halls at 11 GeV
- Jefferson Lab Angular Momentum Collaboration (JAM)
- theorists and experimentalists effort to "study the quark and gluon spin structure of the nucleon by performing global fits of PDFs".
- unique CEBAF capabilities in measuring small cross sections at extreme kinematics, the JAM spin PDFs are particularly tailored for studies at large Bjorken x, as well as the resonance-DIS transition region at low and intermediate \boldsymbol{W} and \boldsymbol{Q}^{2}.
- http://wwwold.jlab.org/theory/jam/

Credits

- F_{2}^{d} : PRC 73045205 (2006)
- Separated F_{1} : E. Christy and W. Melnitchouk, arXiv:1104.0239v2
- F_{L} : AIP Conf.Proc. 1369 (2011) 137
- $M_{\mathrm{L}}:$ P. Monaghan, APS Spring 2012
- $M_{\mathrm{L}}, M_{1}, M_{2}: \operatorname{arXiv}: 1104.0239 \mathrm{v} 2$
- $R_{\mathrm{C}}-R_{d}$: AIP Conf. Proc. 1369 (2011) 137
- eg1b duality: PRC 75035203 (2007)
- $g_{1}{ }^{n}$ duality: PRL 101182502 (2008)
- Hall A $g_{2}^{n}:$ P. Solvignon, Ph.D. thesis
- Hall C g_{2}^{p} : P.RL 105 (2010) 101601
- $A_{2}^{\text {3Hee }}:$ P. Solvignon, Ph.D. thesis
- SANE $A_{2}^{p}, g_{\mathrm{T}}$: H. Baghdasaryan and the Analysis team
- $d_{2}^{p, n}:$ K. Slifer, Seminar, Argonne N. L., 2009

Extras

SF scaling

Sum Rules

- First moment of g_{2} (Burkhardt-Cottingham S. R.)
$\Gamma_{2}\left(Q^{2}\right)=\int_{0}^{1} g_{2}\left(x, Q^{2}\right) d x=0$
- Free of QDC radiative and target mass corrections (Kodaira et al. PLB345(1995) 527)
- RSS full (solid), measured (open)
- Hall A E01-012 (preliminary)
 E97-110, E94-010
- SLAC E155x
(From K. Slifer)

Sum Rules

- First moment of $\boldsymbol{g}_{\mathbf{1}}$ (extended GDH or Ellis-Jaffe sum rule)

$$
\begin{aligned}
& \overline{\Gamma_{1}}\left(Q^{2}\right)=\int_{0}^{1-e l} g_{1}\left(x, Q^{2}\right) d x \\
& =\frac{1}{36}\left(\left(a_{8}+3 a_{3}\right) C_{N S}+4 a_{0} C_{S}\right)
\end{aligned}
$$

Twist-3 and the Burkhardt-Cottingham Sum Rule

- BC sum rule $\Gamma_{2}=0=\Gamma_{2}^{\mathrm{Ww}}+\bar{\Gamma}_{2}+\Gamma_{2}(\mathrm{el})$
- dispersion relation not from OPE, free from gluon radiation, TMC's
- twist-2 part $\Gamma_{2}^{\mathrm{WW}} \equiv 0$
- BC is higher-twist + elastic

$$
\begin{aligned}
& -\Gamma_{2}=\bar{\Gamma}_{2}(\text { unm. })+\bar{\Gamma}_{2}(\text { measur. })+\Gamma_{2}(\mathrm{el}) \\
& -\Delta \bar{\Gamma}_{2}=\bar{\Gamma}_{2}-\bar{\Gamma}_{2}(\mathrm{u})=\bar{\Gamma}_{2}(\mathrm{~m})+\Gamma_{2}(\mathrm{el})
\end{aligned}
$$

- $\Delta \Gamma_{2} \neq 0$: assuming BC , implies significant HT at $x<x_{\text {min }}$, or, if twist-3~0 at low x,
- BC fails: isospin dependence? nuclear effects?

Spin Asymmetries of the Nucleon Experiment - SANE (TJNAF E07-003)

PHYSICS: proton spin structures $\boldsymbol{g}_{2}\left(x, Q^{2}\right)$ and $\mathbf{A}_{1}\left(x, Q^{2}\right)$ for $2.5 \leq \boldsymbol{Q}^{2} \leq 6.5 \mathrm{GeV}^{2}, 0.3 \leq \boldsymbol{x}_{\mathrm{Bj}} \leq 0.8$ Measure inclusive double polarization nearorthogonal asymmetries to:

- access quark-gluon correlations using LO twist3 effects (\boldsymbol{d}_{2} quark matrix element)
- compare with Lattice QCD, QCD sum rules, bag model, chiral quarks
- test nucleon models (x dependence) and Q^{2} evolution
- explore $\mathbf{A}_{\mathbf{1}}(x \rightarrow 1)$; test polarized local duality

METHOD:

- CEBAF 4.7 \& 5.9 GeV polarized electrons
- Solid polarized ammonia target
- BETA, novel large solid angle (.2 sr) electron telescope:
- calorimeter + gas Cherenkov + tracking

Took data in Hall C Jan-March 2009

Big Electron Telescope Array - BETA

- BigCal lead glass calorimeter: main detector used in GEp-III.
- Tracking Lucite hodoscope
- Gas Cherenkov: pion rejection
- Tracking fiber-on-scintillator forward hodoscope
- BETA specs
- Effective solid angle $=0.194 \mathrm{sr}$
- Energy resolution $9 \% / \sqrt{ } E(\mathrm{GeV})$
- 1000:1 pion rejection
- angular resolution $\sim 1 \mathrm{mr}$

```
BigCal
```

- Target field sweeps low E background
- $180 \mathrm{MeV} / \mathrm{c}$ cutoff

Lucite Hodoscope
Tracker
Cherenkov

Polarized Target

- Dynamic Nuclear Polarized ammonia $\left(\mathrm{NH}_{3},\langle\mathrm{P}\rangle \sim 70 \%\right.$ in beam) and deuterated ammonia $\left(\mathrm{ND}_{3},<\mathrm{P}>20-30 \%\right)$
- Wide range of field orientations
- Target used in six experiments before SANE:
- SLAC E143, E155, E155x (g_{2})
- JLab GEn98, GEn01, RSS
- Damaged coils successfully repaired in Nov. '08 by JLab staff with Oxford Inst. help
- Down but not out.

