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Abstract

The two basic quantities that must be known about a 3He target cell are its helium density & polarization.
To better understand & fully optimize the performance of these cells, it is essential to know the alkali vapor
density & polarization as well. The atomic polarizability determines how light is modified after traversing a
sample of alkali atoms. The imaginary part of the polarizability is responsible for absorption. The width of
the absorption line is pressure broadened and consequently linearly proportional to the helium density. The
real part of the atomic polarizability causes Faraday rotation of the the plane of polarization of a linearly
polarized probe beam. The amount of rotation is proportional to the alkali density. We probe the Zeeman
levels of the alkali atom via EPR RF spectroscopy. Slightly exciting one of the transitions lowers the alkali
polarization by a small amount. By sweeping the holding field while keeping the RF frequency fixed, we
map out the EPR RF spectrum of the alkali atoms. Ratios of areas under the peaks in this spectrum are
related to the alkali polarization and alkali density ratio. Finally the locations of these peaks are shifted
due interactions with the polarized helium gas. The size of these frequency shifts are proportional to the
He polarization. The goal of this note is to present all of the theoretical derivations needed to understand
“where the formulas come from.”

First, we’ll derive the fine & hyperfine structure of the alkali atoms. Then we’ll show how to describe
polarized light using the Jones calculus. Using standard semi-classical arguments, we’ll study how the matrix
elements of the density operator changes under a harmonic perturbation. As a consequence, we’ll calculate
the transition matrix elements due to electric & magnetic dipole interactions. The coherences of the density
matrix also depend on the populations of the density matrix, which are at a spin temperature equilibrium.
To interpret pressure broadening & Faraday rotation, we’ll calculate the atomic polarizability. Finally we’ll
provide an overview of the experimental techniques and summarize how to extract information from the
experimental observables associated with the wavelength tunable probe beam. This note is meant to be
detailed, explicit, and self-contained.
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Chapter 1

The Structure of Alkali Atoms in a
Magnetic Field

1.1 Notation & Conventions

All quantities will be denoted in SI. Angular momentum operators will be unitless:

�̂J2 |J,mJ〉 = J(J + 1) |J,mJ〉 (1.1)
Ĵz |J,mJ〉 = mJ |J,mJ〉 ,mJ = −J..J (1.2)

Ĵ± = Ĵx ± iĴy (1.3)

Ĵ± |J,mJ〉 =
√
J(J + 1) −mJ(mJ ± 1) |J,mJ ± 1〉 (1.4)

The statistical weight is denoted by [J ] and is defined by [J ] = 2J + 1. The magnetic moment arising from
spin will be written:

�μS =
μS

S
�S (1.5)

μS

S
= gSμx (1.6)

The magnetic moment arising from the orbital angular momentum will be written:

�μL = μL
�L (1.7)

μL = gLμx (1.8)

Note that the sign of the magnetic moment is carried implicitly in g or alternatively μJ . For example, g ≈ −2
for the electron, g ≈ 2(2.79) for the proton, and g ≈ 2(−1.91) for the neutron. In all cases, the g-factor will
be left unevaluated in the equations. However, equations will be written such that approximations can be
made without loss of accuracy, for example:

−3
2
gS = 3

[
gS

−2

]
︸ ︷︷ ︸
≈1.00116

≈ 3 (1.9)

For the electron spin, gS does not equal −2 exactly due to radiative corrections. There is no reason why
gL must equal exactly −1. This point is discussed at great length in section IX.5.1 of Molecular Beams
[1]. Based on experimental results from alkali atoms, |gL| differs from unity on order of parts per million.
Therefore, for L ≥ 1, we’ll take gL = −1.0.

The units are carried in μx, which is the Bohr magneton (μB) for the electron and the nuclear magneton
(μN ) for nuclei. The different angular momenta will be identified as:
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• �S is the sum of the spins of each electron in the atom,

• �L is the sum of the orbital angular momenta of each electron in the atom,

• �J
(
= �L+ �S

)
is the total electronic angular momentum of the atom,

• �I is the spin of the nucleus,

• �F
(
= �I + �J

)
is the total internal angular momentum of the atom.

Operators and matrices will usually be denoted by hats M̂ . Hamiltonians will be H, energies will be E,
frequencies will be ν (with units of Hz), and angular frequencies ω (with units of rad·Hz).

1.2 Fine Structure (Ignoring Nuclear Spin)

1.2.1 Zero Field Eigenbasis

The basic structure of the atomic Hamiltonian is summarized below, more details can be found in any good
atomic physics book such as Woodgate [2] or Foot [3]:

1. The electrostatic interaction within an atom can be expressed as a central and a non-central force.

2. The central force is a Coulomb interaction between the electrons and an effective nuclear charge.

3. The non-central force is the residual electrostatic repulsion among the electrons.

4. For most atoms, the non-central force dominates over the spin-orbit coupling.

5. Because the non-central forces are larger, the orbital angular momenta of the electrons are correlated.

6. Because of Fermi-Dirac statistics, the total electronic spin and the total electronic orbital angular
momentum is zero for closed shells.

7. Because of spherical symmetry, the non-central force is independent of orbital angular momentum for
closed shells. Therefore, the non-central force is relevant only between the valence electrons.

8. In this limit, the spin-orbit coupling occurs between the total valence electronic spin and the total
valence electronic orbital angular momentum.

9. Finally, all higher order interactions, such as quadrupole interactions, will usually be ignored.

Consider H0 with Hes, electrostatic interaction, and Hso, spin-orbit coupling:

H0 = Hes + Hso (1.10)

Under the conditions described before, the form of Hso is

�J 2 = (�L+ �S)2 = �L 2 + 2�L · �S + �S 2 (1.11)

Hso = Aso
�L · �S =

Aso

2
( �J 2 − �L 2 − �S 2) (1.12)

From the second form of Hso above, it should be clear that J , L, and S are good quantum numbers, i.e.,
they commute with the Hamiltonian. A useful eigenbasis with those quantum number is the LS-coupling
scheme {|J,mJ〉}. Each group of degenerate eigenstates is labeled by a Russell-Saunders term [3, 4] of the
form

n2S+1LJ (1.13)

where n is the principal quantum number which labels the valence configuration. L labels the valence orbital
in the following way:
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• L = 0 → L = S

• L = 1 → L = P

• L = 2 → L = D , and so on

All closed shells have
�Lshell = �Sshell = 0 (1.14)

For a neutral alkali metal atom, �J , �L, and �S all refer to the single valence electron. In the ground state,
J = 1

2 and the RS term is n2S 1
2
. The first two excited states have J = 1

2 and J = 3
2 and are labeled n2P 1

2

and n2P 3
2
. Appendix C.5 contains an expansion of the LS-coupling basis {|J,mJ〉} in the uncoupled L, S

basis {|L,mL〉 |S,mS〉}.
Spin-orbit coupling breaks the degeneracy of these n2P states and results in fine structure. Fine structure

also refers to other corrections, including relativistic ones, that are of the same order of magnitude. However,
except for Hydrogen, these corrections are much smaller than the spin-orbit coupling. (where did i read that?)
Regardless, these corrections only shift the energies collectively, independent of mJ and they do not mix
the eigenstates. The transitions from the ground state to the first two excited states n2S 1

2
→ n2P 1

2
and

n2S 1
2
→ n2P 3

2
are called the D1 and D2 transitions respectively.

1.2.2 Hamiltonian

The Hamiltonian describing the atom in a magnetic field �B is

H = H0 − �μL · �B − �μS · �B = Hes + Hso − �μL · �B − �μS · �B (1.15)

To recap:

• The first term Hes contains all the terms that do not involve the electron spin.

• The second term is the spin-orbit interaction.

• The third and fourth terms are the Zeeman terms for the orbital and spin angular momentum respec-
tively.

Using �B = Bẑ & Jz = Lz + Sz:

H = Hes + Hso − �μL · �B − �μS · �B (1.16)

= Hes +
Aso

2

(
�J 2 − �L 2 − �S 2

)
− gLμBLzB − gSμBSzB (1.17)

= Hes +
Aso

2

(
�J 2 − �L 2 − �S 2

)
− gLμB (Jz − Sz)B − gSμBSzB (1.18)

= Hes +
(
−Aso

2

(
�L 2 + �S 2

)
− gLμBBJz

)
+ H′ (1.19)

H′ =
Aso

2
�J 2 − (gS − gL)μBBSz (1.20)

gS � −2 (1.21)

gL =
{

0 , L = 0
−1 , L > 0

}
(1.22)

The Hamiltonian is separated into three terms intentionally. States within a n2S+1L term with the same
mJ but different J are mixed by the Zeeman interaction. This means that the first two terms are diagonal
simultaneously in the {|J,mJ〉} basis and the eigenbasis of H. Therefore, only H′ has to be diagonalized.
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1.2.3 Energies

Matrix Subblocks

Let’s specialize to the case S = 1
2 , since an alkali metal atom is being considered. J can be L± 1

2 . Therefore
in the {|J,mJ〉} basis, the Sz term is block diagonal with subblocks no greater than 2 by 2 in size. The 2 by
2 subblocks are made of the states with different J and same mJ . For the special case of mJ = ± (

L+ 1
2

)
,

there are no other states to mix with. Thus, they reside in subblocks of size 1 by 1. This is true for the
mJ = ± 1

2 states of the ground state term n2S 1
2

and the mJ = ± 3
2 states of the excited state term n2P 3

2
.

On the other hand, the mJ = ± 1
2 states of the terms n2P 1

2 , 3
2

mix and therefore need to be diagonalized. To
diagonalize H, we only have to diagonalize each subblock of H′,

H′ =
Aso

2
�J 2 − (gS − gL)μBBSz (1.23)

Ĥ′ =
Aso

2

[ (
L+ 1

2

) (
L+ 3

2

)
0

0
(
L− 1

2

) (
L+ 1

2

) ]
− (gS − gL)μBB

[
α+ β−
β+ α−

]
(1.24)

α± =
〈
L± 1

2
,mJ

∣∣∣∣ Ŝz

∣∣∣∣L± 1
2
,mJ

〉
(1.25)

β± =
〈
L∓ 1

2
,mJ

∣∣∣∣ Ŝz

∣∣∣∣L± 1
2
,mJ

〉
(1.26)

The first term can be simplified to give:

Aso

2
�̂J2 =

Aso

2

(
L+

1
2

)(
L+

1
2

+
[

1 0
0 −1

])
(1.27)

α± & β± in the second term are most easily calculated in the uncoupled {|L,mL〉 |S,mS〉} basis:

|L,mL〉 |S,mS〉 = |mL,mS〉 = |mL〉L |mS〉S (1.28)

|J,mJ〉 =
∑

|mL,mS〉 〈mL,mS |J,mJ〉︸ ︷︷ ︸
Clebsch−Gordon

(1.29)

Using formulas for Clebsch-Gordon coefficients from the appendix (C.2):〈
mJ ∓ 1

2
,±1

2
| L+

1
2
,mJ

〉
=

1√
[L]

√
L+

1
2
±mJ

(1.30)〈
mJ ∓ 1

2
,±1

2
| L− 1

2
,mJ

〉
=

∓1√
[L]

√
L+

1
2
∓mJ

For α±:

α± =
〈
L± 1

2
,mJ

∣∣∣∣ Ŝz

∣∣∣∣L± 1
2
,mJ

〉
(1.31)

=

1
2∑

mS ,m′
S=− 1

2

〈mJ −m′
S ,m

′
S | Ŝz |mJ −mS ,mS〉

× 〈J,mJ |mJ −m′
S ,m

′
S〉 〈mJ −mS ,mS |J,mJ〉 (1.32)

=

1
2∑

mS=− 1
2

mS |〈mJ −mS ,mS|J,mJ〉|2 , J = L± 1
2

(1.33)

=
1
2

(
L+ 1

2 ±mJ − L− 1
2 ±mJ

[L]

)
(1.34)

= ±
(
mJ

[L]

)
= ±(α) (1.35)
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For β±:

β± =
〈
L∓ 1

2
,mJ

∣∣∣∣ Ŝz

∣∣∣∣L± 1
2
,mJ

〉
(1.36)

=

1
2∑

mS ,m′
S=− 1

2

〈mJ −m′
S ,m

′
S | Ŝz |mJ −mS ,mS〉

×
〈
L∓ 1

2
,mJ |mJ −m′

S ,m
′
S

〉〈
mJ −mS ,mS |L± 1

2
,mJ

〉
(1.37)

=

1
2∑

mS=− 1
2

mS

〈
L∓ 1

2
,mJ |mJ −mS ,mS

〉〈
mJ −mS ,mS |L± 1

2
,mJ

〉
(1.38)

= +
1
2

⎛
⎝−

√(
L+ 1

2 ∓mJ

) (
L+ 1

2 ±mJ

)
[L]

⎞
⎠− 1

2

⎛
⎝+

√(
L+ 1

2 ±mJ

) (
L+ 1

2 ∓mJ

)
[L]

⎞
⎠ (1.39)

= −
⎛
⎝

√(
L+ 1

2

)2 −m2
J

[L]

⎞
⎠ = − (β) (1.40)

To solve for the energies, we only to diagonalize the last term in H′:

H′ =
Aso

2

(
L+

1
2

)(
L+

1
2

+
[

1 0
0 −1

])
− (gS − gL)μBB

[
α+ β−
β+ α−

]
(1.41)

=
Aso

2

(
L+

1
2

)(
L+

1
2

+
[

1 0
0 −1

])
+ (gL − gS)μBB

[
α −β

−β −α
]

(1.42)

