SANE

Spin Asymmetries of the Nucleon Experiment (TJNAF E07-003)

SANE Collaboration

U. Basel, C. Newport U., Florida International U., Hampton U., Mississippi S. U., Norfolk S. U., North Carolina A&T S. U., Ohio U., IHEP-Protvino, U. of Regina, Rensselaer Polytechnic I., Rutgers U., Seoul National U., Temple U., TJNAF, U. of Virginia, C. of William & Mary, U. of the Witwatersrand, Xavier U., Yerevan Physics I.

Spokespersons:

S. Choi (Seoul), M. Jones (TJNAF), Z-E. Meziani (Temple), O. A. Rondon (U. of Virginia)

Safety & Readiness Review June 26, 2008 Jefferson Lab

SANE Readiness Review

- Overview
- Status and Readiness Summary
- Manpower
- Safety documents

SANE Physics

- Measure proton spin structure function $g_2(x, Q^2)$ and spin asymmetry $A_1(x, Q^2)$ at four-momentum transfer $2.5 \le Q^2 \le 6.5$ GeV² and Bjorken $x \ 0.3 \le x \le 0.8$
 - Meets or Exceeds DOE 2011 Milestone for Proton Spin Structure
- Goal is to learn all about proton SSF's from inclusive double polarization measurements of parallel and near-perpendicular spin asymmetries
 - twist-3 effects from third moments of g_2 and g_1 :
 - d_2 matrix element = $\int_0^1 x^2 (3 g_2 + 2 g_1) dx$
 - comparisons with Lattice QCD, QCD sum rules, bag models, chiral quarks
 - Study *x* dependence (test nucleon models) and Q^2 dependence (evolution)
 - Exploration of "high" x region: A_1 's approach to x = 1
 - Test polarized local duality for final state mass W > 1.4 GeV
- Detect electrons with novel large solid angle electron telescope **BETA**

World data on A_{\parallel} , A_{\perp} and SANE kinematics

SANE Expected Results

- x dependence at constant Q^2 and Q^2 dependence at fixed x (illustrative binning only)
- data are concentrated in the region most sensitive to $x^2g_{2,1}$
 - (estimates based on 75% beam and target polarization, and 85 nA beam current)

SANE Expected Results (II)

- Improve total error on $d_2(Q^2 = 5 \text{ GeV}^2)$ by factor < 0.5; systematics dominated
- Constrain extrapolations of A_1^p to x = 1 within +/-0.1 (using duality)
- SANE's measured \mathbf{A}_{1} will improve world's \mathbf{A}_{1} data set

SANE Layout

Big Electron Telescope Array - BETA

- **BigCal** lead glass calorimeter: main detector used in *GEp-III*.
- Tracking Lucite hodoscope
- Gas Cherenkov: additional pion rejection
- Tracking fiber-on-scintillator forward hodoscope
- BETA's characteristics
 - Effective solid angle = 0.194 sr
 - Energy resolution 5%/ $\sqrt{E(\text{GeV})}$
 - 1000:1 pion rejection
 - vertex resolution $\sim 5 \text{ mm}$
 - angular resolution ~ 1 mr
- Target field sweeps low *E* background
 - 180 MeV/c cutoff

Run Plan and Beam Time

		Activity Namo	Duration	Detober 08 November 08						December 08					Janua	
		Activity Name	Duration	5	12	19 26	2	9	16	23	30	7	14	21	28	4
1	-	SANE Run	67	0/11/08 ┥										12/2	1/08	
2		Commission 5.9 - 2.4 GeV	13	10/11/08		10/23/0	08									
3		Calibration 2.4 GeV	5		10/2	24/08	0/28/0)8								
4		Energy change 2 => 4 pass	1			10/29/08	10/29	/08								
5		4.734 GeV parallel	5			10/30/08		11/03/08								
6		Target rotation 180° - 80°	1			11/04	4/08	11/04/08								
7		Chicane alignment	1			11/04	4/08	11/04/08								
8		4.734 GeV 80 deg.	9			11/0)5/08 <mark>)</mark>		11/13/08							
9		Energy change 4 pass => 5 pas	s 1					11/14/08	11/14/08	3						
10		? Chicane alignment (if needed)	1					11/14/08	11/14/08	3						
11		5.9 GeV 80 deg.	21					11/15/08					2/10/08	}		
12		Target rotation 80° - 180°	1								12/	/11/08	12/11/0	8		
13		Chicane alignment	1								12/	/11/08	12/11/0	8		
14		5.9 GeV parallel	10								12	2/12/08	•	12/21	1/08	

