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An experiment measuring parity violation in deep inelastic scattering using the high resolution
spectrometers (HRSs) in Hall A at the Thomas Jefferson National Accelerator Facility (JLab) has a
goal of measuring a combination of the axial hadronic couplings of a electron to a quark with a factor
of six improvement in precisioin over world data. To achieve this, the experiment has measured a
10−4 level asymmetry. A highly specialized data acquisition (DAQ) system with intrinsic particle
identification was developed and utilized. The DAQ system of this experiment is discussed with an
emphasis on the capability of measuring deadtime, pileup effects, and small asymmetry.

PACS numbers: 21.10.Hw, 25.30.-c

Introduction

Parity violating deep inelastic scattering (PVDIS) ex-
periment E08-011 finished collecting data the the end of
2009. The goal of the this experiment [1–3] is to measure
precisely the asymmetry in parity violating deep inelastic
scattering of a polarized electron on an unpolarized liq-
uid deuterium target. This asymmetry is sensitive to the
effective vector electron axial quark and axial electron
vector quark couplings, the former of which is extremely
poorly constrained by experimental data.

The electromagnetic interaction is parity conserving,
as it is insensitive to the spin flip of the incoming elec-
tron beam. Only the weak interaction violates parity.
Taking the difference of the left-handed and right-handed
electron scattering cross-sections, one can isolate the par-
ity violating contribution of the weak interactions. That
means, if we measure the two mirror-image scattering
processes in the same experimental conditions, the dif-
ference between the two counting rates can isolate the
weak contribution due to the Z-boson exchange. With
σ+ and σ

−
as the left-handed and right-handed electron

cross-sections, respectively, and Q2 as the negative of the
square of the four-momentum transfer, the parity violat-
ing asymmetry, Apv, can be written as

Apv =
σ+ − σ

−

σ+ + σ
−

∼= Q2 [100 ppm/GeV
2
]

= (
3GF Q2

πα2
√

2
)(

1

5 + RS(x) + 4RC(x)
)

[2C1u[1 + RC(x)] − C1d[1 + RS(x)]+

Y (2C2u − C2d)RV (x)].

Here GF is the Fermi weak coupling constant,α is the fine
structure constant, Y is a kinematic factor, Rs and Rv

are sea- and valence-quark distribution functions, Ciq are

effective coupling constants, and x is the Bjorken variable
(see for details in ref. [1]). Within the context of the
Standard Model, the effective coupling constants, Ciq are
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This experiment will extract an effective coupling con-
stant combination (2C2u − C2d) with a high precision.

The experiment used the JLab Hall A High Resolution
Spcetrometers (HRS) [4]. For this measurement, the pri-
mary events depended only on the preshower and shower
detectors in each of the two spectrometer arms. The
preshower blocks were stacked with a row of two bars
where the end of the bars that did not have PMTs faced
each other. The shower detector in right high resolution
spectrometer had 64 lead blocks with a photo-multiplier
tube (PMT) attached in one end only, giving a 64 out-
put channels. The preshower detectors in the both high
resolution spectrometers had 48 output channels coming
from 48 bars, having a PMT in one end in each bar again.
All preshower blocks were individually wrapped to block
light leak. The preshower detector signal from each PMT
in the right HRS had to be split into two using a passive
splitter in order to produce the same number of output
channels as that in the shower detectors there. Since only
the 64 channels out of the 96 available preshower channels
after splitting had to be used, the unused preshower sig-
nals were terminated with a 50 Ω terminator. In the left
high resolution spectrometer, both preshower and shower
detectors had a similar construction, there was no need



to split any signal, as the number of channels in both of
these detectors were the same.

Data Acquisition System

The combination of preshower and shower detectors
was the main detector for the PVDIS experiment. This
experiment was expecting a high event rate of about 0.5
MHz from the main detector in each spectrometer. The
conventional DAQ could handle only up to a 4 kHz of
event rate and it was inapplicable for this experiment.
Hence there was an immense need of developing a new
DAQ to run the PVDIS experiment. As a result, the new
DAQ developed for (and used by) this experiment had a
unique counting DAQ that employed a hardware based
particle identification (PID). This was necessary for sep-
arating a large pion background from the electron signal.
The integrating DAQ used by previous parity violating
experiments at Jefferson Lab could not be adopted here
as the integrating DAQ had no mechanism to reject the
pion background.