=
Aso

2

(
L+

1
2

)2

+
Aso

2

(
L+

1
2

)([
1 0
0 −1

]
+ 2

(gL − gS)μBB

Aso

(
L+ 1

2

) [
α −β

−β −α
])

(1.43)

=
Aso

2

(
L+

1
2

)2

+
Aso

2

(
L+

1
2

)[
1 + 2αy −2βy
−2βy − (1 + 2αy)

]
︸ ︷︷ ︸

M̂

(1.44)

y = (gL − gS)
μBB

Aso

(
L+ 1

2

) (1.45)

Diagonalization

This is done by solving the secular equation:

0 = det
(
M̂ − Îλ

)
(1.46)

0 =
∣∣∣∣ 1 + 2αy − λ −2βy

−2βy − (1 + 2αy + λ)

∣∣∣∣ (1.47)

0 = − (1 + 2αy − λ) (1 + 2αy + λ) − (2βy)2 (1.48)

0 = λ2 − (1 + 2αy)2 − (2βy)2 (1.49)

λ = ±
√

(1 + 2αy)2 + (2βy)2 (1.50)

= ±
√

1 + 4αy + 4 (α2 + β2) y2 (1.51)

Using the eqns. (1.35) and (1.40), the following useful relations are derived:

α2 + β2 =
m2

J +
(
L+ 1

2

)2 −m2
J

[L]2
=

(
L+ 1

2

)2

22
(
L+ 1

2

)2 =
1
4

(1.52)
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4α2 + 4β2 = 1 (1.53)

We get the eigenvalues:
±

(
λ =

√
1 + 4αy + y2

)
(1.54)

The total energy is therefore:

E = E0 − Aso

2

(
L(L+ 1) +

1
2

(
1
2

+ 1
))

− gLμBmJB + E′ (1.55)

E′ =
Aso

2

(
L+

1
2

)2

± Aso

2

(
L+

1
2

)
λ (1.56)

The ±λ eigenvalue is used for states evolving from the J = L ± 1
2 term. In the zero field case, B = 0, we

find the spin-orbit (fine structure) splitting between the two terms is:

ΔE =
Aso[L]

2
= hνso (1.57)

Relabeling the energies without spin-orbit coupling and without field as EL
0 and relating Aso to the zero

field spin-orbit splitting hνso, for L > 0, we get:

E = EL
0 − hνso

2[L]
+ μBmJB ± hνso

2

√
1 +

4mJ

[L]
y + y2 (1.58)

y =
(

2
[
gS

−2

]
− 1

)
μBB

hνso
(1.59)

where ± refers to the states with J = L ± 1
2 . When L = 0, gL = 0 and the positive root of the square root

is taken, which gives the energies for the n2S 1
2

term:

L = 0 → J = S → mJ = mS = ±1
2

(1.60)

y =
[
gS

−2

]
2μBB

hνso
(1.61)

E± 1
2

= ES
0 − hνso

2
+
hνso

2

√
1 ± 4

2
y + y2 (1.62)

= ES
0 − hνso

2
+
hνso

2
(1 ± y) (1.63)

= ES
0 ± hνso

2

([
gS

−2

]
2μBB

hνso

)
(1.64)

= ES
0 ±

[
gS

−2

]
μBB (1.65)

= ES
0 − gSμBBmS (1.66)

where ± refers to the sign ofmS = ± 1
2 . Note that y is a unitless quantity that gives the relative measure of the

size of the Zeeman interaction with respect to the spin-orbit interaction. For example the Zeeman interaction
is comparable to the spin-orbit interaction (y ≈ 1) for potassium and rubidium when B ≈ 124 T & 510 T
respectively, see table (A.4). Because of the strength of the spin-orbit interaction, J is almost always a very
good quantum number for most alkali metals.

The energies of the mJ = ±(L+ 1
2 ) states in the J = L+ 1

2 term are:

y =
(

2
[
gS

−2

]
− 1

)
μBB

hνso
(1.67)
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E±(L+ 1
2 ) = EL

0 − hνso

2[L]
± μB

(
L+

1
2

)
B +

hνso

2

√
1 ± 4

(
L+ 1

2

)
[L]

y + y2 (1.68)

= EL
0 − hνso

2[L]
± μB

(
L+

1
2

)
B +

hνso

2

√
1 ± 2y + y2 (1.69)

= EL
0 − hνso

2[L]
± μB

(
L+

1
2

)
B +

hνso

2
(1 ± y) (1.70)

= EL
0 +

L

[L]
hνso ± μB

(
L+

1
2

)
B ∓ hνso

2
(1 + gS)

μBB

hνso
(1.71)

= EL
0 +

L

[L]
hνso ± μBB

(
L+

1
2
− 1 + gS

2

)
(1.72)

= EL
0 +

L

[L]
hνso ±

(
L+

[
gS

−2

])
μBB (1.73)

Low Field Energies

At low field, see table (A.4), to second order in B, the energies for the J = L± 1
2 terms with L > 0 are:

E = EL
0 − hνso

2[L]
+ μBmJB ± hνso

2

(
1 +

2mJ

[L]
y +

1
2

(
1 − 4m2

J

[L]2

)
y2 + O(y3)

)
(1.74)

±
(
E − EL

0

hνso

)
= ∓ 1

2[L]
+ ±mJ

μBB

hνso
+

1
2

+
mJ

[L]
y +

1
4

(
1 − 4m2

J

[L]2

)
y2 + O(y3) (1.75)

=
1
2

(
1 ∓ 1

[L]

)
±mJ

μBB

hνso
+
mJ

[L]

(
2
[
gS

−2

]
− 1

)
μBB

hνso
+

1
4

(
1 − 4m2

J

[L]2

)
y2 (1.76)

=
L+ 1

2 ∓ 1
2

[L]
+
mJ

[L]

(
2
[
gS

−2

]
− 1 ± [L]

)
μBB

hνso
+

1
4

(
1 − 4m2

J

[L]2

)
y2 (1.77)

The energies for the three lowest RS terms of alkali metals to second order in B are:

ES
1
2 ,− 1

2
= ES

0 −
[
gS

−2

]
μBB (1.78)

ES
1
2 ,+ 1

2
= ES

0 +
[
gS

−2

]
μBB (1.79)

EP
1
2 ,− 1

2
= EP

0 −
(

2
3

)
hνso −

[
2 +

gS

2

](1
3

)
μBB −

(
2
9
y2

)
hνso (1.80)

EP
1
2 ,+ 1

2
= EP

0 −
(

2
3

)
hνso +

[
2 +

gS

2

](1
3

)
μBB −

(
2
9
y2

)
hνso (1.81)

EP
3
2 ,− 3

2
= EP

0 +
(

1
3

)
hνso −

[
1
2
− gS

4

]
2μBB (1.82)

EP
3
2 ,− 1

2
= EP

0 +
(

1
3

)
hνso −

[
1
2
− gS

4

](
2
3

)
μBB +

(
2
9
y2

)
hνso (1.83)

EP
3
2 ,+ 1

2
= EP

0 +
(

1
3

)
hνso +

[
1
2
− gS

4

](
2
3

)
μBB +

(
2
9
y2

)
hνso (1.84)

EP
3
2 ,+ 3

2
= EP

0 +
(

1
3

)
hνso +

[
1
2
− gS

4

]
2μBB (1.85)

where the bracketed terms evaluate to 1 when the approximation gS ≈ −2 is made.
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1.2.4 Eigenstates: Fine Structure Mixing

Orthonormality of the Mixing Coefficients

At zero field, with S = 1
2 , and for a given L > 0, there are in general two states with the same mJ , but with

different J . Note however that when |mJ | = L+ 1
2 , there is only one state with the quantum numbers mJ ,

J , and L. As noted before, the B-field mixes states with the same L, the same mJ , but different J . The
result of the mixing are two states with the same mJ but with different J . At low field, the mixed states
are, to a very good approximation, the zero field eigenstates with a small admixture of the other eigenstate.
The mixed states, labeled by ±, approach the the zero field states with J = L ± 1

2 as the field approaches
zero. Because J is still a very good quantum number, we will represent {|L±,mJ 〉} in the {|J,mJ〉} basis:

|L±,mJ〉 = a±1

∣∣∣∣L+
1
2
,mJ

〉
+ a±2

∣∣∣∣L− 1
2
,mJ

〉
(1.86)

where a±1 , a
±
2 are the fine structure mixing coefficients, which we choose to be real. To repeat, a zero field,

L± = PL± 1
2
. The mixed eigenstates must be orthonormal:

〈
m±

J |m±
J

〉
=

(
a±1

)2
+

(
a±2

)2
= 1 (1.87)〈

m−
J |m+

J

〉
= a−1 a

+
1 + a−2 a

+
2 = 0 (1.88)

Some algebra gives: (
a±2

)2
= 1 − (

a±1
)2

(1.89)(
a−1 a

+
1

)2
=

(
a−2 a

+
2

)2(
a−1 a

+
1

)2
= 1 +

(
a−1 a

+
1

)2 − (
a−1

)2 − (
a+
1

)2

1 =
(
a−1

)2
+

(
a+
1

)2
(1.90)(

a−1
)2

=
(
a+
2

)2
(1.91)(

a−2
)2

=
(
a+
1

)2
(1.92)

a−1
a+
2

= −a
−
2

a−1
(1.93)

a±1 = ±a∓2 (1.94)

To recap, orthonormality implies equation (1.94).

Solving for the Mixing Coefficients

The values for a±1,2 come from the diagonalization of eqn. (1.44) where λ± are the eigenvalues given by
eqn. (1.54) and α and β are defined by eqns. (1.35) and (1.40):

M̂ |a〉 = ±λ |a〉 (1.95)[
1 + 2αy −2βy
−2βy − (1 + 2αy)

] [
a±1
a±2

]
= ±λ

[
a±1
a±2

]
(1.96)

(1 + 2αy) a±1 − 2βya±2 = ±λa±1 (1.97)
−2βya±2 − (1 + 2αy) a±1 = ±λa±2 (1.98)

These last two equations are redundant. Taking the former, using the normalization condition, and some
algebra gives:

(1 + 2αy ∓ λ) a±1 = 2βya±2 (1.99)

(1 + 2αy ∓ λ)2
(
a±1

)2
= 4β2y2

(
1 − (

a±1
)2
)

(1.100)
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a±1 =
2βy√

(1 + 2αy ∓ λ)2 + 4β2y2

(1.101)

a±2 =
1 + 2αy ∓ λ√

(1 + 2αy ∓ λ)2 + 4β2y2

(1.102)

The ± sign is taken for states evolving from the J = L ± 1
2 term. Again even though J is not a rigorously

good quantum number like mJ , at low fields it is still very good. This can be more easily seen by expanding
a±1,2 at low field to second order in y(B).

Low Field Expansion

The low field expansions are performed using the following useful relations (from equations 20.10 and 20.11
of the Mathematical Handbook [5]):

√
1 + x � 1 +

1
2
x− 1

8
x2 +

1
16
x3 − 5

128
x4 + O(x5) (1.103)

1√
1 + x

� 1 − 1
2
x+

3
8
x2 − 5

16
x3 +

35
128

x4 + O(x5) (1.104)

√
1 + ax+ bx2 � 1 +

a

2
x+

(
b

2
− a2

8

)
x2 +

(
a3

16
− ab

4

)
x3 +

(
3a2b

16
− b2

8
− 5a4

128

)
x4 + O(x5)

(1.105)
1√

1 + ax+ bx2
� 1 − a

2
x+

(
3a2

8
− b

2

)
x2 +

(
3ab
4

− 5a3

16

)
x3

+
(

35a4

128
+

3b2

8
− 15a2b

16

)
x4 + O(x5) (1.106)

First we’ll expand the eigenvalue to fourth order in y (field):

λ =
√

1 + 4αy + y2 (1.107)

� 1 + 2αy +
(

1
2
− 2α2

)
y2 +

(
4α3 − α

)
y3 +

(
3α2 − 1

8
− 10α4

)
y4 + O(y5) (1.108)

� 1 + 2αy + 2β2y2 − 4β2αy3 +
(

3α2 − 1
8
− 10α4

)
y4 + O(y5) (1.109)

Now let’s consider the denominator of a1,2 = n1,2√
d

:

d = (1 + 2αy ∓ λ)2 + 4β2y2 (1.110)
= 1 + 4α2y2 + λ2 + 4αy ∓ 2λ∓ 4αyλ+ 4β2y2 (1.111)
= 1 + 4α2y2 + 1 + 4αy + y2 + 4αy ∓ 2λ∓ 4αyλ+ 4β2y2 (1.112)
= 2 + 8αy + 2y2 ∓ 2λ∓ 4αyλ (1.113)
= 2 + 8αy + 2y2 ∓ 2 (1 + 2αy)λ (1.114)

� 2 + 8αy + 2y2 ∓ 2 (1 + 2αy)
(

1 + 2αy + 2β2y2 − 4β2αy3 +
(

3α2 − 1
8
− 10α4

)
y4

)
(1.115)

� 2 + 8αy + 2y2 ∓ 2
(
2αy + 4α2y2 + 4αβ2y3 − 8β2α2y4

)
∓2

(
1 + 2αy + 2β2y2 − 4β2αy3 +

(
3α2 − 1

8
− 10α4

)
y4

)
(1.116)

� 2 + 8αy + 2y2 ∓ 2
(
1 + 4αy +

(
4α2 + 2β2

)
y2

)∓ 2
(

3α2 − 1
8
− 10α4 − 8β2α2

)
y4 (1.117)