	(Calibratior	ו	Data				Moller		C runs		Commiss.	
Energy - field angle	B OFF	0°	180°	4.7	4.7 80°	5.9 80°	5.9	180°	80°	180°	80°	5-р	2p
Run plan calendar days 1		2	2	5	9	21	10					11	2
Run plan PAC hours	12	24	24	60	108	252	120					132	24
Proposal hours 12 24 24		24	70	130	200	100	7	14	7	13	144		
Proposal data + systematics					141	216	108	4	8	4	8		
Efficiency (proposal+syst.)/run plan (relative to 50%)					1.30	0.86	0.90						

SANE Status

- After July 2007 Readiness Review:
 - series of 16 bi-weekly work meetings on target, beam line, detectors and software
 - Successful test run of partial BETA configuration in early April:
 - BigCal at 40°; ½ Cherenkov (bottom); 8 Lucite bars; 2 partial Y and all X Tracker planes
 - 83 runs at 5.7 and 3.5 GeV with 200 nA to 5 µA beam on 4 cm LH2 and thin C targets: comparable SANE luminosity; largest fast raster.
 - GEp-3 analyzer modified to include BETA detector for test run
 - Collaboration-wide meeting on 5/30/8 reviewed test run, safety docs. drafts
- Target cooldowns in EEL: report by Don Crabb
- Draft ESAD, Installation COO, expt. COO circulated among committee

SANE Status (II)

- Preparation for installation:
 - SANE safety review
- Installation started on 6/16 (W. Kellner)
 - BigCal reconditioning: June 17 through Aug. 30
 - HMS reconfiguration (remove FPP, reinstall base pkg.): June 17 to July 1st
 - Cryotarget deinstallation: June 17 to June 30
 - Polarized target OVC and instrumentation platforms: July 8 to July 28
 - G0 magnet move: July 8 to Aug. 5
 - Install SEM: Aug. 11 to Aug. 15
 - Install BETA (Cherenkov, Tracker, Lucite): starting on Sept. 1st.
 - Install SANE beam line: Sept. 2 to Oct. 6

Readiness Summary - 2008

Subsystem	Parts	<u>Construction -</u> <u>Assembly</u>	Test	<u>S</u>	Preparation for SANE		
	In hand	On order / procurement		Lab	In Hall	Conditioning	Other
BigCal	All		Ready	Completed	Done	UV Glass anneal	
Gain Monitor	All		Resady	Completed	Done	Visual inspection	
Cherenkov	All		July '08	Completed	Done		Alignment
Lucite tracker	All		Ready	Completed	Done		Alignment
Forward tracker	All		Aug. '08	Completed	Done		Alignment
Target	Magnet, refrigerator, OVC, microwaves, NMR, pumps, ammonia	Inserts		June '08	Sep. '08		Installation July '08
Target platform	GEn-01/RSS platforms		June '08			Refurbish	
Beam line	Upstream girder/chicane, rasters, BCM's, BPM's, SEM, Downstream extension, He Bag		Sep. '08	Slow raster: Summer 07; Check low current BPM's		Recommission Slow raster	Install low power dump after G0 magnet exit
Beam line shielding	All		Sep. '08				
HMS					July '08	Restore standard package	Cosmic tests
Trigger/DAQ	All modules						Set up Cherenkov*BigCal coincidence and pi0 triggers
Online reconstruction	Analyzer, BETA simulations	HMS, BETA target field tracking	Aug. '08		Done		

2007 Readiness Review Report

- Report indicates no serious issues
- Report identifies 12 areas for comments:
 - 1. Physics goals
 - 2. Beam Line
 - 3. Radiation shielding
 - 4. Target
 - 5. BigCal
- <= Report's important comments
- <= Report's secondary comments
 - Responses

- 6. Cherenkov
- 7. Hodoscopes
- 8. Software
- 9. Detector infrastructure
- 10. Installation
- 11. General Organization
- 12. Manpower

1. Physics goals

- BigCal resolution consistent with physics goals
 - Proposal based on 5% / \sqrt{E} ' resolution
 - BigCal glass darkened by radiation after GEp: worse resolution
 - Goals vs resolution:
 - clean inelastic data for d_2 integral: highest x bin free of elastic events
 - acceptable loss of integration range up to 8% / \sqrt{E} ' resolution
 - $A_1(x \rightarrow 1)$: resolution not critical; elastic contribution OK
 - Spin local duality for W > 1.4 GeV: 8% / \sqrt{E} ' = 1 σ from Delta
 - Resolution vs glass transmittance shows 8%/ \sqrt{E} ' resolution for ~ 0.65 transmittance
 - GEp March '08 UV curing shows ~80 days curing projected to restore 0.8 transmittance