The electron and pion signals were obtained through
different routes in the DAQ (see Fig. 1). They went
through both narrow and wide paths. These two paths
were designed to study deadtime effects. The main com-
ponent of the counting DAQ was a scaler module. The
scaler counting is always deadtimeless. The high rate
digital signal fed into the scaler module would give the
final readout of the PVDIS data.

There was a big effort to decide whether to use overlap-
ping or non-overlapping scheme in achieving a high sig-
nal detection efficiency from the main detector, specially
in the region where two adjacent blocks share the same
signal. We found that there was no gain in efficiency us-
ing the overlapping scheme over the non-overlapping one.
This was confirmed by a simulation using real data in-
put. This lead us to choose the non-overlapping scheme
which saved us a significant amount of electronics mod-
ules along with a possible loss of man-power in debugging
the extra electronics in the DAQ, had we used the over-
lapping scheme. The electron PID efficiency obtained us-
ing the non-overlapping scheme, such as shown in Fig. 2,
was found to be already about a cent percent; the choice
of the non-overlapping scheme had a merit.

The detector signals (a detector means a shower or
a preshower detector in this context), in a group of 8
channels, were directly input to a linear summing mod-
ule called SUM8 (represented by SS or PS with a differ-
ent indexing in the DAQ flowchart: Fig. 1). The right
HRS preshower signal splitting was performed before this
stage. The SUM8 module had two applications: sum-
ming all the input signals producing a single output, and
fanning out each input signal yielding it’s identical copy
so as to use it elsewhere. The copies of the signal from the
fan-out were sent to the regular spectrometer DAQ for

a use in an event by event analyses in combination with
the vertical drift chambers (VDC’s) or alone to study
systematic effects. After SUM8, there was another stage
of linear summing (represented by TS with a different in-
dexing in the DAQ flowchart: Fig. 1) where we combined
the shower and preshower signals. A random high rate
signal, called tagger, did also enter here. Some of these
linear summing modules also combined the tagger with
a preshower signal only. The analog signal after this lin-
ear summing was digitized using a leading edge discrim-
inator. Any signal that went to a scaler module of the
counting DAQ also went to a TDC module in a regular
spectrometer DAQ. The TDC module signals were used
to time-align all the detector signals. This alignment in
time was performed before going to the production mode
of data taking.

Two types of veto signals were prepared using a combi-
nation of scintillator and gas-cherenkov triggers: electron
veto and pion veto. The scintillator trigger came from
two layers of scintillator paddles that were normally used
to provide the main trigger for the regular spectrometer
DAQ [4]. The purpose of such veto triggers was to give
a clean PID for electron and pion triggers. Referring to
the DAQ flowchart diagram (Fig. 1), the logic modules
that had veto signal input would only give outputs if and
only if the veto signal was present.

Clean electrons were selected by the gas-cherenkov de-
tector. By electron PID efficiency means what fraction of
the clean electron sample the main detector was detect-
ing. The red trace in Fig. 2 shows that this value is close
to a unity, which means that the electron PID efficiency
was about 100% for this experiment.

Deadtime

Deadtime is the amount of time after each event dur-
ing which the system is unable to record another event if
there is any. Identifying exact value of the deadtime is al-
ways a challenge in nuclear physics experiments. To mea-
sure deadtime in this experiment, two different resolution
times of the electronic modules were used: 30 ns (“nar-
row path”) and 90 ns (“wide path”). Subsequent events
falling within the resolution time of the previous events
could not be recorded by the DAQ, causing a counting
loss due to deadtime.

A tagger of 10 kHz rate was used to measure the
deadtime of the PVDIS electronics. The tagger was
mixed (logical OR) with a preshower (P), shower (S),
gas-cherenkov (GC) and trigger scintillator (SC) sig-
nals individually. After that, these signals were passed
through the PVDIS electronics. The output signal from
the PVDIS electronics is called PVDIS signal from now
on, unless explained otherwise. The PVDIS signal was
combined (logical AND) with the tagger itself (see the
top sketch in Fig. 3). The idea there was to see if there
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FIG. 1: A typical DAQ flowchart diagram showing eight groups in the front, and two groups in action afterward, using a
non-overlapping DAQ scheme. This diagram represents the exact form of the flowchart as used in the right HRS. For the
case of left HRS, there was a slight modification, since the shower and preshower detectors in the left HRS had the same
construction, unlike that in the right HRS. Regarding groupings, we had eight groups in right HRS and six groups in left HRS.
The difference in the total group number is due to the fact that the two spectrometers had different type of shower detector
construction, though the two spectrometers had a similar type of preshower detectors. In the case of shower detectors, the
left hrs had its shower detector similar to its preshower detector in terms of detector numbers, whereas the right HRS had 80
shower blocks with one PMT in end only (see ref [4] for details) although we used only 64 of them only. The non-overlapping
scheme is shown on the top left: one group has 8 PMT channels, 4 preshower bars form a group; the color coded vertical bars
beside the preshower stack represent a group in the preshower stack. In the right HRS shower detector, two rows form a group,
each row has four PMT channels.
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FIG. 2: Red trace shows PID efficiency for electrons and it is
almost 100%. Horizontal axis is the two meter long coverage
of the main detector on the dispersive direction. Blue shading
is the double counting in efficiency in two adjacent groups,
this double counting is carefully excluded in the red trace.
Though this plot belongs to electron PID efficiency in the
left hrs through a narrow path, the quality of the electron
PID efficiency for the wide path, and also that for the right
spectrometer, is identical.