� 2 + 8αy + 2y2 ∓ (
2 + 8αy +

(
2 − 4β2

)
y2

)∓ 2
(

3α2 − 1
8
− 10α4 − 8β2α2

)
y4 (1.118)
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d+ � 2 + 8αy + 2y2 − 2 − 8αy − (
2 − 4β2

)
y2 − 2

(
3α2 − 1

8
− 10α4 − 8β2α2

)
y4 (1.119)

� 4β2y2 − 2
(

3α2 − 1
8
− 10α4 − 8β2α2

)
y4 (1.120)

� 4β2y2 − 2
(

3α2 − 1
8
− 10

(
1
16

− β4 − 2α2β2

)
− 8β2α2

)
y4 (1.121)

� 4β2y2 − 2
(

3α2 − 3
4

+ 10β4 + 12α2β2

)
y4 (1.122)

� 4β2y2 − (−6β2 + 20β4 + 24α2β2
)
y4 (1.123)

� 4β2y2

(
1 +

6
4
y2 − 5β2y2 − 6α2y2

)
(1.124)

� 4β2y2
(
1 + 6α2y2 + 6β2y2 − 5β2y2 − 6α2y2

)
(1.125)

� 4β2y2
(
1 + β2y2

)
(1.126)

d− � 2 + 8αy + 2y2 + 2 + 8αy +
(
2 − 4β2

)
y2 + 2

(
3α2 − 1

8
− 10α4 − 8β2α2

)
y4 (1.127)

� 4 + 16αy + 4
(
1 − β2

)
y2 (1.128)

Note that a fourth order expansion of λ was needed for d+, but not for d−. Now let’s expand the inverse
square root 1√

d
:

d
− 1

2
+ �

(√
4β2y2 (1 + β2y2)

)−1

� 1
2βy

(
1 − β2

2
y2

)
(1.129)

d
− 1

2− � (
4 + 16αy + 4

(
1 − β2

)
y2

)− 1
2 (1.130)

� 1
2
(
1 + 4αy +

(
1 − β2

)
y2

)− 1
2 (1.131)

� 1
2

(
1 −

(
4α
2

)
y +

(
3 · 16α2

8
− 1 − β2

2

)
y2

)
(1.132)

� 1
2

(
1 − 2αy +

(
6α2 − 1

2
+
β2

2

)
y2

)
(1.133)

� 1
2

(
1 − 2αy +

(
6
4
− 6β2 − 1

2
+
β2

2

)
y2

)
(1.134)

� 1
2

(
1 − 2αy +

(
1 − 11

2
β2

)
y2

)
(1.135)

Note that all of the square roots take the positive root. Now let’s consider the numerators:

n±
1 = 2βy (1.136)
n±

2 = 1 + 2αy ∓ λ (1.137)
� 1 + 2αy ∓ (

1 + 2αy + 2β2y2 − 4β2αy3
)

(1.138)

n+
2 � 1 + 2αy − 1 − 2αy − 2β2y2 + 4β2αy3 (1.139)

� −2β2y2 + 4β2αy3 (1.140)
n−

2 � 1 + 2αy + 1 + 2αy + 2β2y2 (1.141)
� 2 + 4αy + 2β2y2 (1.142)

Finally let’s calculate the the mixing coefficients:

a+
1 =

n+
1√
d+

=
2βy√

(1 + 2αy − λ)2 + 4β2y2

(1.143)
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= (2βy)
1

2βy

(
1 − β2

2
y2

)
(1.144)

� 1 − β2

2
y2 (1.145)

a+
2 =

n+
2√
d+

=
1 + 2αy − λ√

(1 + 2αy − λ)2 + 4β2y2

(1.146)

=
(−2β2y2 + 4β2αy3

) 1
2βy

(
1 − β2

2
y2

)
(1.147)

� − (
βy − 2αβy2

)(
1 − β2

2
y2

)
(1.148)

� −βy + 2αβy2 (1.149)

a−1 =
n−

1√
d−

=
2βy√

(1 + 2αy + λ)2 + 4β2y2

(1.150)

� (2βy)
1
2

(
1 − 2αy +

(
1 − 11

2
β2

)
y2

)
(1.151)

� βy − 2αβy2 (1.152)

a−2 =
n−

2√
d−

=
1 + 2αy + λ√

(1 + 2αy + λ)2 + 4β2y2

(1.153)

� (
2 + 4αy + 2β2y2

) 1
2

(
1 − 2αy +

(
1 − 11

2
β2

)
y2

)
(1.154)

� (
1 + 2αy + β2y2

)(
1 − 2αy +

(
1 − 11

2
β2

)
y2

)
(1.155)

� 1 − 2αy +
(

1 − 11
2
β2

)
y2 + 2αy − 4α2y2 + β2y2 (1.156)

� 1 +
(

1 − 11
2
β2 − 4α2 + β2

)
y2 (1.157)

� 1 +
(

1 − 11
2
β2 + 4β2 − 1 + β2

)
y2 (1.158)

� 1 − β2

2
y2 (1.159)

As expected a±1 = ±a∓2 . For notational convenience, we’ll drop the ± on the mixing coefficients. This gives,
for the

{∣∣m±
J

〉}
states to second order in y (field):

a1 =
2βy√

(1 + 2αy − λ)2 + 4β2y2

=
1 + 2αy + λ√

(1 + 2αy + λ)2 + 4β2y2

� 1 − β2

2
y2 (1.160)

a2 =
1 + 2αy − λ√

(1 + 2αy − λ)2 + 4β2y2

=
−2βy√

(1 + 2αy + λ)2 + 4β2y2

� −βy + 2αβy2 (1.161)

β2

2
=

1
8

(
1 − 4m2

J

[L]2

)
(1.162)

2αβ =
mJ

[L]

√
1 − 4m2

J

[L]2
(1.163)

|L+,mJ〉 = a1

∣∣∣∣L± 1
2
,mJ

〉
+ a2

∣∣∣∣L∓ 1
2
,mJ

〉
(1.164)
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|L−,mJ〉 = a1

∣∣∣∣L∓ 1
2
,mJ

〉
− a2

∣∣∣∣L± 1
2
,mJ

〉
(1.165)

where ± refers to the value of J = L ± 1
2 for the zero field eigenstate that

∣∣m±
J

〉
approaches as the field

approaches zero.
In the lowest three RS terms for alkali metals, only the mJ = ± 1

2 of the P 1
2

and P 3
2

terms mix:

a1 � 1 − y2

9
(1.166)

a±2 � −
√

2
3
y
(
1 ∓ y

3

)
(1.167)∣∣∣∣P−,−1

2

〉
= a1

∣∣∣∣P 1
2
,−1

2

〉
− a−2

∣∣∣∣P 3
2
,−1

2

〉
(1.168)∣∣∣∣P+,−1

2

〉
= a1

∣∣∣∣P 3
2
,−1

2

〉
+ a−2

∣∣∣∣P 1
2
,−1

2

〉
(1.169)∣∣∣∣P−,+

1
2

〉
= a1

∣∣∣∣P 1
2
,+

1
2

〉
− a+

2

∣∣∣∣P 3
2
,+

1
2

〉
(1.170)∣∣∣∣P+,+

1
2

〉
= a1

∣∣∣∣P 3
2
,+

1
2

〉
+ a+

2

∣∣∣∣P 1
2
,+

1
2

〉
(1.171)

where ± now refers to mJ = ± 1
2 .

1.2.5 Transition Frequencies: Optical Spectrum

Transitions that occur between RS terms are electric dipole transitions. As will be discussed in more detail
in the next section, these transitions have to conserve angular momentum and must result in a change of
parity. All the possible transitions will be listed in groups labeled by the polarization of the incident light.
D1 transitions refer to ones between the S 1

2
states and the P 1

2
states; whereas, D2 transitions refer to ones

between the S 1
2

states and the P 3
2

states. Most of the energy difference between these states is due to
electrostatic interactions. It will be convenient to express these frequencies with respect to the zero field D1
and D2 transition frequencies:

ω0
1
2

=
EP

0 − ES
0

h̄
−

(
2
3

)
ωso = 2πν0

1
2

(1.172)

ω0
3
2

=
EP

0 − ES
0

h̄
+

(
1
3

)
ωso = 2πν0

3
2

(1.173)

ωso = ω0
3
2
− ω0

1
2

=
(

1
3
−−2

3

)
ωso = 2πνso (1.174)

ω 1
2

= ω0
1
2

+ δω 1
2

(1.175)

ω 3
2

= ω0
3
2

+ δω 3
2

(1.176)

δω = δω 3
2
− δω 1

2
(1.177)

where the δω terms are “added by hand” to account for the shift in the lines due to the presence of a
buffer gas such as 3He & N2. Note that in the following, bracketed [· · ·] terms evaluate to 1 when the
approximation gS = −2 is made. For light left circularly polarized perpendicular to the B-field (which has
−1 unit of angular momentum), the possible transitions are:∣∣∣∣S 1

2
,−1

2

〉
↔

∣∣∣∣P 3
2
,−3

2

〉
=⇒ ω = ω 3

2
− yωso

[−1 − gS]
(1.178)∣∣∣∣S 1

2
,+

1
2

〉
↔ a1

∣∣∣∣P 1
2
,−1

2

〉
− a−2

∣∣∣∣P 3
2
,−1

2

〉
=⇒ ω = ω 1

2
− 4y

3

([ 1
2 − gS

4

−1 − gS

]
+
y

6

)
ωso (1.179)
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∣∣∣∣S 1
2
,+

1
2

〉
↔ a1

∣∣∣∣P 3
2
,−1

2

〉
+ a−2

∣∣∣∣P 1
2
,−1

2

〉
=⇒ ω = ω 3

2
− 5y

3

([
1
5 − 2gS

5

−1 − gS

]
− 2y

15

)
ωso (1.180)

For light linearly polarized parallel to the B-field (which has 0 units of angular momentum), the transition
frequencies are:∣∣∣∣S 1

2
,−1

2

〉
↔ a1

∣∣∣∣P 1
2
,−1

2

〉
− a−2

∣∣∣∣P 3
2
,−1

2

〉
=⇒ ω = ω 1

2
+

2y
3

(
1 − y

3

)
ωso (1.181)∣∣∣∣S 1

2
,−1

2

〉
↔ a1

∣∣∣∣P 3
2
,−1

2

〉
+ a−2

∣∣∣∣P 1
2
,−1

2

〉
=⇒ ω = ω 3

2
+
y

3

(
1 +

2y
3

)
ωso (1.182)∣∣∣∣S 1

2
,+

1
2

〉
↔ a1

∣∣∣∣P 1
2
,+

1
2

〉
− a+

2

∣∣∣∣P 3
2
,+

1
2

〉
=⇒ ω = ω 1

2
− 2y

3

(
1 +

y

3

)
ωso (1.183)∣∣∣∣S 1

2
,+

1
2

〉
↔ a1

∣∣∣∣P 3
2
,+

1
2

〉
+ a+

2

∣∣∣∣P 1
2
,+

1
2

〉
=⇒ ω = ω 3

2
− y

3

(
1 − 2y

3

)
ωso (1.184)

For light right circularly polarized perpendicular to the B-field (which has +1 unit of angular momentum),
the transition frequencies are:∣∣∣∣S 1

2
,−1

2

〉
↔ a1

∣∣∣∣P 1
2
,+

1
2

〉
− a+

2

∣∣∣∣P 3
2
,+

1
2

〉
=⇒ ω = ω 1

2
+

4y
3

([ 1
2 − gS

4

−1 − gS

]
− y

6

)
ωso (1.185)

∣∣∣∣S 1
2
,−1

2

〉
↔ a1

∣∣∣∣P 3
2
,+

1
2

〉
+ a+

2

∣∣∣∣P 1
2
,+

1
2

〉
=⇒ ω = ω 3

2
+

5y
3

([
1
5 − 2gS

5

−1 − gS

]
+

2y
15

)
ωso (1.186)

∣∣∣∣S 1
2
,+

1
2

〉
↔

∣∣∣∣P 3
2
,+

3
2

〉
=⇒ ω = ω 3

2
+

yωso

[−1 − gS ]
(1.187)

1.3 Hyperfine Structure (Including Nuclear Spin)

1.3.1 Zero Field Eigenbasis

Adding nuclear spin �I to the system introduces the hyperfine interaction:

Hhfs = Ahfs
�I · �J (1.188)

Ahfs hides all the factors that don’t depend on the spins. IJ-coupling causes states with different mJ to
mix. Since mF (= mI +mJ) is conserved, the {|F,mF 〉} states form a natural eigenbasis. This is more
easily seen with a little arithmetic:

�F 2 = (�I + �J)2 = �I 2 + 2�I · �J + �J 2 (1.189)

Hhfs =
Ahfs

2
(�F 2 − �I 2 − �J 2) (1.190)

The hyperfine interaction splits the 2S 1
2
, 2P 1

2
, and 2P 3

2
terms into 2, 2, and 4 manifolds which are labeled

by F . This is called the hyperfine structure. Note that many calculations to follow will be identical to those
done for the fine structure mixing. Table (1.1) depicts the analogy.

1.3.2 Hamiltonian

The Hamiltonian describing the atom in a magnetic field �B is

H = H0 + Hhfs − �μI · �B − �μJ · �B (1.191)

To recap:

• The first term H0 contains all the terms that do not involve the nuclear spin.
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Spin-Orbit Hyperfine
�L �I
�S �J
�J �F

mixes states with different J mixes states with different F
mixes states with same mJ mixes states with same mF

Aso Ahfs

νso ≈ 107 MHz νhfs ≈ 103 MHz
y x

y ≈ 1 → B ≈ 107 gauss x ≈ 1 → B ≈ 103 gauss

Table 1.1: Analogy between spin-orbit and hyperfine coupling.