1. Physics goals (Ia)

Q ² range <q<sup>2></q<sup>		Lowest W	Resolution	High x	d2 error
GeV ²	GeV ²	GeV	σ√(E')		(stat)
2.5 - 3.5	3.107	1.100	5.0%	0.713	3.6%
	3.107	1.350	6.6%	0.713	3.6%
	3.107	1.480	8.0%	0.713	3.6%
3.5 - 4.5	4.069	1.100	5.0%	0.929	2.4%
	3.998	1.350	6.6%	0.825	2.5%
	3.951	1.480	8.0%	0.776	2.8%
4.5 - 5.5	4.890	1.100	5.0%	0.940	3.4%
	5.014	1.350	6.6%	0.842	3.6%
	5.000	1.480	8.0%	0.796	3.8%
5.5 - 6.5	5.912	1.100	5.0%	0.909	6.7%
	5.922	1.350	6.6%	0.879	7.6%
	5.928	1.480	8.0%	0.837	7.8%

1. Physics goals (II)

- BigCal calibration consistent with goals
 - Amplitude distributions for *ep* elastic signals show
 - $< \sim 1\%$ error of means
 - 10-20 MeV accuracy for *E*' 1 to 2 GeV (HMS offset included)
 - π^0 mass reconstruction
 - April test run data show reconstruction works

2. Beam line

- Low current diagnostics to track beam from target to dump:
 - all beams fit in He Bag + extension box
- SEM output on EPICS for MCC
 - in the works
- Additional FSD protection for total beam *I*, chicane, rasters and downstream:
 - Hall probe of target field interlocked to FSD
- TOSP for hall access including the Hodoscope and target platform
 - ESAD and COO for run; COO and TOSP for installation period
- Check of SEM in "noisy" hall to add cable shielding if needed: planned
- Maximum energy in range 5.6 to 6.0 GeV. Collaboration should provide optimal points for maximizing polarization in all Halls
 - Scheduled energy 5.9 GeV corresponds to 0.8 longitudinal spin at target for Halls A and C: 66% effective polarization
 - Proposal FOM based on 75% beam polarization
 - Mitigate with > 50% efficiency; extra time at 5.9 GeV; energy > 5.9 GeV

3. Radiation Shielding

- Shield lead bricks must be in cassettes
- Special shield support platforms need to be designed with attention to interference and strength
- Platform dimensions and locations need to be provided to Hall designers timely
- Detector shielding should be optimized before BigCal's calibration
 - All done

4. Target

- Target operator training of 9 additional operators needs to identify operators and training plan
 - 11 trained operators
- Target cups easy to replace, made of hydrogen-free plastics (e.g. no Torlon)
 - done

5. BigCal

- Quantitative justification of glass anneal
 - if needed, manpower requirements must be determined
 - not needed
 - less intrusive anneal (no PMT removal) should be investigated
 - done: UV curing based on GEp-III procedure
- Magnetic shielding needs careful calculation
- Detector response needs to be measured for range of residual fields, field orientations
 - existing BigCal PMT shielding measured tested, found acceptable for expected fields
- Calibration with π^0 mass reconstruction turn-around time (from data collection to analysis to results) needs to be estimated; special trigger should be configured if needed.
 - π^0 trigger will be configured

6. Cherenkov & 7. Hodoscopes

- 6. Cherenkov: Fall '07 tests need improved coordination with GEp-III collaboration
 - Successful tests done in April; report by Temple
- 7. Hodoscopes: Effectiveness of magnetic shields need to be demonstrated with calculations or measurements
 - done:
 - Forward tracker PMTs will be in 6 mm soft iron box
 - Lucite hodoscope will be in 12.7 mm soft iron boxes
 - all PMTS will have mu-metal sleeves extending 1 diameter beyond photocatode

8. Software

- Crucial to have working code for BigCal e⁻p and π⁰ calibrations before the experiment starts
 - Elastic *e⁻p* Calibration (U. Regina)
 - Modification of GEp code to include tracking in target field in progress; Run plan in preparation; detailed simulations done
 - π^0 calibrations (H. Baghdasaryan -UVA)
 - basic code (BETA single arm) tested in April; integration with HMS and target field in progress
 - Software group meets weekly
 - coordinator: S. Choi (Seoul)
 - On-line code: H. Baghdasaryan (UVA), C. Butuceanu (Regina), M. Jones, P. Bosted (JLab), F. Wesselmann (Xavier)
 - Simulations (BETA, Backgrounds): Thesis students H. Kang (Seoul), J. Maxwell, J. Mulholland (UVA), grad. student W. Armstrong (Temple) - kibitzer: O. Rondon

