Deeply Virtual Compton Scattering at 11GeV with CLAS12

Deeply Virtual Compton Scattering at 11GeV with CLAS12

A. Biselli[†]

Fairfield University, Fairfield, CT 06824, USA

I. Bedlinsky, S. Kuleshov, O. Pogorelko, A. Vlassov Institute of Theoretical and Experimental Physics, Moscow, 117259, Rus	<u>Two proposals bundled in one:</u>	
H. Avakian, V. Burkert, A. Deur, <u>L. Elouadrhiri[†]</u> , M. Ito, M. Vanderhaeghen, R. Nivazov, Yu. Sharabian, and S. Stepanya	1. DVCS Beam Spin Asymmetry	
Jefferson Lab, Newport News, VA 23606, USA V. Baturin, <u>W. Kim[†]</u> , S.S. Stepanyan, and M. Yurov	2. DVCS Target Spin Asymmetry	
 Kyangpook National Oniversity, Daeya 102-101, Republic of Korea V. Mokeev, G. Fedotov, B.S. Ishkhanov, E.L. Isupov, and N.V. Shved Moscow State University, 119899 Moscow, Russia M. Amarian, G. Gavalian, C.E. Hyde-Wright, A. Radyshkin, and L. We Old Dominion University, Norfolk, VA 23529, USA J. Ball, P. Bertin, R. De Masi, M. Garçon, FX. Girod, M. Guidal, M. Mac Cormick, M. Mazouz, B. Michal, S. Niccolai 	lunov einstein	
 B. Pire, S. Procureur, <u>F. Sabatié^{†*}</u>, E. Voutier, and S. Wallon LPC (Clermont) / LPSC (Grenoble) / IPNO & LPT (Orsay) CPhT-Polytechnique (Palaiseau) / SPhN (Saclay) CEA/DSM/Dapnia & CNRS/IN2P3, France K. Joo, N. Markov, M. Ungaro, and Bo Zhao University of Connecticut, Storrs, CT 06269, USA 	J. Annand, D. Ireland [†] , R. Kaiser, K. Livingston, D. Protopopescu, G. Rosner, and B. Seitz University of Glasgow, Glasgow G12 8QQ, UK J. Connel, H. Egiyan [†] , M. Holtrop [†] , and L. Zana University of New Hampshire, Durham, NH 03824, USA C. Djalali, R.W. Gothe, J. Langheinrich, K. Park, S. Strauch, and D. Tedeschi University of South Carolina, Columbia, SC 29208, USA N. Baillie, R. Fersch, and K.A. Griffioen The College of William and Mary, Williamsburg, Virginia 23187, USA	
	G. Asryan, N. Dashyan, K. Egiyan, N. Gevorgyan, and H. Hakobyan Yerevan Physics Institute, Yerevan, Armenia 375036	

GPDs from Theory to Experiment

2. The GPDs enter the DVCS amplitude as an integral over x:

- GPDs appear in the real part through a PP integral over x
- GPDs appear in the imaginary part but at the line x= ξ

$$T^{DVCS} = \int_{-1}^{+1} \frac{GPD(x,\xi,t)}{x-\xi+i\varepsilon} dx + \cdots$$
$$= P \int_{-1}^{+1} \frac{GPD(x,\xi,t)}{x-\xi} dx - i\pi GPD(x=\xi,\xi,t) + \cdots$$

Experimental observables linked to GPDs

3. Experimentally, DVCS is undistinguishable with Bethe-Heitler

However, we know FF at low t and BH is fully calculable

Using a polarized beam on an unpolarized target or an unpolarized beam on a polarized target, one can access 2 observables:

$$\frac{d^4\sigma}{dx_B dQ^2 dt d\varphi} \approx \left| T^{BH} \right|^2 + 2T^{BH} \cdot \operatorname{Re}\left(T^{DVCS} \right) + \left| T^{DVCS} \right|^2$$

$$\frac{d^{4}\vec{\sigma} - d^{4}\vec{\sigma}}{dx_{B}dQ^{2}dtd\varphi} \approx 2T^{BH} \cdot \operatorname{Im}(T^{DVCS}) + \left[\left| T^{DVCS} \right|^{2} - \left| T^{DVCS} \right|^{2} \right]$$

$$A^{\dagger} JLab \text{ energies,}$$

$$|T^{DVCS}|^{2} \text{ is small... maybe!}$$

Kroll, Guichon, Diehl, Pire, ...

Into the harmonic structure of DVCS

Belitsky, Mueller, Kirchner

<u>Difference of cross-section for polarized beam on unpolarized target:</u>

$$\frac{d^{4} \overrightarrow{\sigma} - d^{4} \overleftarrow{\sigma}}{dx_{B} dQ^{2} dt d\varphi} = \frac{\Gamma(x_{B}, Q^{2}, t)}{\Pr(\varphi) \Pr_{2}(\varphi)} \left\{ s_{1}^{t} \sin \varphi + s_{2}^{t} \sin 2\varphi \right\}$$

$$s_{1}^{t} = 8Ky(2 - y) \left[\text{Im } C^{t}(F) \right]$$

$$C^{t}(F) = F_{1} H + \frac{x_{B}}{2 - x_{B}} (F_{1} + F_{2}) \tilde{H} - \frac{t}{4M^{2}} F_{2} E$$