• The second term is the hyperfine interaction.

• The third and fourth terms are the Zeeman terms for the nuclear spin and the total electronic angular
momentum respectively.

Using �B = Bẑ & Fz = Iz + Jz and some rearrangement results in,

H = H0 +
(
−Ahfs

2

(
�I 2 + �J 2

)
− gIμNBFz

)
+

(
Ahfs

2
�F 2 + (gIμN − gJμB)BJz

)
(1.192)

The Hamiltonian is separated into three terms intentionally. States within a n2S+1LJ term with the same
mF but on different manifolds F are mixed by the Zeeman interaction. This means that the first two terms
are diagonal simultaneously in the {|F,mF 〉} basis and the eigenbasis of H. Therefore, the last term has to
be diagonalized. (make some comment about how fine structure mixing effects this stuff)

1.3.3 Energies: Derivation of the Breit-Rabi Equation

Diagonalization

The Breit-Rabi equation, first derived in 1931 [6, 7], gives the energies of the ground state hyperfine levels
of atoms and ions with a single valence electron in the presence of a magnetic field. Let’s specialize to this
case L = 0, S = 1

2 , J = 1
2 . F can be I ± 1

2 . Therefore in the {|F,mF 〉} basis, the Jz term is block diagonal
with subblocks no greater than 2 by 2 in size. The 2 by 2 subblocks are made of the states with different
F and same mF . For the special case of mF = ±Fmax = ± (

I + 1
2

)
, there are no other states to mix with.

Thus, they reside in subblocks of size 1 by 1. To diagonalize H, we only have to diagonalize each subblock
of H′,

H′ =
Ahfs

2
�F 2 + (gIμN − gSμB)BJz (1.193)

Ĥ′ =
Ahfs

2

[ (
I + 1

2

) (
I + 3

2

)
0

0
(
I − 1

2

) (
I + 1

2

) ]
+ (gIμN − gSμS)B

[
α+ β−
β+ α−

]
(1.194)

α± =
〈
I ± 1

2
,mF

∣∣∣∣ Ĵz

∣∣∣∣I ± 1
2
,mF

〉
(1.195)

β± =
〈
I ∓ 1

2
,mF

∣∣∣∣ Ĵz

∣∣∣∣I ± 1
2
,mF

〉
(1.196)

The first term can be simplified to give:

Ahfs

2
�̂F 2 =

Ahfs

2

(
I +

1
2

)(
I +

1
2

+
[

1 0
0 −1

])
(1.197)
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α± & β± in the second term are most easily calculated in the {|I,mI〉 |J,mJ〉} basis:

|I,mI〉 |J,mJ〉 = |mI ,mJ〉 (1.198)

|F,mF 〉 =
∑

|mI ,mJ 〉 〈mI ,mJ |F,mF 〉︸ ︷︷ ︸
Clebsch−Gordon

(1.199)

Using the formulas for Clebsch-Gordon coefficients (1.31):〈
mF ∓ 1

2
,±1

2
|I +

1
2
,mF

〉
=

1√
[I]

√
I +

1
2
±mF

(1.200)〈
mF ∓ 1

2
,±1

2
|I − 1

2
,mF

〉
=

∓1√
[I]

√
I +

1
2
∓mF

which gives:

α± = ± (α) = ±
(
mF

[I]

)
(1.201)

β± = − (β) = −
⎛
⎝

√(
I + 1

2

)2 −m2
F

[I]

⎞
⎠ (1.202)

To solve for the energies, we only need to diagonalize the last term in H′:

H′ =
Ahfs

2

(
I +

1
2

)2

+
Ahfs

2

(
I +

1
2

)[
1 + 2αx −2βx
−2βx − (1 + 2αx)

]
(1.203)

x = (gIμN − gSμB)
2B
A[I]

(1.204)

This is easily done and, just like fine structure mixing, gives the eigenvalues:

±
(
λ =

√
1 + 4αx+ x2

)
(1.205)

The total energy is therefore:

E = E0 − Ahfs

2

(
I(I + 1) +

1
2

(
1
2

+ 1
))

− gIμNmFB + E′ (1.206)

E′ =
Ahfs

2

(
I +

1
2

)2

± Ahfs

2

(
I +

1
2

)
λ (1.207)

In this case, E0 is the energy of the (possibly mixed) spin-orbit coupled states. The ±λ eigenvalue is used
for states evolving from the F = I± 1

2 manifold. In the zero field case, B = 0, we find the hyperfine splitting
between the two manifolds is:

ΔE =
Ahfs[I]

2
= hνhfs (1.208)

Dropping E0 and relating Ahfs to the zero field hyperfine splitting hνhfs, we get the celebrated Breit-Rabi
equation:

E = −hνhfs

2[I]
− gIμNBmF ± hνhfs

2

√
1 +

4mF

[I]
x+ x2 (1.209)

x = (gIμN − gSμB)
B

hνhfs
(1.210)
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where ± refers to states in the F = I ± 1
2 manifold. Note that x is a unitless quantity that gives a relative

measure of the size of the Zeeman interaction with respect to the hyperfine interaction. For example, the
Zeeman interaction is comparable to the hyperfine interaction (x ≈ 1) for potassium-39 and rubidium-85
when B ≈ 165 gauss & 1080 gauss respectively.

We’ll discuss two special cases now. The energies of the mF = ±(I + 1
2 ) states (aka “edge” states) in the

F = I + 1
2 manifold (aka “upper” manifold) are:

E±(I+ 1
2 ) =

I

[I]
hνhfs ±

([
gS

−2

]
μB − gIμNI

)
B (1.211)

where ± now refers to mF . A low field (B < 165 gauss & 1080 gauss for potassium-39 and rubidium-85
respectively) expansion of the energies for the the F = I ± 1

2 manifolds can be performed using:√
1 + 2ax+ x2 = 1 +

1
2
x (2a+ x) − 1

2 · 4x
2 (2a+ x)2 +

1 · 3
2 · 4 · 6x

3 (2a+ x)3 − 1 · 3 · 5
2 · 4 · 6 · 8x

4 (2a+ x)4

+
1 · 3 · 5 · 7

2 · 4 · 6 · 8 · 10
x5 (2a+ x)5 − 1 · 3 · 5 · 7 · 9

2 · 4 · 6 · 8 · 10 · 12
x6 (2a+ x)6 + · · · (1.212)

Expanding each factor of (2a+ x)n and reducing the coefficients in front of each term:√
1 + 2ax+ x2 = 1 +

1
2
x (2a+ x) − 1

8
x2

(
4a2 + x2 + 4ax

)
+

1
16
x3

(
8a3 + 12a2x+ 6ax2 + x3

)
− 5

128
x4

(
16a4 + 32a3x+ 24a2x2 + 8ax3 + x4

)
+

7
256

x5
(
32a5 + 80a4x+ 80a3x2 + 40a2x3 + 10ax4 + x5

)
− 21

1024
x6

(
64a6 + 192a5x+ 240a4x2 + 160a3x3 + 60a2x4 + 12ax5 + x6

) · · ·(1.213)

Keeping only the terms up to sixth order in the dimensionless field parameter x:√
1 + 2ax+ x2 = 1 +

1
2
x (2a+ x) − 1

8
x2

(
4a2 + x2 + 4ax

)
+

1
16
x3

(
8a3 + 12a2x+ 6ax2 + x3

)
− 5

16
x4

(
2a4 + 4a3x+ 3a2x2

)
+

7
16
x5

(
2a5 + 5a4x

)− 21
16
x6a6 + O(x7) (1.214)

Collecting all the terms order by order:√
1 + 2ax+ x2 = 1 + (a)x+

(
1
2
− a2

2

)
x2 +

(
−a

2
+
a3

2

)
x3 +

(
−1

8
+

3a2

4
− 5a4

8

)
x4

+
(

3a
8

− 5a3

4
+

7a5

8

)
x5 +

(
1
16

− 15a2

16
+

35a4

16
− 21a6

16

)
x6 + O(x7) (1.215)

Pulling out common factors:√
1 + 2ax+ x2 = 1 + ax+

1
2
(
1 − a2

)
x2 − a

2
(
1 − a2

)
x3 − 1

8
(
1 − 6a2 + 5a4

)
x4

+
3a
8

(
1 − 10a2

3
+

7a4

3

)
x5 +

1
16

(
1 − 15a2 + 35a4 − 21a6

)
x6 + O(x7) (1.216)

Note that when a = ±1, the stuff under the square root is a perfect square:√
1 + 2ax+ x2 =

√
1 ± 2x+ x2 =

√
(1 ± x)2 = 1 ± x (1.217)

In this case (a = ±1), all terms second order or higher in x have to disappear order by order. Using this
insight, a factor (1 − a2) is pulled out of each higher order term:√

1 + 2ax+ x2 = 1 + ax+
1
2
(
1 − a2

)
x2 − a

2
(
1 − a2

)
x3 − 1

8
(
1 − 5a2

) (
1 − a2

)
x4

+
3a
8

(
1 − 7a2

3

)(
1 − a2

)
x5 +

1
16

(
1 − 14a2 + 21a4

) (
1 − a2

)
x6 + O(x7)(1.218)
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Making the substitution a = 2mF/[I], dividing both sides of the Breit-Rabi equation (1.209) by hνhfs, and
using the sixth order expansion that was just calculated gives:

± E±
hνhfs

= a0 + a1x+

[
1 −

(
2mF

[I]

)2
][

6∑
n=2

anx
n

]
(1.219)

x = (gIμN − gSμB)
B

hνhfs
(1.220)

[I] = 2I + 1 (1.221)

a0 =
(
I + 1

2 ∓ 1
2

[I]

)
(1.222)

a1 =
mF

[I]

(
1 ± gIμN

gSμB
([I] ∓ 1)

1 − gIμN

gSμB

)
≈ mF

[I]
+ O(10−3) (1.223)

a2 = +
1
4

(1.224)

a3 = −mF

2[I]
(1.225)

a4 = − 1
16

[
1 − 5

(
2mF

[I]

)2
]

(1.226)

a5 = +
3mF

8[I]

[
1 − 7

3

(
2mF

[I]

)2
]

(1.227)

a6 = +
1
32

[
1 − 14

(
2mF

[I]

)2

+ 21
(

2mF

[I]

)4
]

(1.228)

where ± refers to the F = I ± 1
2 manifold. Note that eqn. (1.211) shows that the energy for the edge

states in the upper manifold
(
F = I + 1

2 & |mF | = I + 1
2

)
is linear in field. Therefore, for the edge states,

(2mF /[I])
2 = 1 and all terms of order two or higher in field in eqn. (1.219) must disappear order by

order. Consequently eqn. (1.219) is written such that the disappearance of higher order terms is evident.
Finally, we’ll note that the order of the states from highest energy to lowest energy are F = I + 1/2,mF =
I + 1/2 down to − (I + 1/2) and then F = I − 1/2,mF = −(I + 1/2) up to + (I + 1/2).

1.3.4 Eigenstates: Hyperfine Mixing

At low field, it is useful to label states by F and mF because F is almost a good quantum number. Therefore,
at low field, we’ll refer to two groups of states as “manifolds” which are labeled by F . Within each manifold,
states are distinguished by their mF . At high field, the nuclear spin and total electronic angular momentum
decouple. This is because the Zeeman interaction becomes much larger than the hyperfine interaction.
Because the electron magnetic moment is much larger than the nuclear magnetic moment, it is useful to
groups states by their mJ , which at high field is almost a good quantum number. These groupings are
called Zeeman multiplets. Each state within a multiplet is distinguished by it’s mI , which at high field is
also almost a good quantum number. Note that regardless of the magnitude of the field, mF is always a
good quantum number. For most of this document, we’ll be working in the low field limit where the most
appropriate quantum numbers are F and mF . Figure (1.1) depicts a qualitative energy level diagram for
the most abundant isotope of Rubidium.

