NextDIS : Challenges for next-gen DIS facilities

DE LA RECHERCHE À L'INDUSTRIE

The next-gen facilities : LHeC, EIC

Detector R&D : Micromegas, RICH

Monte-Carlo simulations

Financial aspects

www.cea.fr Irfu.cea.fr Collaboration of 22 Institutes/Universities :

CEA-Irfu Saclay, CNRS/IPNO, CNRS/CPHT, CNRS/LPT, NCBJ, INFN-LNF, U Santiago, UPV-EHU, U Antwerpen, U Birmingham, INFN-RM1, INFN-FE, INFN-PV, U Mainz, ISS, U Tübingen, U Jyvaskyla, INPK/PAN Cracow, ULB Brussels, U Granada, U Glasgow, U Huelva

Next-gen DIS facilities : (1) LHeC

New *e-p/e-A* collider using the LHC beams against e^{\mp} from an energy recovery linac Synchronous *e-p/e-A* & *p-p* : ~2025 to ~2035

New **polarized** *e-p/e-A* collider using existing RHIC ions or CEBAF electrons, $E_e x E_p = 5x100 \rightarrow 20x250 \text{ GeV}^2$ Start of operation at the earliest: ~2025

F. Sabatié – CEA Saclay/Irfu

cea

Some examples of our interest in future DIS facilities

NextDIS Collaboration

be useful to other experiments (HERA, COMPASS, JLab)

Micromegas Detectors as central tracker

-11

2D resistive read-out R&D

- 2 given channels are connected to neighboring strips only once in the detector.
- \diamond Easily adaptable to the incident flux of particles.
- ♦ Can equip up to $\sim n^2/2$ strips with only *n* electronic channels.

Y readout

Next-gen electronics : DREAM + R&D for colliders

- Evolution of AFTER and APV25 chips
- Tailored for high capacitance detectors (MPGDs)
- Dead-time free
- Low noise : 2100e-
- Gain in S/N up to 25% wrt previous chip generation
- Self-triggering capabilities

R&D : DREAM for colliders

- Separate analog/digital parts : Very-Front-End Board
- Packaged/bonded ASIC studies
- Irradiation studies and simulation
- Evaluation of a multi-VFEB system

Tasks and subtasks:

TASKS/Subtasks		2015			2016				2017				
		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
1. Li	1. Lightweight Micromegas R&D												
1.1	Study of resistive strips 2D pattern												
1.2	Optimization of radiation length												
1.3	Optimization of geometry												
1.4	Study of readout multiplexing												
2. M	PGD Front-End electronics R&D												
2.1	Design/fabrication of Very-Front-End-Board												
2.2	Studies of packaged/bonded DREAM ASIC												
2.3	DREAM ASIC irradiation studies												
2.4	Evaluation of a multi-VFEB system												

Deliverables:

WP35.1	2D-curved resistive prototype	35	Р	PP	36
WP35.2	Very-Front-End-Board	35	Р	PP	24
WP35.3	Report on Micromegas trackers for e-p/e-A colliders	35	R	PU	33

Semi-inclusive DIS to study 3D nucleon structure and hadronization; Hadron ID for flavor sensitivity

Project goal: cost-effective, compact size, excellent time resolution, good tolerance to magnetic field

Based on novel devices undergoing rapid evolution in performance gain and cost reduction

Micro-channel Large-Area Picosecond Photon-Detectors (in collaboration with JLab, USA)

Rapid evolution of the technology needs extensive characterization and dedicated readout electronics

Project goal: large area coverage to limit and control the patient assumed dose

Compton Camera: 3D imaging without tomography by gamma tracking (in collaboration with Italian Health Institute, ISS)

- Higher efficiency than SPECT
- No intrinsic limit to spatial resolution (e.g. positron range in PET)
- Broad applicability broader set of radionuclides than PET real-time dose control in radiotherapy

Complex, no clinic system in operation yet

Perfect **application challenge** for HPH detector R&D activities Proof-of-principle use of cost-effective devices: GEM or Micromegas as tracker SIPM or LAPP as photon detector

Tasks and subtasks:

TASKS/Subtasks		2015			2016			2017					
3. R	RICH photon detector studies												
3.1	R&D and characterization of innovative photon sensors												
3.2	Aerogel studies												
3.3	Design of integrated systems with front-end electronics												
3.4	Fabrication and test of large scale prototype												
4. M	edical Application: Compton Camera												
4.1	Studies on scaterrer using charged particle tracker												
4.2	Extension of single photon detector												
4.3	Small-scale Compton Camera prototype												

Deliverables:

WP35.4	Evaluation report on innovative photon detectors	35	R	PU	16
WP35.5	Compton Camera conceptual design	35	R	PU	24
WP35.6	Design of optimized readout electronics and photon detection assembly	35	R	PU	28
WP35.7	Large area RICH prototype	35	Р	PP	36
WP35.8	Compton camera prototype	35	Р	PP	36

Modern-day experiments need both state-of-the-art instrumentation AND simulation

(semi-)Inclusive Deep Inelastic Scattering

Existing tools were mainly designed for the inclusive case and are not sufficient for SIDIS. Need unpolarized and polarized unintegrated (transverse-momentum dependent) parton distributions. Need *full* kinematic range from low-*x* up to the valence region (take care of different theory approaches). Hadronization and radiative corrections needed.

