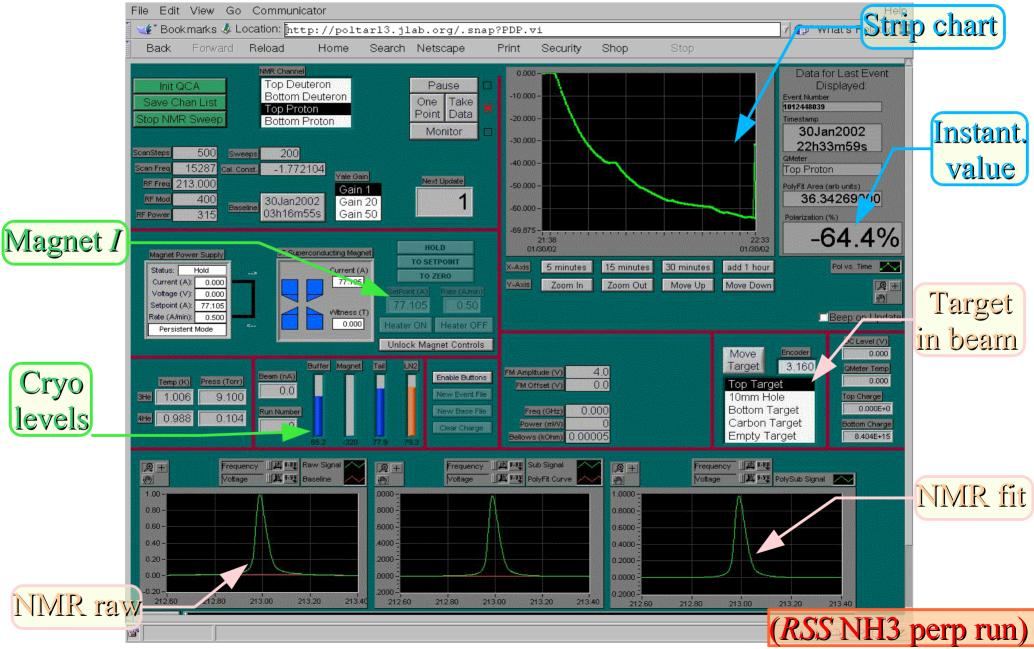
2008 Safety & Readiness Review Report


- Report finds that
 - "preparations for the experiment are in good shape at this point: 3 months in advance of beam."
- Report has a "number of suggestions and a check-list of reminders":
 - 1. BEAMLINE M. Jones
 - 2. BEAM OPERATIONS M. Jones
 - 3. TARGET OPERATION D. Crabb / O. Rondon
 - 4. DETECTOR OPERATION Temple NSU (NC A&T SU)
 - 5. WORK PLANNING WITH OUTSIDE GROUPS M. Jones
 - 6. GENERAL SAFETY ISSUES K. Slifer
 - 7. RADIATION ISSUES M. Jones

- 1) The target TOSP should include the list of current target experts.
 - Names for the TOSP period (now until run):
 - D. Crabb
 - D. Day
 - M. Seely
 - C. Keith
 - K. Slifer
 - J. Maxwell
 - J. Mulholland
 - S. Covrig
 - G. Smith

- Other possible names: M. Jones, P. Bosted, O. Rondon, H. Baghdasayran

- 2) The collaboration's target group should provide a short-hand version of a target manual in the form of a "How To" list for operating the target. A copy of this list should be available in the Hall C counting house for the duration of the experiment (s) (it would be a good and quick reference for target operators). The version control of the list should be managed by a target expert.
 - We will have a document showing:
 - screen shot of the pol. targ. computers' control screen with items labeled
 - text instructions on :
 - things that need watching: polarization, which target is in beam, dates of baseline and *CC* constants being used, NMR gain setting(?), cryo fluid levels, ³He and ⁴He *T* and *P*, magnet current, witness field, etc.
 - how to move target (call MCC to mask/unmask, watch encoder, etc.)
 - how and when to adjust the microwave frequency

- 2) (*continued*)
 - text instructions on :
 - how and when change polarization sign
 - what to do if things happen: reboot frozen computer? call experts?
 - ...
 - Existing Target info on the Web
 - wiki http://hallcweb.jlab.org/experiments/sane/wiki/index.php/UVa_Polarized_Target
 - Polarized target cryo web page http://www.jlab.org/~ckeith/GEN/gen.html
 - recording of charge on target at fixed intervals (need to revive the code that read the EPICs current and integrated it)
 - instructions on what to record in paper logbook
 - The expert in charge of the list: ?

- 3) Have a written plan for training target operators.
 - 1-2 hr demo sessions by expert(s) (name(s)?), with perhaps some hands on practice if the target is operational: how many sessions?, approximate dates?
 - Additional training sitting along a trained expert or operator when the beam is on: half a shift long?
- 4) Estimate the energy released in a quench and predict likely scenarios and mitigation strategies.
 - Refer to document detailing modifications to target after the 1998 repair, and to anecdotal evidence of quenches with no adverse effects, including recent one in EEL.

- 5) Estimate the effect of eddy currents induced by a magnet quench in nearby conductors and mitigate if necessary.
 - Reference to hclog or target logbook reports of quenches during GEn98, Gen01 and RSS with no impact on sensitive SEM electronics located very close to the target.
 - See if effects on other nearby devices: forward tracker supports and PMTmagnetic shield box cherenkov PMT's, cherenkov tank(?) can be calculated.

- 6) Reserve enough time in the run plan for absolute calibration of the target polarization.
 - This is already included in the proposal beam time request
 - one shift for TE calibrations at beginning and end of each insert use
 - at least one intermediate TE
 - TE's during configuration changes / opportunistic beam off periods

	Data					Total
Energy - field angle	4.7	4.7 80°	5.9 80°	5.9	Config. change	
Run plan calendar days	5	9	21	10	<u>3</u>	
Run plan PAC hours	60	108	252	120		540
Proposal hours	70	130	200	100		500
Clock hours	120	216	504	240	72	1152
Target dose [e-] at 85 nA	1.1E+17	2.1E+17	4.8E+17	2.3E+17		1.0E+18
Target loads at 9E16 e- / load	1.3	2.3	5.4	2.5		11.5
Insert changes (2 loads/insert)	1	1	3	1		6
TE overhead hours (24 h / insert change	16	32	72	24		144

- 7) Plan for irradiation of new target material
 - Cool down at UVA in August to select existing and possible newly NIST-irradiated material for run: we need a minimum of 4 cup loads that polarize to > 85% in the lab in < 1 hr.
 - Plan to use up to a shift and a half of beam at 1000 nA midway during commissioning to irradiate, followed by an anneal and TE to measure polarization with some accuracy after irradiation. A 12 h irradiation at 1000 nA would deliver a very uniform dose of ~2.7x10¹⁷ electrons/3.6 cm² raster area (this might be too a high dose for cold irradiation).
 - If this approach works, assuming we don't have enough material to begin with, we could use the calibrations at 1 μ A to irradiate more material. The run plan includes 120 h of 1 μ A calibration beam, so we could irradiate two full inserts to ~ 10¹⁷ /cm².
 - Contact Phil Cole about other possible irradiation options