(The following is analogous to fine structure mixing with y → x) Since we are considering the ground
state term of an alkali metal atom, there is no fine structure mixing. However the field B does result in
hyperfine structure mixing (states with the same mF but different F ):

∣∣m±
F

〉
= a±1

∣∣∣∣I +
1
2
,mF

〉
+ a±2

∣∣∣∣I − 1
2
,mF

〉
(1.229)
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5p

5s

F=4

F=3

F=2

F=1

F=3

F=2

F=3

F=2

7.
12

8x
10

^9
 M

H
z

D
1 

  7
94

.8
 n

m
 =

 3
.7

75
x1

0^
11

 M
H

z

3035 MHz

Hyperfine ZeemanElectostatic

P−1/2

P−3/2

D
2 

  7
80

.0
 n

m
 =

 3
.8

46
x1

0^
11

 M
H

z

(Fine Structure)
Spin−orbit

Figure 1.1: Qualitative Energy Level Diagram for Rubidium-85 (I = 5/2) in a Weak Field
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|F,mF 〉 =
+ 1

2∑
mJ=− 1

2

|mF −mJ ,mJ〉 〈mF −mJ ,mJ | F,mF 〉 (1.230)

b±1 (mF ) =
〈
mF − 1

2
,+

1
2
|I ± 1

2
,mF

〉
(1.231)

b±2 (mF ) =
〈
mF +

1
2
,−1

2
|I ± 1

2
,mF

〉
(1.232)∣∣∣∣I ± 1

2
,mF

〉
= b±1

∣∣∣∣mF − 1
2
,+

1
2

〉
+ b±2

∣∣∣∣mF +
1
2
,−1

2

〉
(1.233)

The values for a±1,2 come from the diagonalization of eqn. (1.203) where λ± are the eigenvalues given by
eqn. (1.205, α and β are defined by eqns. (1.201) and (1.202), and b±1,2 are from eqns. (C.9) and (C.10):

a±1 =
2βx√

(1 + 2αx∓ λ)2 + 4β2x2

(1.234)

a±2 =
1 + 2αx∓ λ√

(1 + 2αx∓ λ)2 + 4β2x2

(1.235)

a±1 = ±a∓2 (1.236)

b±1 = ±
√
I ±mF + 1

2

[I]
(1.237)

b±2 = +

√
I ∓mF + 1

2

[I]
(1.238)

The ± sign is taken for transitions within the F = I ± 1
2 manifold. For simplicity (due to orthogonality):

a1 ≡ a+
1 = a−2 (1.239)

a2 ≡ a+
2 = −a−1 (1.240)

b1 ≡ b+1 = b−2 (1.241)
b2 ≡ b+2 = −b−1 (1.242)∣∣∣∣I ± 1

2
,mF

〉
= b1

∣∣∣∣mF ∓ 1
2
,±1

2

〉
± b2

∣∣∣∣mF ± 1
2
,∓1

2

〉
(1.243)

∣∣m±
F

〉
= a1

∣∣∣∣I ± 1
2
,mF

〉
± a2

∣∣∣∣I ∓ 1
2
,mF

〉
(1.244)

Eqn. (1.244) represents the decomposition of the eigenstates
{∣∣m±

F

〉}
in the zero field hyperfine coupled

basis {|F,mF 〉}, whereas eqn. (1.245) represents the decomposition in the zero field uncoupled IJ basis
{|mI ,mJ〉}:

∣∣m±
F

〉
= a1

∣∣∣∣I ± 1
2
,mF

〉
± a2

∣∣∣∣I ∓ 1
2
,mF

〉

= a1

(
b1

∣∣∣∣mF ∓ 1
2
,±1

2

〉
± b2

∣∣∣∣mF ± 1
2
,∓1

2

〉)

±a2

(
b1

∣∣∣∣mF ± 1
2
,∓1

2

〉
∓ b2

∣∣∣∣mF ∓ 1
2
,±1

2

〉)

= (a1b1 − a2b2)
∣∣∣∣mF ∓ 1

2
,±1

2

〉
± (a1b2 + a2b1)

∣∣∣∣mF ± 1
2
,∓1

2

〉
(1.245)
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Isotope F = I − 1
2 transition F = I + 1

2 transition mF

39K 2 +2 ↔ +1 +2
1 +1 ↔ 0 2 +1 ↔ 0 +1
1 0 ↔ −1 2 0 ↔ −1 0

2 −1 ↔ −2 −1

85Rb 3 +3 ↔ +2 +3
2 +2 ↔ +1 3 +2 ↔ +1 +2
2 +1 ↔ 0 3 +1 ↔ 0 +1
2 0 ↔ −1 3 0 ↔ −1 0
2 −1 ↔ −2 3 −1 ↔ −2 −1

3 −2 ↔ −3 −2

Table 1.2: Transitions are labeled by the higher mF state.

1.3.5 Transition Frequencies: EPR Spectrum

Introduction

EPR stands for E lectron Paramagnetic Resonance. At low field, it refers to the transitions between adjacent
states within a particular manifold. Transitions between mF ↔ mF − 1 will be labeled by the higher state
mF . For example, refer to table (1.2) for the applicable transitions within the ground state for potassium-39
and rubidium-85. Recall that:

gS = −2
[
1 + O(10−3)

]
(1.246)

x = (gIμN − gSμB)
B

hνhfs
(1.247)

The frequency corresponding to these transitions within the F = I ± 1
2 manifold are:

ν+ = −gIμNB

h
+
νhfs

2

(√
1 +

4mF

[I]
x+ x2 −

√
1 +

4 (mF − 1)
[I]

x+ x2

)
(1.248)

−ν− = −gIμNB

h
− νhfs

2

(√
1 +

4mF

[I]
x+ x2 −

√
1 +

4 (mF − 1)
[I]

x+ x2

)
(1.249)

ν− = +
gIμNB

h
+
νhfs

2

(√
1 +

4mF

[I]
x+ x2 −

√
1 +

4 (mF − 1)
[I]

x+ x2

)
(1.250)

ν± = ∓gIμNB

h
+
νhfs

2

(√
1 +

4mF

[I]
x+ x2 −

√
1 +

4 (mF − 1)
[I]

x+ x2

)
(1.251)

where the overall sign was chosen to give a positive frequency for ν±.

End Transition Frequencies

Transitions involving the edge states are called “end” transitions. The frequencies for these transitions can
be written in a simpler form by taking advantage of this formula:

mF = ±
(
I +

1
2

)
→ 4mF = ±2[I] →

√
1 +

4mF

[I]
x+ x2 = 1 ± x (1.252)

The frequency of the mF = I + 1/2 ↔ I − 1/2 end transition is:

ν+I+1/2 = −gIμNB

h
+
νhfs

2

(
1 + x−

√
1 +

4 (I − 1/2)
[I]

x+ x2

)
(1.253)
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while the frequency of the mF = −(I + 1/2) + 1 ↔ −(I + 1/2) end transition is:

ν−I−1/2 = −gIμNB

h
+
νhfs

2

(√
1 − 4 (I − 1/2)

[I]
x+ x2 − 1 + x

)
(1.254)

We can collapse both of equations into one equation to give:

ν± =
νhfs

2

[
x

(
1 + gIμN

gSμB

1 − gIμN

gSμB

)
± 1 ∓

√
1 ± 2

(
2I − 1
2I + 1

)
x+ x2

]
(1.255)

where the ± now refers to edge state mF = ± (
I + 1

2

)
involved in the end transition.

End Transition Frequency Inversion Formula

Because the equation for the frequency of an end transition involves only one square root term, the equation
can be inverted to give the field as a function of frequency. Expressing eqn. (1.255) in terms of x and isolating
the square root term:

ν± =
νhfs

2

⎡
⎢⎢⎢⎣x

(
1 + gIμN

gSμB

1 − gIμN

gSμB

)
︸ ︷︷ ︸

a

±1 ∓
√√√√√1 ± 2

(
2I − 1
2I + 1

)
︸ ︷︷ ︸

b

x+ x2

⎤
⎥⎥⎥⎦ (1.256)

ν =
νhfs

2

(
ax+ s− s

√
1 + 2sbx+ x2

)
(1.257)

s = ±1 → s2 = 1 (1.258)

n = 2
ν

νhfs
= ax+ s− s

√
1 + 2sbx+ x2 (1.259)

n− ax− s = −s
√

1 + 2sbx+ x2 (1.260)

Now both sides of the equation can be squared, leaving an equation that is second order in x:

(n− ax− s)2 =
(
−s

√
1 + 2sbx+ x2

)2

(1.261)

n2 + a2x2 + 1 − 2nax− 2sn+ 2sax = 1 + 2sbx+ x2 (1.262)
0 = 2sbx+ x2 − n2 − a2x2 + 2nax+ 2sn− 2sax (1.263)
0 =

(
1 − a2

)
x2 + 2 (sb− sa+ na)x+ 2sn− n2 (1.264)

0 =
(
1 − a2

)
x2 − 2s (a− b− san)x+ sn(2 − sn) (1.265)

This is solved by using the quadratic formula from section 5.5 of Numerical Recipes [8]:

Ax2 + Bx+ C = 0 (1.266)

q ≡ −1
2

[
B + sgn(B)

√
B2 − 4AC

]
(1.267)

x1 =
q

A & x2 =
C
q

(1.268)

In principle, the “traditional” quadratic formula is formally equivalent to the solutions (1.268). However, in
practice, solutions to the quadratic formula are typically computed on devices that are susceptible to round
off errors caused the subtraction of two very nearly identical numbers. The solutions of the form given above
are robust against round off errors.

Only one of the two solutions is correct. Since the B field defined the axis of quantization used to derive
the Breit-Rabi equation, it is positive by definition. Therefore the correct solution is the one for which
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Isotope I upper F End gI νhfs

Transition MHz

6Li 1 3/2 s3/2 ↔ s1/2 +0.822 056 228.205 26
7Li 3/2 2 s2 ↔ s1 +2.170 960 803.504 09

23Na 3/2 2 s2 ↔ s1 +1.478 347 1 771.626 13

39K 3/2 2 s2 ↔ s1 +0.260 973 461.719 72
40K 4 9/2 s9/2 ↔ s7/2 −0.324 5 -1 142.92
41K 3/2 2 s2 ↔ s1 +0.143 247 254.013 87

85Rb 5/2 3 s3 ↔ s2 +0.541 208 3 035.732 00
87Rb 3/2 2 s2 ↔ s1 +1.834 133 6 834.682 60

133Cs 7/2 4 s4 ↔ s3 +0.736 857 9 192.631 77

Table 1.3: Upper Manifold End Transitions for which Equation (1.273) is valid with s = ±

B > 0. Since μB  μN , the sign of x is given by the sign of −gSB. Since gS ≈ −2, x and B have the same
sign. The sign of x1 is given by the sign of −B/A while the sign of x2 is given by the sign of −C/B.

The value of the parameter a is 1 with a small correction of order 10−3 whose sign depends on gI .
Consequently, A is nearly 0 and the sign of A is equal to the sign of gI . The value of the parameter b is
always less than 1. If 2I � 103, then b < a. If we also stipulate that 0 < ν < νhfs/2, then n < 1. All this
put together insures (a − b − san) > 0 which implies B has the same sign as −s. Finally, the sign of C is
s because (2 − sn) > 0. Therefore, under these conditions, the sign of x1 is s/gI , whereas the sign of x2 is
positive. Since the correct solution must be positive regardless of s, it is x2 = C/q.

The discriminant B2 − 4AC is given by:

[−2s (a− b− san)]2 − 4
[
1 − a2

]
[sn(2 − sn)] = 4

[
b2 + a2 − 2ab+ 2absn− 2sn+ n2

]
(1.269)

= 4
[
(a− b)2 − 2sn(1 − ab− sn/2)

]
(1.270)

Plugging this into q, canceling factors of 2 inside q, and canceling a factor of s in C & q gives:

x = (gIμN − gSμB)
B

hνhfs
=
C

q
=

n(2 − sn)
a(1 − sn) − b +

√
(a− b)2 − 2sn(1 − ab− sn/2)

(1.271)

where s = ±1 and as a reminder:

n = 2ν/νhfs a =
1 + gIμN

gSμB

1 − gIμN

gSμB

b =
2I − 1
2I + 1

=
[I] − 2

[I]
(1.272)

Multiplying the top and bottom by [I], writing a as 1 − ε, and solving for B gives:

B =
(

[I]hν
gIμN

)
ε(1 − f)

1 − [I]
{
f(1 − ε) + ε

2

}
+

√(
1 − [I] ε

2

)2 − 2f [I]
(
1 − ε+ [I] (ε−f)

2

) (1.273)

where s = ±1 is the sign of the edge state involved in the transition and:

[I] = 2I + 1 f = sν/νhfs ε = 1 − a =
2gIμN

gIμN − gSμB
= gI

μN

μB

[−2
gS

](
1 − gIμN

gSμB

)−1

(1.274)
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Twin Transition Frequency Difference

The upper manifold has two more ΔmF = ±1 transitions than the lower manifold. These extra transitions
are the end transitions. All other upper manifold transitions have a “twin” transition in the lower manifold.
The twins transitions sit side by side on the same row in table (1.2). The difference in frequencies between
twin transitions depends only on the magnitude of the field:

Δνtwin = νlower − νupper = +2gI
μN

h
B (1.275)

Note that for any pair of twin transitions, the lower manifold transition has the larger frequency. For
example, the twin frequency differences for 39K and 85Rb at 10 gauss are:

39K : ν (F = 1,mF = ±1 ↔ 0) − ν (F = 2,mF = ±1 ↔ 0) = 3.98 kHz (1.276)
85Rb : ν (F = 2,mF = ±2 ↔ ±1 ↔ 0) − ν (F = 3,mF = ±2 ↔ ±1 ↔ 0) = 8.25 kHz (1.277)

Low Field Frequency Expansion

To expand the frequency at low field up to sixth order in x:

ν± =
νhfs

2
Δ ∓ gIμNB

h

Δ =
√

1 + 2ax+ x2 −
√

1 + 2a′x+ x2

= (a− a′) x+
(
−a

2 − a′2

2

)
x2

+
(
−a− a′

2
+
a3 − a′3

2

)
x3

+
(

3
a2 − a′2

4
− 5

a4 − a′4

8

)
x4

+
(

3
a− a′

8
− 5

a3 − a′3

4
+ 7

a5 − a′5

8

)
x5

+
(
−15

a2 − a′2

16
+ 35

a4 − a′4

16
− 21

a6 − a′6

16

)
x6 (1.278)

The difference in each term is with b = [I]:

an − a′n =
(

2mF

[I]

)n

−
(

2 (mF − 1)
[I]

)n

=
[
2
b

]n

[mn
F − (mF − 1)n] (1.279)

Factoring out bn from each term:

Δ
2

=
x

b
+ [1 − 2mF ]

x2

b2
+ 2

[
1 − 3mF + 3m2

F − b2

4

]
x3

b3

+
[
5
(
1 − 4mF + 6m2

F − 4m3
F

)− 3b2

2
(1 − 2mF )

]
x4

b4

+
[
14

(
1 − 5mF + 10m2

F − 10m3
F + 5m4

F

)− 5b2
(
1 − 3mF + 3m2

F

)
+

3b4

8

]
x5

b5

+
[
42

(
1 − 6mF + 15m2

F − 20m3
F + 15m4

F − 6m5
F

)] x6

b6

+
[
−35b2

2
(
1 − 4mF + 6m2

F − 4m3
F

)
+

15b4

8
(1 − 2mF )

]
x6

b6
(1.280)
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Putting this altogether gives (to sixth order in x), the frequency of transition for the F = I ± 1/2 manifold
at a given (low) field B:

ν±
νhfs

=
6∑

n=1

cn
xn

[I]n
(1.281)

x = (gIμN − gSμB)
B

hνhfs
(1.282)

[I] = 2I + 1 (1.283)

c1 =
1 ± gIμN

gSμB
([I] ∓ 1)

1 − gIμN

gSμB

= 1 ∓O(10−3) (1.284)

c2 = 1 − 2mF (1.285)

c3 = 2
(

1 − 3mF + 3m2
F − [I]2

4

)
(1.286)

c4 = 5
(
1 − 4mF + 6m2

F − 4m3
F

)− 3[I]2

2
(1 − 2mF ) (1.287)

c5 = 14
(
1 − 5mF + 10m2

F − 10m3
F + 5m4

F

)− 5[I]2
(
1 − 3mF + 3m2

F

)
+

3[I]4

8
(1.288)

c6 = 42
(
1 − 6mF + 15m2

F − 20m3
F + 15m4

F − 6m5
F

)
−35[I]2

2
(
1 − 4mF + 6m2

F − 4m3
F

)
+

15[I]4

8
(1 − 2mF ) (1.289)

where ± refers to the manifold.