Need helicity-dependent parton showers, dedicated diffractive dissociation simulation.

Exclusive processes

Consistent description of DVCS, DVMP, TCS, DDVCS, from valence to low-x.

For unpolarized and longitudinally/transversely polarized nucleons QED rad. cor. and nucleon dissociation needed. QCD corrections (NLO) needed.

Deep Inelastic Scattering on nuclei

Many *e-p* MCs, but few for *e-A*. Existing tools (DPMJET) are incomplete and no longer maintained. Need MC with full treatment of hard scattering, (in-medium) QED/QCD showers, hadronisation/nuclear de-excitation, and QED radiative corrections.

Common requirements for all processes

High-accuracy QED radiative corrections. Fast simulation needed for detector design.

This WP brings together most experts on these directions, towards a simulation and analysis strategy

F. Sabatié – CEA Saclay/Irfu

27/03/2014

F. Sabatié – CEA Saclay/Irfu

HPH kick-off meeting, Bochum

27/03/2014

A common requirement : QCD and QED corrections

 $r_c(y) = d\sigma_{O(\alpha)}(y)/d\sigma_{Born}(y) - 1$ for e^-N at 5 × 130 GeV², $10^{-3} \le x_{Bj} \le 10^{-2}$

627

Large corrections, accurate measurements needs careful treatment of RC, *fully imbedded* in MC simulations. (experimental resolutions have large impact)

QCD

Large corrections, accurate measurements needs careful treatment of QCD corrections, *very* sensitive to gluon GPDs.

Tasks and subtasks:

TASKS/Subtasks			2015			2016			2017				
5. C	5. Collider inclusive e-A simulation tools												
5.1	Hard-Scattering												
5.2	QCD/QED showers, nuclear medium effects												
5.3	Implementation of remnant hadronization												
5.4	QED radiative corrections												
5.5	Fast detector simulation package												
6. C	ollider SIDIS simulation tools												
6.1	Algorithm for helicity-dependent parton showers												
6.2	TMD models, event generator												
6.3	QED radiative corrections to SIDIS												
7. C	7. Collider exclusive simulation tools												
7.1	QCD Corrections to DVCS/DVMP												
7.2	DVCS generator												
7.3	DVMP generator												
7.4	Incoherent nuclear DIS processes												

Deliverables:

Deliverable No	Deliverable name	WP No.	Nature ²	Dissemination level ³	Delivery date ⁴
WP35.8	Inclusive MC simulation code	35	0	PU	33
WP35.8	Semi-Inclusive MC simulation code	35	0	PU	33
WP35.8	Exclusive MC simulation code	35	0	PU	36

(Open-source codes on NextDIS web site)

Financial Aspects

QCD Discoveries	$\alpha_s < 0.12, q_{sea} \neq \overline{q}$, instanton, odderon, low x: (n0) saturation, $\overline{u} \neq \overline{d}$
Higgs	WW and ZZ production, $H \to b\overline{b}$, $H \to 4l$, CP eigenstate
Substructure	electromagnetic quark radius, e^* , ν^* , W ?, Z ?, top?, H ?
New and BSM Physics	leptoquarks, RPV SUSY, Higgs CP, contact interactions, GUT through α_s
Top Quark	top PDF, $xt = x\overline{t}$?, single top in DIS, anomalous top
Relations to LHC	SUSY, high x partons and high mass SUSY, Higgs, LQs, QCD, precision PDFs
Gluon Distribution	saturation, $x \equiv 1, J/\psi, \Upsilon$, Pomeron, local spots?, F_L, F_2^c
Precision DIS	$\delta \alpha_s \simeq 0.1 \%, \delta M_c \simeq 3 \text{MeV}, v_{u,d}, a_{u,d} \text{ to } 2 - 3 \%, \sin^2 \Theta(\mu), F_L, F_2^b$
Parton Structure	Proton, Deuteron, Neutron, Ions, Photon
Quark Distributions	valence $10^{-4} \leq x \leq 1$, light sea, d/u , $s = \overline{s}$?, charm, beauty, top
QCD	N ³ LO, factorisation, resummation, emission, AdS/CFT, BFKL evolution
Deuteron	singlet evolution, light sea, hidden colour, neutron, diffraction-shadowing
Heavy Ions	initial QGP, nPDFs, hadronization inside media, black limit, saturation
Modified Partons	PDFs "independent" of fits, unintegrated, generalised, photonic, diffractive
HERA continuation	$F_L, xF_3, F_2^{\gamma Z}$, high x partons, α_s , nuclear structure,

An Electron-Ion Collider will allow the unique exploration of some of the most intriguing open questions in modern nuclear physics:

The structure of visible matter

Quark distributions polarized (L/T) or not 3D-imaging of the nucleon (GPD) Transverse Momentum Distributions

The role of gluons in hadronic matter

Gluon distributions polarized or not F₂ and F_L measurements in nuclei Study of gluon saturation (CGC)