$$\text{Im } H = \pi \sum_{q} e_{q}^{2} \left\{ H^{q}(\xi, \xi, t) - H^{q}(-\xi, \xi, t) \right\}$$

$$\text{GPD } \parallel$$

<u>Difference of cross-section for unpolarized beam on polarized target:</u>

$$\frac{d^{4} \overrightarrow{\sigma} - d^{4} \overleftarrow{\sigma}}{dx_{B} dQ^{2} dt d\varphi} = \frac{\Gamma(x_{B}, Q^{2}, t)}{\mathbf{P}_{1}(\varphi) \mathbf{P}_{2}(\varphi)} \left\{ s_{1}^{I} \sin \varphi + s_{2}^{I} \sin 2\varphi \right\}$$

$$s_{1}^{I} = 8Ky(2 - y) \left[\mathrm{Im} C^{I}(F) \right]$$

$$C^{I}(F) = \xi(F_{1} + F_{2}) \left(\mathrm{H} + \frac{\xi}{1 + \xi} \mathrm{E} \right) + F_{1} \widetilde{\mathrm{H}} - \xi \left(\frac{\xi}{1 + \xi} F_{1} + \frac{t}{4M^{2}} F_{2} \right) \widetilde{\mathrm{E}}$$

Mostly sensitive to H and $\tilde{\mathrm{H}}$

Experimentally advantageous, the asymmetry can be written as:

$$\frac{d^{4} \overrightarrow{\sigma} - d^{4} \overrightarrow{\sigma}}{d^{4} \overrightarrow{\sigma} + d^{4} \overleftarrow{\sigma}} = \Gamma_{A} (x_{B}, Q^{2}, t) \frac{s_{1}^{I} \sin \varphi + s_{2}^{I} \sin 2\varphi}{c_{0}^{I} + c_{0}^{BH} + (c_{1}^{I} + c_{1}^{BH}) \cos \varphi + \dots}$$

With limited statistics and to give rough estimates, one can consider that the denominator is dominated by c_0^{BH} .

However, high precision experiment will need to take everything into account to extract twist-2 GPDs **without model dependence**. This is foreseen to be achieved using a global fit to parametrized GPDs, just like NLO fits to structure functions yield PDFs.

X. Ji Workshop in October!

E1-DVCS data and analysis are promising !

Same experimental method as the proposed experiment

Analysis by F.X. Girod

+ more data in 2008

From 6 to 11 GeV!

<u>Goal:</u> To measure BSA, TSA and (beam)-helicity dependent cross-sections for the DVCS process in the full domain allowed by 11 GeV beam with statistical error bars similar or better than foreseen systematic errors:

80 days unpolarized target, 120 days polarized target

Within a **global analysis of world data** including HERMES and Hall A Deep Exclusive data, the impact of JLab 11 GeV data will provide the strongest constraints to a model independent parametrization of GPDs (Mueller et al.).

+ improved acceptance

Experimental Setup and proposed experiments at 11 GeV

Use of base CLAS12 equipment, including Inner Calorimeter (IC)

Longitudinally polarized NH3 target

85%
1/6
up to 100 mm
up to 30 mm
up to 2x10^35 /cm ² /s
NMR + physics

IC radiation study

2006/06/15 14.53

Study by L. Elouadrhiri and A. Vlassov

IC radiation study

The IC radiation is not worse with CLAS12 configuration than during E1-DVCS

IC block gain variation during E1-DVCS running

Electron acceptance for DVCS

Proton acceptance for DVCS

Photon acceptance for DVCS

Clean exclusive (e,p, γ) final state is selected the usual way.

The remaining contribution comes from π° electroproduction asymetric decays (only 1 photon detected), which can be reduced by performing cuts on Emiss and $\delta\theta$, the angle between the expected and measured photons.

Reduction in pion contamination by up to a factor 10!

π° subtraction: removing the remaining contribution

-Determination of 1- γ to 2- γ photon acceptance ratio from Monte-Carlo

-Measurement of π^{0} yield (2- γ detected) and asymmetry

[Method already used for analysis of EG1 data (PRL 97, 072002 (2006))]

Study by. A. Biselli

Acceptance for DVCS events in (x,Q^2,t)

Beam Spin Asymmetry

Target Spin Asymmetry

IC in standard position - 200 days - 2x10^35 Lum - VGG model

Sensitivity to GPD models - sample of data points

Systematic Errors (all relative)

Source	BSA	$\Delta \sigma$	σ
Luminosity	-	2%	2%
Pe determination	2%	2%	-
π° contamination	1%-5%	1%-5%	3-8%
Acceptance	3%	8%	8%
Radiative Corr.	1%	3%	3%
Total	4%-7%	9%-10%	8%-12%

Unpolarized Target

Po	arized
Т	arget

Source	TSA
Nuclear Material	4%
Pt determination	3%
π° contamination	1%-5%
Acceptance	3%
Accidentals	1%
Radiative Corr.	1%
Total	6%-8%

> Deeply Virtual Compton Scattering remains the best understood tool in order to access GPDs at moderate energies.

> Beam and Target spin asymmetries will allow access to observables linked to GPDs (different kinds and combinations).

 \geq Experimentally, the previous analysis have proven the feasibility of these type of experiments. The potential issue of radiation damage to the IC is under control with proper shielding.

> An essential aspect of the GPD study for 12 GeV is to collect a large statistical sample in order to give constraints on GPD parametrizations. Precision data is the key to the understanding of the nucleon structure with this study.