Low Field Frequency Inversion Formula

If we drop all terms higher than second order, then we can get an inversion formula for equation (1.281) for
any transition at low field. Thus applying the quadratic formula (1.268) and noting that μN/μB � 1 →
c1 ≈ 1 and gS ≈ −2, we get the field corresponding to a particular transition frequency at low fields:

B ≈
(
hν

μB

)
[I]

1 +
√

1 + 4(1 − 2mF )ν/νhfs

(1.290)

Table (1.4) illustrates how accurate this approximate equation is. For 85Rb, its better than 0.25% up to
ν = 16 MHz. For 39K, its better than 0.50% up to ν = 10 MHz.

Low Field Adjacent Transition Frequency Difference

At low fields to lowest order, the frequency difference between two adjacent transitions depends on B2:∣∣∣∣ν (mF + 1 ↔ mF ) − ν (mF ↔ mF − 1)
νhfs

∣∣∣∣ = 2
x2

[I]2
= 2

[
(gIμN − gSμB)

B

[I]hνhfs

]2

(1.291)

At B = 10 G, Δν = 14.4 kHz for 85Rb and Δν = 212 kHz for 39K.

Low Field Frequency Derivative with respect to Field

The derivative of the frequency with respect to the field is:

dν

dB
= ∓gIμN

h
+

(gIμN − gSμB)
2h[I]

⎛
⎝ 2mF + [I]x√

1 + 4mF

[I] x+ x2
− 2mF − 2 + [I]x√

1 + 4(mF −1)
[I] x+ x2

⎞
⎠ (1.292)
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39K ν = 10 MHz ν = 25 MHz
F mF B (full) B (1.290) % diff. B (full) B (1.290) % diff.

2 −1 13.422 13.465 +0.32 30.923 31.276 +1.14
1 0 14.011 13.993 −0.13 34.514 33.974 −1.56
2 0 14.018 13.993 −0.18 34.532 33.974 −1.62
1 +1 14.633 14.613 −0.13 38.564 37.901 −1.72
2 +1 14.642 14.613 −0.19 38.590 37.901 −1.79
2 +2 15.292 15.363 +0.46 43.095 44.883 +4.15

85Rb ν = 6.5 MHz ν = 16 MHz
F mF B (full) B (1.290) % diff. B (full) B (1.290) % diff.

3 −2 13.779 13.786 +0.05 33.403 33.436 +0.10
2 −1 13.814 13.844 +0.22 33.700 33.769 +0.21
3 −1 13.838 13.844 +0.04 33.758 33.769 +0.03
2 0 13.873 13.903 +0.21 34.057 34.116 +0.17
3 0 13.898 13.903 +0.04 34.116 34.116 −0.00
2 +1 13.933 13.962 +0.21 34.417 34.478 +0.18
3 +1 13.957 13.962 +0.03 34.479 34.478 −0.00
2 +2 13.992 14.023 +0.22 34.781 34.855 +0.21
3 +2 14.017 14.023 +0.04 34.845 34.855 +0.03
3 +3 14.078 14.085 +0.05 35.215 35.250 +0.10

Table 1.4: Comparison of calculation of B given ν. All the fields are in gauss. The “full” calculation is
solving Eqn. (blah) numerically. The approximate calculation is Eqn. (1.290). Comparisons are made at
B ≈ 15 G & 35 G. For 39K this corresponds to ν = 10 MHz & 25 MHz. For 85Rb this corresponds to
ν = 6.5 MHz & 16 MHz.
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The derivative can be “expanded” in x at low field by taking the derivative of equation (1.281) term by
term. To fifth order in field, the derivative of the frequency with respect to the field is:

dν±
dB

=
(gIμN − gSμB)

h[I]

5∑
n=0

bn
xn

[I]n
(1.293)

x = (gIμN − gSμB)
B

hνhfs
(1.294)

[I] = 2I + 1 (1.295)

b0 =
1 ± gIμN

gSμB
([I] ∓ 1)

1 − gIμN

gSμB

= 1 ∓O(10−3) (1.296)

b1 = 2 (1 − 2mF ) (1.297)

b2 = 6
(

1 − 3mF + 3m2
F − [I]2

4

)
(1.298)

b3 = 20
(
1 − 4mF + 6m2

F − 4m3
F

)− 6[I]2 (1 − 2mF ) (1.299)

b4 = 70
(
1 − 5mF + 10m2

F − 10m3
F + 5m4

F

)− 25[I]2
(
1 − 3mF + 3m2

F

)
+

15[I]4

8
(1.300)

b5 = 252
(
1 − 6mF + 15m2

F − 20m3
F + 15m4

F − 6m5
F

)
−105[I]2

(
1 − 4mF + 6m2

F − 4m3
F

)
+

45[I]4

4
(1 − 2mF ) (1.301)

These coefficients have simple forms for the end transitions. Plugging in mF = I+1/2 for I+1/2 ↔ I−1/2
and mF = −I + 1/2 for −I + 1/2 ↔ −I − 1/2, the coefficients for the expansion of the derivative of the
EPR frequency are:

b0 =
1 + gIμN

gSμB
(2I)

1 − gIμN

gSμB

= 1 −O(10−3) (1.302)

b1 = ∓4I (1.303)
b2 = 6I (2I − 1) (1.304)
b3 = ∓8I

(
4I2 − 6I + 1

)
(1.305)

b4 = 10I (2I − 1)
(
4I2 − 10I + 1

)
(1.306)

b5 = ∓12I
(
16I4 − 80I3 + 80I2 − 20I + 1

)
(1.307)

where ± refers to the edge state mF = ± (
I + 1

2

)
involved in the transition.
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Chapter 2

The Structure of Polarized Light

2.1 Representing Electromagnetic Plane Waves

2.1.1 Real Representation

The electric and magnetic field components of an electromagnetic plane wave traveling in the z-direction
with arbitrary polarization in a uniform and isotropic medium can be written as:

�E (�r, t) = Ex(z, t)x̂+ Ey(z, t)ŷ = E0xx̂ cos (kz − ωt) + E0y ŷ cos (kz − ωt+ φ) (2.1)

�B (�r, t) =
√
με

[
ẑ × �E (�r, t)

]
= μ �H (�r, t) (2.2)

=
√
με [E0xŷ cos (kz − ωt) − E0yx̂ cos (kz − ωt+ φ)] (2.3)

In SI, the energy flux (energy per unit time per unit area or instantaneous power density) associated with
the EM wave is given by the Poynting vector:

�S (�r, t) = �E (�r, t) × �H (�r, t) =
1
μ
�E (�r, t) × �B (�r, t) =

√
ε

μ
�E (�r, t) ×

[
ẑ × �E (�r, t)

]
(2.4)

=
√
ε

μ

(
ẑ
[
�E (�r, t) · �E (�r, t)

]
− �E (�r, t)

[
ẑ · �E (�r, t)

])
(2.5)

= ẑ

√
ε

μ

[
�E (�r, t) · �E (�r, t)

]
(2.6)

= ẑ

√
ε

μ
E2

0x

[
cos2(kz) cos2(ωt) + sin2(kz) sin2(ωt) +

1
2

sin(2kz) sin(2ωt)
]

+ẑ
√
ε

μ
E2

0y

[
cos2(kz + φ) cos2(ωt) + sin2(kz + φ) sin2(ωt) +

1
2

sin(2kz + 2φ) sin(2ωt)
]
(2.7)

We’ll define the intensity as the magnitude of the time averaged energy flux (or time averaged power density):

I ≡ ω

2π

∫ 2π
ω

0

ẑ · �S (�r, t) dt (2.8)

1
2

=
ω

2π

∫ 2π
ω

0

cos2(ωt)dt =
ω

2π

∫ 2π
ω

0

sin2(ωt)dt (2.9)

I =
√
ε

μ

(
E2

0x

2
[
cos2(kz) + sin2(kz)

]
+
E2

0y

2
[
cos2(kz + φ) + sin2(kz + φ)

])
(2.10)

=
1
2

√
ε

μ

[
E2

0x + E2
0y

]
=

√
ε

μ

〈∣∣∣�E∣∣∣2〉
time

(2.11)
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where the time averaged magnitude of the electric field vector is given as:√〈∣∣∣�E∣∣∣2〉
time

=

√
E2

0x + E2
0y

2
(2.12)

2.1.2 Complex Representation: The Jones Calculus

We will use the Jones calculus [9, 10, 11] for defining the polarization state of the light (vectors) and the
action of the various optical elements (matrices). This convention uses complex number representation and
a linear polarization basis. The electric field component of a monochromatic electromagnetic plane wave
with propagation vector �k = kẑ at time t is:

�E(z, t) = Ex(z, t)x̂+ Ey(z, t)ŷ = |E〉 eikz−iωt (2.13)
Ex(z, t) = E0x exp (ikz − iωt+ iαx) (2.14)
Ey(z, t) = E0y exp (ikz − iωt+ iαy) (2.15)

|E〉 ≡
[
E0xe

iαx

E0ye
iαy

]
(2.16)

where the relative phase shift is α = αx − αy. Note that it is assumed that the real part of �E is taken when
the physical field is needed. At a fixed point is space and over one period (= 2π

ω ) in time, �E sweeps out an
ellipse in the xy-plane given by (Born, Max and Emil Wolf. Principles of Optics, 7th (Expanded) Edition.
Cambridge: Cambridge University Press, 1999. page 26, equation 15):(

Ex

E0x

)2

+
(
Ey

E0y

)2

− 2
(
Ex

E0x

)(
Ey

E0y

)
cos(α) = sin2(α) (2.17)

In this representation, computing the modulus square of the electric field vector gives:

�E∗ · �E = 〈E|E〉 = E2
0x + E2

0y (2.18)

The time averaged modulus squared of electric field vector is therefore:

∣∣∣�E∣∣∣2
time

≡
�E∗ · �E

2
=
E2

0x + E2
0y

2
(2.19)

and finally the intensity is:

I =
√
ε

μ

〈
�E∗ · �E

〉
time

=
√
ε

μ

〈E | E〉
2

=
〈B | B〉
2μ

√
εμ

(2.20)

2.2 Linear Polarization

For linear polarization, the relative phase shift is an integer multiple of half a wave,

α = ±nπ (2.21)

or in other words the two components are in phase. Eqn. (2.17) becomes degenerate,(
Ex

E0x

)2

+
(
Ey

E0y

)2

∓ 2
(
Ex

E0x

)(
Ey

E0y

)
= 0 (2.22)

with solutions
Ey

E0y
= ∓ Ex

E0x
(2.23)
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Two specific solutions are the orthogonal axes of the xy-plane which correspond to horizontal and vertical
linearly polarized light. Horizontal linearly polarized light is denoted by

|P〉 = |x〉 =
[

1
0

]
(2.24)

Vertical linearly polarized light is denoted by

|S〉 = |y〉 =
[

0
1

]
(2.25)

Linear polarization at an angle θ counterclockwise from the x-axis is

|θ〉 =
[

cos(θ)
sin(θ)

]
(2.26)

2.3 Circular Polarization

When the relative phase shift is a quarter wave,

α = ±(2n+ 1)
π

2
(2.27)

and the magnitudes of the two components are identical,

E0x = E0y (2.28)

then eqn. (2.17) reduces to an equation for a circle:

Ex
2 + Ey

2 = 1 (2.29)

The two orthogonal states are labeled by their helicity, namely the sign of the projection of the spin to the
propagation vector. Right circularly polarized light,

|R〉 = |+〉 =
√

2
2

[
1

+i

]
(2.30)

following the right hand rule such that the spin is parallel to the direction of propagation. Left circularly
polarized light,

|L〉 = |−〉 =
√

2
2

[
1

−i
]

(2.31)

is anti-parallel. Note that the standard optics convention is opposite to the helicity convention. In the helicity
convention, for right circularly polarized light, �E rotates counterclockwise in the xy-plane at a fixed point
in space. In the standard optics convention, for right circularly polarized light, �E rotates counterclockwise
in the xy-plane at a fixed moment in time as you move forward in the direction of propagation. See fig.
(2.1). Unless otherwise noted, the helicity convention will be used. See page 400 of Waves [12] for further
discussion regarding handedness convention.