was any tagger signal killed due to deadtime in PVDIS
electronics. After combining a delayed tagger with the
tagger-mixed PVDIS signals, we could see the output
event rate from the logical AND module to be either
equal to the tagger rate itself or less. If the event rate
observed from the logical AND output was equal to the
tagger rate, there was no deadtime in the PVDIS elec-
tronics. If the PVDIS electronics had deadtime, the log-
ical AND output event rate must be smaller than the
tagger rate. The fractional loss of tagger event rate is
the amount of deadtime (D) which is given as

D = 1 − (1 − p)(Ro/Ri),

where Ri is the input tagger rate, Ro is the output rate
from the logical AND module, and p is a correction factor
for pileup effects. The pileup effect arises when the tagger
signal follows closely to a PVDIS signal and the DAQ
output from the PVDIS electronics coincides with the
tagger signal which causes a false count that could have
been lost due to the deadtime. The pileup factor p was
measured by using the TDC spectrum as shown on the
bottom pad in Fig. 3. If there was no pileup, only the
left-side peak would show up in the TDC spectrum. The
integral of the events, other than the left-side peak, would
correspond to the pileup amount. Such pileup events are
represented by the red trace in the bottom pad in Fig. 3.

The slope of deadtime versus rate plot gives the
amount of deadtime. This is obtained from the p1-value
of each trace in the two middle pads in Fig. 3. During
the experiment, the narrow path was set as 30 ns and the
wide path as 90 ns. The slopes of the left and right hrs
wide path traces almost meet the expectation (∼ 90 ns)
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FIG. 3: Top: a diagram for the use of tagger in determining
deadtime. Top-second: deadtime plot for a typical group from
the left hrs data. Top-third: deadtime plot for a typical group
from the right hrs data. Bottom: a TDC plot showing pileup
events. The integration of events in the red trace gives the
amount of pileup.



at this early stage of data analysis, and the deadtime
of the pvdis electronics appears to be below 1% for any
group in the main detector. The similar description for
the narrow path, however, does not seem to be possible.
The slopes for the narrow paths appear to be around 63
to 71 ns for most of the groups. The reason for that
could be due to the input pulses to the pvdis electronics
being about 63 to 71 ns. If so, the 30 ns path setting
was ineffective. This requires more investigation. Find-
ing the net deadtime of the whole PVDIS electronics and
the simulation for the deadtime are the next jobs to be
completed.

Asymmetry

The asymmetry is a popular observable that all par-
ity violating experiments care about measuring. Other
extractions are possible once the asymmetry is precisely
measured. The physics asymmetry sought for in this ex-
periment is about 100 times the Q2 value. Though the
main goal of the present experiment is to extract an ef-
fective coupling constant combination (2C2u −C2d) with
a high precision, it’s too early to make any comments on
this at the moment, since the data analysis is ongoing.
However, for the asymmetry measurements, the follow-
ing figures (Fig. 4) depict the blinded asymmetry found
during the time of online analysis. These plots indicate
that the quality of data obtained through the counting
DAQ meets expectations: asymmetry flips sign with the
flipping of spin of the incoming electron beam (i.e., the
opposite signs of asymmetries with the half wave plate IN
and OUT states), asymmetry increases with the increase
of Q2 value and vice-versa.

Conclusion

The newly developed counting DAQ was successfully
implemented in the PVDIS experiment at 6 GeV at Jef-
ferson Lab. The preliminary analysis of deadtime data
indicates that the deadtime of the pvdis electronics is be-
low 1%. The preliminary (blinded) physics asymmetry is
meaningful. The overall data analysis of the experiment
is progressing.
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