Electroweak interaction and physics beyond the SM

Accurate measurement of $\text{sin}^2\theta_w$ e- τ conversion

F. Sabatié – CEA Saclay/Irfu

HPH kick-off meeting, Bochum

27/03/2014

Budget Table

Contractor Acronym	Personnel (EUR)	Other costs (durables, consumables, travel, workshops) (EUR)	Total direct costs (EUR)	Indirect costs (EUR)	Requested EC contribution (EUR)
CEA-IRFU	66667	77000	143667	35917	179584
CNRS/IPNO	0	3000	3000	750	3750
CNRS/CPHT	0	4000	4000	1000	5000
CNRS/LPT	40000	3000	43000	10750	53750
SINS	0	2000	2000	500	2500
INFN-LNF	40000	12000	52000	13000	65000
USantiago	30000	2000	32000	8000	40000
UPV-EHU	10000	13000	23000	5750	28750
UAntwerpen	0	2000	2000	500	2500
UBirmingham	30000	2000	32000	8000	40000
INFN-Roma1	0	2000	2000	500	2500
INFN-Ferrara	40000	7000	47000	11750	58750
ISS	20000	12000	32000	8000	40000
INFN-Pavia	0	3000	3000	750	3750
UMainz	40000	4000	44000	11000	55000
UTuebingen	0	3000	3000	750	3750
UJyvaskyla	0	3000	3000	750	3750
PAN	0	2000	2000	500	2500
ULBB	0	1000	1000	250	1250
UGranada	0	2000	2000	500	2500
UHuelva	0	2000	2000	500	2500
UGlasgow	0	2000	2000	500	2500
TOTAL	316667	163000	479667	119917	599584

F. Sabatié – CEA Saclay/Irfu

HPH kick-off meeting, Bochum

<u>BULK workshop at Irfu/Sedi</u>

Bulk Micromegas : Fabrication scheme

PCB nu équipé avec

Lamination

PCB avec une couche

ses pistes ou pixel

Le pain

- First prototypes in 2004. Collaboration CERN/Irfu.
- The woven micro-mesh is laminated between two photo-sensitive layers → reduction of dead zones
- Large areas
- Robust, industrial process (printed circuit)

Segmentation and preparation

Gluing of the side carbon ribs on circular shape

Electric leak test

Gluing of additional ribs

Setting and gluing of drift plane

ATLAS Micromegas small wheel project

2 new wheels (NSW):

- 1200 m² of resistive Micromegas
- More than 2M electronics channels

5 ٩r

4.5

3.5

2.5

1.5

0.5

Fabrication

- Maximum area ~ 2 m² _
- Production: 1024 planes -(2015-16)

Transfer to industry:

- ELVIA (France)
- ELTOS (Italy)
- Triangle Labs (US)

27/03/2014

ATLAS/NSW

- Multiplication in the holes
- ~ 50% of electrons transferred
- Gain per layer a few 10's to 10^3
- Low ion back flow (1%)
- Multistage structure \rightarrow gain 10⁵
- More fragile and more integration issues

- Multiplication between mesh and anode
- Stability of gain wrt gap
- Gain 10⁴-10⁵
- Low ion back flow (1%, down to 10⁻⁶)
- Robust
- Sparking unless resistive or preceded by a GEM foil for preamplification
- Smaller ultimate thickness (both in mm and X₀)
- Slightly more radiation resistant

GEM: Sauli 1997

- COMPASS
- LHCb muon detector
- TOTEM telescope
- HBD (Hadron Blind Detector)
- NA49 (upgrade)
- X-ray polarimeter (XEUS)
- GEM TPC for LEGS, BONUS
- STAR FGT
- KLOE2 vertex detector
- OLYMPUS
- SuperBigBite (JLab/Hall A)
- CMS forward muon chambers
-
- and at the proposal/prototyping stage
- EIC R&D

.

- DarkLight phase-I

- MM: Giomataris 1996
- COMPASS (1 & 2)
- NA48/KABES
- CAST (CERN Axial Solar Telescope)
- nTOF (neutron beam profile)
- Piccolo (in reactor core neutron measurement)
- T2K TPC
- JLab/CLAS12/MVT
- RIKEN/MINOS (exotic nuclei spectroscopy)
- ATLAS muon system upgrade
-

and at the proposal/prototyping stage

- ASACUSA (anti-H)
- HARPO (astrophysics)
- MIMAC (dark matter)
- FIDIAS & ACTAR (low-energy heavy ion)
- EIC R&D

DREAM chip

- Tailored for detectors with high capacitances
 - ~30% less noise compared to the previous generation (after ASIC)
 - Depending on detector type ENC of 2000-2700 is expected
- Version 1 submitted
 - Added intermediate peaking times for more flexibility
 - Minor bugs corrected
 - Packaged chips expected in May-June

Front End Unit : Active comp. on top & bottom sides

- 8 Dream ASICs
- 8-channel 40 MHz ADC
- Virtex-6 FPGA
- SFP cages
- 2.5 Gbit/s optical link
- IGb Ethernet
- JTAG based system monitor

HPH kick-off meeting, Bochum

27/03/2014