2.4 Stokes Parameters

Since the polarization vector of light has two components with complex coefficients, four real numbers are
required to describe it completely. These real numbers are called Stokes parameters. Unfortunately many
different conventions exist in the literature. For our purposes, the most useful convention in the circular
polarization basis for arbitrarily polarized light is:

|E〉 = E0e
iφp

[√
1 + P

2
e−iθ |R〉 +

√
1 − P

2
e+iθ |L〉

]
(2.32)
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Figure 2.1: Right (helicity) circularly polarized light. Left: fixed time, forward in space. Right: fixed space,
forward in time.

where φp is just an overall phase factor that rarely contains any useful information about the light. Equiv-
alently in the linear polarization basis, it is written as:

|E〉 = E0e
iφp

[(√
1 − P

e+iθ

2
+
√

1 + P
e−iθ

2

)
|P〉 +

(√
1 − P

e+iθ

2i
−√

1 + P
e−iθ

2i

)
|S〉

]
(2.33)

The magnitude of �E is:

√
〈E|E〉 =

√
〈ER|ER〉 + 〈EL|EL〉 =

√(
1 + P

2

)
E2

0 +
(

1 − P

2

)
E2

0 = E0 (2.34)

The degree of circular polarization of the light is:

〈ER|ER〉 − 〈EL|EL〉
〈E|E〉 =

(
1+P

2

)
E2

0 − (
1−P

2

)
E2

0

E2
0

= P (2.35)

where P = +(−)1 for pure right (left) circular polarization and P = 0 for pure linear polarization. In the
linear basis for pure linear polarization:

|E〉 = E0e
iφp

[(
e+iθ

2
+
e−iθ

2

)
|P〉 +

(
e+iθ

2i
− e−iθ

2i

)
|S〉

]
= E0e

iφp [cos(θ) |P〉 + sin(θ) |S〉] (2.36)

where θ is the angle of the linear polarization vector with respect to the |P〉-axis. In general for elliptically
polarized light, θ is the angle that the major axis of the polarization ellipse makes with the |P〉-axis.

2.5 Mirrors

Mirrors are produced by applying one or more layers of a thin film coating onto a substrate. The index
of refraction and thickness of the thin film is chosen to maximize reflection. The reflectivity of the mirror
and the phase shift induced in the light depends on the polarization of the light and its angle of incidence.
The mirrors we commonly use (Newport Corporation, 1791 Deere Ave, Irvine, CA 92606, 1-800-222-6440)
have a minimum reflectivity of 99% for P polarized light and 98% for S polarized light in the 700–950 nm
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Figure 2.2: Top view of BSPC

range for angles from 0–45 degrees (broadband dielectric coating BD.2). Specifically, at 45 degrees and at a
wavelength of around 800 nm, the relflectivities for P & S polarized light are 99.5% and 99.9%. Since the
reflectivity is defined as the ratio of output to input intensities, the reflection coefficient is the square root
of the reflectivity:

rP =
√
RP ≈ 0.9975 (2.37)

rS =
√
RS ≈ 0.9995 (2.38)

If the light is circularly polarized or a mix of S and P linear polarizations, then it is necessary to include a
small relative phase shift factor, δm. Unfortunately, this value is not given in the optics catalogs and must
be obtained empirically if needed. A simplified form for the mirror matrix is then:

M̂ =
[
rP 0
0 rSe

iδm

]
(2.39)

A fully general mirror matrix would be, in principle, complex and may even contain small non-zero off
diagonal elements.

2.6 Beam Splitting Polarizing Cubes

2.6.1 Matrix Representation

An ideal beam splitting polarizing cube (BSPC) simply splits an incoming beam into it’s two linearly
polarized components. Once separated, the two beam paths are orthogonal, see fig. (2.2). The transmitted
beam is selected by

Ĉt =
[

1 0
0 0

]
(2.40)

and the reflected beam is selected by

Ĉr =
[

0 0
0 1

]
(2.41)

For the ideal case, the transmitted and reflected beams are pure P & S linear polarizations respectively. In
practice the splitting and polarizing are imperfect. According to RMI (Dr. Zhiming Lu, zlu@rmico.com,
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Rocky Mountain Instruments, 106 Laser Drive, Lafayette, CO, 80026, 303-664-5000), our 2” BSPC has an
extinction ratio for the transmitted beam of ≥ 1000 : 1 whereas for the reflected beam it is ≤ 20 : 1. The
transmittance is about ≥ 95%, whereas the reflectance is about ≥ 99.9%. Therefore a more realistic form of
Ĉ can be written. For example, for the transmitted beam:

Ĉt =
[
t1 0
0 t2

]
(2.42)

Tt =
Itransmitted

IinputP
= t21 + t22 (2.43)

et =
ItransmittedP
ItransmittedS

=
t21
t22

(2.44)

where t is the transmittance and et is the extinction ratio for the transmitted beam. Solving for t1 & t2 in
terms of t & et and doing the same for the reflected beam, the more general cube matrices become:

Ĉt =

⎡
⎣

√
Tt

1+e−1
t

0

0
√

Tt

1+et

⎤
⎦ (2.45)

Ĉr =

⎡
⎣

√
Tr

1+er
0

0
√

Tr

1+e−1
r

⎤
⎦ (2.46)

Given the specifications for our cube, the matrices are:

Ĉt ≈
[

0.974 0
0 0.031

]
(2.47)

Ĉr ≈
[

0.213 0
0 0.951

]
(2.48)

The fully general cube matrices could be, in principle, complex and have non-zero off diagonal elements.

2.6.2 Measuring the degree of circular polarization

One can measure the degree of circular polarization of a beam of light by using a rotatable beam splitting
polarizing cube. Note that an input light polarization angle of θ with respect to the cube axis is equivalent to
having the cube axis be −θ from the light polarization P axis. Therefore varying θ is equivalent to rotating
the cube. If the incident light is normal to the cube, then the intensity of the light transmitted through the
cube is given by:

It =
∣∣∣Ĉt |E〉

∣∣∣2 = t21 〈EP |EP〉 + t22 〈ES |ES〉

=
E2

0Ttet

1 + et

(
1 − P + 1 + P + 2

√
1 − P 2 cos(2θ)

4

)
+
E2

0Tt

1 + et

(
1 − P + 1 + P − 2

√
1 − P 2 cos(2θ)

4

)

=
E2

0Tt

2

[
1 +

(
et − 1
et + 1

)√
1 − P 2 cos(2θ)

]
(2.49)

The maximum and minimum transmitted intensities are:

Imax =
E2

0Tt

2

[
1 +

(
et − 1
et + 1

)√
1 − P 2

]
(2.50)

Imin =
E2

0Tt

2

[
1 −

(
et − 1
et + 1

)√
1 − P 2

]
(2.51)
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Defining the cube efficiency fc and forming the cube asymmetry Ac yields a polarization “Pythagorean”
expression:

fc ≡ et − 1
et + 1

(2.52)

Ac ≡ Imax − Imin

Imax + Imin
= fc

√
1 − P 2 (2.53)

1 = P 2 +
(
Ac

fc

)2

(2.54)

where P is the degree if circular polarization.

2.7 Waveplates

2.7.1 Matrix Representation

A waveplate is an optical element that has different indices of refraction along two orthogonal axes, see fig.
(2.3). This results in a net phase shift between the linear components of the polarization vector. First, the
polarization vector has to be expressed in the basis of the waveplate. Therefore, a passive or coordinate
system rotation of angle φ radians is performed,

R̂(φ) =
[

cos(φ) sin(φ)
− sin(φ) cos(φ)

]
(2.55)

followed by a relative phase retardation of β radians,

Ŵ (β) =

⎡
⎣ exp

(
+iβ

2

)
0

0 exp
(
−iβ

2

)
⎤
⎦ (2.56)

and finally a rotation back to the original basis, R̂(−φ). The complete waveplate operator is thus:

Ŵ (φ, β) = R̂(−φ)Ŵ (β)R̂(φ) (2.57)

= exp
(
−iβ

2

)⎡
⎣ 1 + 2i exp

(
iβ
2

)
sin

(
β
2

)
cos2(φ) i exp

(
iβ
2

)
sin

(
β
2

)
sin(2φ)

i exp
(
iβ
2

)
sin

(
β
2

)
sin(2φ) 1 + 2i exp

(
iβ
2

)
sin

(
β
2

)
sin2(φ)

⎤
⎦(2.58)

Note that for one complete wave, β = 2π. Typically the fast axis is taken to be vertical.
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2.7.2 Half Waveplate

A half-waveplate has a retardance β = 2π
2 = π. When it is orientated at an angle of φ from a set of reference

axes, the waveplate matrix becomes:

Ŵ 1
2
(φ) = i

[
cos(2φ) sin(2φ)
sin(2φ) − cos(2φ)

]
(2.59)

This operation implies that each linear polarization component of some arbitrarily polarized light is rotated
by twice the angle between the linear polarization axis and the waveplate fast axis. If the the linear
polarization is either S or P , then a half-waveplate at an angle φ with respect to the polarization axis
rotates the linear polarization by an angle of 2φ. A half-waveplate at ±45o simplify flips P ↔ S. For pure
circularly polarized light, a half-waveplate orientated at any angle simply flips L ↔ R.

2.7.3 Quarter Waveplate

For a quarter-waveplate with retardance β = 2π
4 = π

2 , orientated at an angle of 45o, the matrix becomes:

Ŵ 1
4

(π
4

)
=

√
2

2

[
1 i
i 1

]
(2.60)

To be explicit, a quarter-waveplate with its fast axis rotated counterclockwise by 45o turns horizontal linearly
polarized light into right circularly polarized light,

Ŵ 1
4

(π
4

)
|P〉 = |R〉 (2.61)

Ŵ 1
4

(π
4

)
|R〉 = i |S〉 (2.62)

Ŵ 1
4

(π
4

)
|S〉 = i |L〉 (2.63)

Ŵ 1
4

(π
4

)
|L〉 = |P〉 (2.64)

and so forth following the simple pattern P → R → S → L → P . An angle of −45o simply reverses the
direction of the arrows. Note that in the RHS of the two middle equations, there is an overall phase factor
(i) which for our purposes is unimportant.

2.7.4 Photoelastic Modulator

A photoelastic modulator is a variable retardance waveplate. The retardance can be fixed at a constant
value or (more importantly) modulated at a frequency νmod (= Ωmod/2π):

β(t) = β0 sin (Ωmodt+ φmod) (2.65)

The PEM that we have (Hinds Instruments, 3175 NW Aloclek, Hillsboro, OR 97124, 503-690-2000) oscillates
at 50 kHz. The ability to modulate the phase retardance and therefore modulate the polarization of the
incident light makes a PEM (in conjunction with a lock-in amplifier) useful as a high precision polarimeter.
Note the following useful relationships from p. 361 of Abramowitz & Stegun [13]:

sin (β0 sin (Ωmodt)) = 2
∞∑

n=0

J2n+1 (β0) sin ((2n+ 1)Ωmodt)

= 2J1 (β0) sin (Ωmodt) + · · · (2.66)

sin (β0 cos (Ωmodt)) = 2
∞∑

n=0

(−)nJ2n+1 (β0) cos ((2n+ 1)Ωmodt)

= 2J1 (β0) cos (Ωmodt) − · · · (2.67)
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cos (β0 sin (Ωmodt)) = J0 (β0) + 2
∞∑

n=1

J2n (β0) cos (2nΩmodt)

= J0 (β0) + 2J2 (β0) cos (2Ωmodt) + · · · (2.68)

cos (β0 cos (Ωmodt)) = J0 (β0) + 2
∞∑

n=1

(−)nJ2n (β0) cos (2nΩmodt)

= J0 (β0) − 2J2 (β0) cos (2Ωmodt) + · · · (2.69)
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Chapter 3

The Effect on Alkali Atoms Due to
Semiclassical Interactions With
Polarized Light

3.1 Density Matrix

3.1.1 Definition & Basic Properties

To discuss the change in the relative populations of different states due to transitions, it is useful to first
introduce the density matrix [14]. The density matrix is often used to represent a large ensemble of systems
in a statistical mixture of pure quantum states, for example, a vapor of polarized alkali atoms. To be explicit,
given a statistical probability pk of being in the pure quantum state |ψk〉, the density matrix is defined as

ρ ≡
∑

k

pk |Ψk〉 〈Ψk| (3.1)

where |Ψk〉 is, in general, a superposition of eigenstates:

|Ψk〉 =
∑

n

ckn(t) |n〉 & 〈Ψk| =
∑
m

c∗km(t) 〈m| (3.2)

The complex coefficients ckn(t) contain all of the time dependence. For notational convenience we’ll drop
the (t) and expanding the density matrix in this eigenbasis gives

ρ =
∑

k,m,n

pkc
∗
kmckn |n〉 〈m| (3.3)

where the matrix elements are

ρba = 〈b| ρ |a〉 =
∑

k,m,n

pkc
∗
kmckn 〈b | n〉 〈m | a〉 =

∑
k

pkc
∗
kackb (3.4)

The diagonal elements (b = a) have a simple and straightforward physical interpretation: they are the
combined statistical and quantum mechanical probabilities of being in the eigenstate |a〉. We’ve assumed
that everything has been normalized properly:∑

n

c∗knckn =
∑

n

|ckn|2 = 1 &
∑

k

pk = 1 (3.5)