9. Installation & 10. Detector infrastructure

- 9. Installation: Detailed installation plan needs to be developed
 - done (W. Kellner Hall C Work Coordinator M. Jones P. Manager)
 - Schedule at http://hallcweb.jlab.org/doc-public/ShowDocument?docid=152)
- 10. Detector Infrastructure: Proper timing of detector elements and ADC gate needs to be demonstrated
 - tested in April

11. General organization and 12. Manpower

- Physics liaison recommended
 - PDL: P. Bosted; Project Manager: M. Jones; Proj. Coordinator: H. Areti
- Increased participation of post-doctoral research associates
 - Online software; triggers
 - H. Baghdasaryan (UVa)
 - Elastic ep calibrations; forward tracker
 - C. Butuceanu (Regina)
 - Cherenkov
 - B. Sawatzky (Temple)
 - Safety Polarized target
 - K. Slifer (UVa)

SANE Manpower: Subsystems

Subsystem	Component	Manager	Experts	Institution
<u>BigCal</u>	Operation	L. Pentchev	M. Jones Protvino Yerevan	William & Mary Hall C Protvino Yerevan P. I.
	Trigger	R. Gilman	X. Jiang P. Bosted	Rutgers U. Rutgers U. Hall C
	Gain Monitor Calibration	E. Frlez G. Huber	O. Rondon	UVA U. Regina UVA
<u>Gas Cherenkov</u>		Z-E. Meziani	B. Sawatzky O. Lukhanin	Temple U. Temple U. Temple U.
Forward Tracking Hodoscope		M. Khandaker	P. Bosted C. Butuceanu	Norfolk S.U. Hall C U. Regina
Lucite Hodoscope		A. Ahmidouch	S. Danagoulian	North Carolina A&T S.U. North Carolina A&T S.U.
<u>Polarized Target</u>		D.G. Crabb	D.B. Day K. Slifer M. Seely C. Keith G. Smith	UVA UVA JLab JLab Hall C
<u>Beam Line</u>	Raster BCM Target BPM -SEM	J. Dunne	Chen Yan D. Mack M. Steinacher UVA	Mississippi State U. Hall C Hall C Basel UVA
<u>Shielding design</u>		S. Choi	H-Y.Kang	Seoul National U. Seoul National U.
<u>HMS</u>		H. Mkrtchyan	Yerevan Hall C C. Keppel	Yerevan P. I. Yerevan P. I. Hall C Hampton
Moller		D. Gaskell	Hall C	Hall C Hall C
BETA Simulation		J. Maxwell	O. Rondon	UVA UVA

Shift and Run Coordinator Staffing

- Run duration: 67 calendar days
 - 3 staff/shift
 - 603 workers-shifts
- Expect 53 of 75 collaborators to be shift workers (9 experts only, 9 grad. students, 4 undergraduates)
 - standard 10 shifts load
 - 530 worker-shifts
 - 9 graduate students 12 shifts ea.
 - 108 additional shifts
- M. Khandaker to be shift czar
- Shift load assigned per institution
 - each institution distributes shifts

- Run coordinators
 - Rotation: once/week
 - 10 weeks run
- 8 confirmed or likely coordinators identified
 - senior staff or associates with polarized target experiment experience
- Need 3 more (one relief)
 - Target operators (TO):
 - need 210 TO shifts
 - 50 UVA student shifts, 70 expert shifts
 - need to train 9 additional operators

SANE Safety Documents

- Existing polarized target COO and ESAD for *RSS* (E-01-006) and *GEn*-01 (E93-026) updated for SANE
 - using current version of Hall C base equipment material
 - added safety assessment for BETA detector components:
 - BigCal, Cherenkov, Lucite Hodoscope and Forward tracker
 - update polarized target access for new platform configuration
- Used *GEp*-III (E04-109) as model for Installation COO
- Existing RSAD document for **RSS** is base for SANE RSAD
 - almost identical beam energy, luminosity, beam deflections, beam line
 - updated radiation budget submitted with Beam Request (9/14/2006)
- Additional shift directives, run coordinator duties, manuals being updated from *RSS* documents