Off-diagonal elements (b �= a) are called coherences and are complex conjugates of each other

ρba = ρ∗ab → ρ = ρ† (3.6)

which implies that the density matrix is Hermitian, by construction.
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3.1.2 Time Evolution: Liouville Equation

The time evolution of the density matrix is easily derived by first differentiating with respect to time t

dρ

dt
= ρ̇ =

∑
k

pk

(
∂ |Ψk〉
∂t

〈Ψk| + |Ψk〉 ∂ 〈Ψk|
∂t

)
(3.7)

and then applying Schrodinger equation

∂ |Ψk〉
∂t

= − i

h̄
H |Ψk〉 &

∂ 〈Ψk|
∂t

= +
i

h̄
〈Ψk|H (3.8)

where H is the full Hamiltonian of the system. The end result is known as the Liouville equation:

ρ̇ = − i

h̄
(Hρ− ρH) = − i

h̄
[H, ρ] (3.9)

We’ll write H as the sum of the free Hamiltonian H0 and the interaction term W :

H = H0 + W & H0 |n〉 = h̄ωn |n〉 (3.10)

where the energy associated with the eigenstate n in the free Hamiltonian is h̄ωn. Expanding ρ in the
eigenbasis of H0 and collecting terms gives:

ρ̇ = − i

h̄

∑
k,n,m

pkc
∗
kmckn {(h̄ωnm + W) |n〉 〈m| − |n〉 〈m|W} (3.11)

where we’ve set ωnm = ωn − ωm. Placing this result inside 〈b| · · · |a〉 gives the projection:

ρ̇ba = − i

h̄

∑
k,n,m

pkc
∗
kmckn {(h̄ωnm 〈b | n〉 + 〈b|W |n〉) 〈m | a〉 − 〈b | n〉 〈m|W |n〉} (3.12)

Reducing the sums over n and m by noting 〈j | k〉 = δjk gives a set of coupled differential equations:

ρ̇ba = −iωbaρba − i

h̄

∑
n

(ρna 〈b|W |n〉 − ρbn 〈n|W |a〉) (3.13)

where we’ve relabeled the dummy variable of the last term m → n. When there is no interaction (W = 0),
the equations become uncoupled:

ρ̇ba = −iωbaρba (3.14)

and are easily solved:

ρba(t) = ρba(0) exp (−iωbat) for coherences (b �= a) (3.15)
ρaa(t) = ρa(t) = ρa(0) = constant for populations (b = a) (3.16)

3.1.3 Expectation Values: Trace

The expectation value of some operator U for a state |Ψk〉 is given by 〈U〉k = 〈Ψk| U |Ψk〉. For a system in
a statistical mixture of pure quantum states, we have to average 〈U〉k over all k:

〈U〉 =
∑

k

pk 〈U〉k =
∑

k

pk 〈Ψk| U |Ψk〉 =
∑

k,n,m

pkc
∗
kmckn 〈m| U |n〉 =

∑
n,m

〈n| ρ |m〉 〈m| U |n〉 (3.17)

We can write this sum in a more illuminating way by inserting three copies of the complete projection
operator 1 =

∑
a |a〉 〈a|:

∑
n,m

〈n| ρ |m〉 〈m| U |n〉 =
∑
n,m

〈n|
(∑

a

|a〉 〈a|
)
ρ

(∑
b

|b〉 〈b|
)
|m〉 〈m| U

(∑



|�〉 〈�|
)
|n〉 (3.18)
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When we group the sums appropriately, we find:

∑
n

〈n|
⎛
⎝∑

a,b

|a〉 〈a| ρ |b〉 〈b|
⎞
⎠

⎛
⎝∑

m,


|m〉 〈m| U |�〉 〈�|
⎞
⎠ |n〉 =

∑
n

〈n| ρU |n〉 (3.19)

The action defined by
∑

n 〈n| (· · ·) |n〉 is simply the sum of the diagonal elements of the enclosed matrix, in
other words: the trace Tr(· · ·). To summarize, in the density matrix formulation, the expectation value of
some operator U is given by the trace of the product ρU :

〈U〉 = Tr(Uρ) = Tr(ρU) =
∑
n,m

〈n| ρ |m〉 〈m| U |n〉 (3.20)

3.2 General Electromagnetic Dipole Interaction

3.2.1 General Form

Dipole Moment Operator

The interaction of light with an alkali atom can be written semiclassically as:

W = −�m · ��F (�r, t) (3.21)

where �F is the field component of the incident light in the complex representation and �m is a dipole moment
operator of the form:

�m =
∑

q

m0Uqε̂
∗
q (3.22)

where m0 is magnitude of the moment and {ε̂∗q} are unit basis vectors. The operator associated with the
dipole moment, Uq, connects the eigenstate m with the eigenstate m+ q:

Uq =
∑
m,n

δm+q,n |n〉 〈n| Uq |m〉 〈m| =
∑
m

|m+ q〉 〈m+ q| Uq |m〉 〈m| (3.23)

Electromagnetic Field

A subtle point to note is that the interaction depends only on the real part of the field. To be explicit, the
real part of the field in the complex representation is:

��F (�r, t) = ��F0 exp(i�k · �r − ωt) = F0

[
F̂0 exp(i�k · �r − iωt) + F̂ ∗

0 exp(−i�k · �r + iωt)
]

(3.24)

where F0 is the real magnitude of the field, F̂0 is the complex unit polarization vector, �k is the wave vector
of the light, �r is its direction of propagation, and ω is the angular frequency.

Dipole Approximation

We’ll make the dipole approximation by noting:

|�k · �r| = kr =
2πr
λ

≈ 2π5a0

λ
≈ 2π5(0.053 nm)

780 nm
≈ 0.002 � 1 (3.25)

where a0 is the Bohr radius (5a0 is the characteristic scale of an K or Rb atom) and λ is the wavelength of the
light. Shorter wavelengths correspond to the transitions with the larger energy differences. The transitions
with the largest energy differences that we’ll be discussing are the D1 and D2 transitions of alkali atoms.
For K and Rb, this is around 780 nm, therefore, the dipole approximation is a very good one under our
conditions. Physically, this means that the amplitude of the electromagnetic wave hitting the atom does
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not vary much in amplitude over the size scale of the atom. As a consequence, we’ll drop the �k · �r term and
write the interaction as:

W = −m0F0

∑
q

Uq

[
ε̂∗q · F̂0 exp(−iωt) + ε̂∗q · F̂ ∗

0 exp(+iωt)
]

= −h̄Ω
∑
q,s

{
us

q exp(+isωt)Uq

}
(3.26)

where s = ±1 and we’ve made the following substitutions:

h̄Ω = m0F0 u−q = ε̂∗q · F̂0 u+
q = ε̂∗q · F̂ ∗

0 (3.27)

Since W is Hermitian, (Uq)† = U−q and consequently
(
us

q

)∗ = u−s
−q.

3.2.2 Coherences

Plugging the general dipole interaction, Eqn. (3.26), into the Liouville equation, Eqn. (3.13), gives:

ρ̇ba = −iωbaρba + iΩ
∑

q,s,n,m

us
q exp(+isωt) {· · ·} (3.28)

· · · = ρna 〈b | m+ q〉 〈m+ q| Uq |m〉 〈m | n〉 − ρbn 〈n | m+ q〉 〈m+ q| Uq |m〉 〈m | a〉
Reducing the sum over n and m gives:

ρ̇ba = −iωbaρba + iΩ
∑
q,s

us
q exp(+isωt) {ρb−q,a 〈b| Uq |b − q〉 − ρb,a+q 〈a+ q| Uq |a〉} (3.29)

For the q = b− a term in the sum, the matrix elements of ρ in that term are populations. For the remaining
terms in the sum, q �= b− a and the matrix elements of ρ in those terms are coherences. As we’ll see shortly,
this is a vital difference, so we’ll explicitly separate the q = b− a term from the sum:

ρ̇ba = −iωbaρba + iΩ
∑

s

exp(+isωt)

(
Us,q=b−a

pop +
∑

q

Us,q �=b−a
coh

)
(3.30)

Us,q=b−a
pop = us

b−a (ρa − ρb) 〈b| Ub−a |a〉 (3.31)

Us,q �=b−a
coh = us

q {ρb−q,a 〈b| Uq |b− q〉 − ρb,a+q 〈a+ q| Uq |a〉} (3.32)

Relaxation

Up to now, we’ve only considered transitions due to our interaction term W . In reality, there are other
processes that cause transitions that drive the system toward thermodynamic equilibrium. We’ll account for
these “relaxation” processes by adding a relaxation term “by-hand:”

ρ̇ba = −iωbaρba − γbaρba + iΩ
∑

s

exp(+isωt)

(
Us,q=b−a

pop +
∑

q

Us,q �=b−a
coh

)
(3.33)

where γba is the relaxation rate and, by construction, γba = γab.
Solving this set of differential equations would be much easier if they weren’t coupled (contained different

coherences). To a very good approximation, we can decouple these equations by making the following
arguments. First, we’ll make an educated guess for the form of the coherences ρba(t). When there is no
interaction, the entire time dependence of the coherences is given by exp(−iωbat). Since we’re now driving
the system with a frequency of ω, it is not unreasonable to think that the time dependence of the coherences
is now exp(∓iωt), where the negative (positive) sign is chosen when ωba is positive (negative). Plugging in
Cba(t) exp(∓iωt) for the coherences b �= a on both sides of the equation give:

(∓iωCba + Ċba) exp(∓iωt) = −i (ωba − iγba)Cba exp(∓iωt)

+iΩ
∑

s

exp(+isωt)

(
Us,q=b−a

pop + exp(∓iωt)
∑

q

Ūs,q �=b−a
coh

)
(3.34)
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where the terms in the sum over q proportional to coherences is given by:

Ūs,q �=b−a
coh = us

q {Cb−q,a 〈b| Uq |b− q〉 − Cb,a+q 〈a+ q| Uq |a〉} (3.35)

Multiplying both sides by exp(±iωt), dividing by i, and moving a few things around gives:

−iĊba = (±ω − ωba + iγba)Cba + Ω
∑

s

exp(+i(s± 1)ωt)

(
Us,q=b−a

pop + exp(∓iωt)
∑

q

Ūs,q �=b−a
coh

)
(3.36)

Rotating Wave Approximation

We’re now in a position to take the second step, which is called the rotating wave approximation [15]: we
simply drop any of the remaining oscillatory terms, namely ones with a factor of exp(±niωt) with n �= 0:

−iĊba = (±ω − ωba + iγba)Cba + ΩUs=∓,q=b−a
pop (3.37)

This is a completely uncoupled set of equations! The only term left that could possibly have any time
dependence is Cba. The last step in solving these equations is to choose Cba to be a constant:

−iĊba = 0 = (±ω − ωba + iγba)Cba + ΩUs=∓,q=b−a
pop (3.38)

= (±ω − ωba + iγba)Cba + Ωu∓b−a (ρa − ρb) 〈b| Ub−a |a〉 (3.39)

This is just an algebraic equation which is solved very simply by:

Cba =
u∓b−aΩ (ρb − ρa) 〈b| Ub−a |a〉

±ω − ωba + iγba
(3.40)

which immediately gives:

ρba =
u∓b−aΩ (ρb − ρa) 〈b| Ub−a |a〉

±ω − ωba + iγba
exp(∓iωt) (3.41)

3.2.3 Changes in Population

Since we have a solution for the coherences (b �= a), we now consider the coupled differential equations for
the populations (b = a):

ρ̇a = −iωaaρa + iΩ
∑

s

exp(+isωt)

(
Us,q=a−a

pop +
∑

q

Us,q �=a−a
coh

)
(3.42)

Us,q=a−a
pop = us

a−a (ρa − ρa) 〈a| Ua−a |a〉 = 0 (3.43)

Us,q �=a−a
coh = us

q {ρa−q,a 〈a| Uq |a− q〉 − ρa,a+q 〈a+ q| Uq |a〉} (3.44)

Up to now, we’ve been a little sloppy with the notation q = b − a, etc. What we have meant is that the
operator associated with q is the “difference” between eigenstates b and a. In practice, q, b, and a can be
made into numbers if b and a happen to be observables and not just labels for the eigenstates. This can
be done if we label eigenstates as J,m where J & m represent eigenvalues associated with that eigenstate.
Before going on, we should rewrite the coherences in this new notation:

ρKa+qJa =
u∓q Ω (ρKa+q − ρJa) 〈K, a+ q| Uq |J, a〉

±ω − ωKa+qJa + iγKa+qJa
exp(∓iωt) (3.45)

where we’ve made the substitution b = a+ q. The complex conjugate of this coherence is:

ρ∗Ka+qJa = ρJaKa+q =

(
u∓q

)∗ Ω (ρKa+q − ρJa) 〈J, a| U−q |K, a+ q〉
±ω − ωKa+qJa − iγJaKa+q

exp(±iωt) (3.46)
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Dropping terms that contain ωaa = 0 & (ρa − ρa), the differential equations for the populations is
rewritten as:

ρ̇Ja = iΩ
∑
K,s,q

us
q exp(+isωt) {ρKa−q,Ja 〈J, a| Uq |K, a− q〉 − ρJa,Ka+q 〈K, a+ q| Uq |J, a〉} (3.47)

These equations are coupled only to coherences, which we already have expressions for. Before plugging in
the coherences, we’ll derive an alternate form of the first sum by reversing the sum by s, q → −s,−q using
the Hermiticity of W & ρ in the form of u−s

−q =
(
us

q

)∗, ρKa+q,Ja = ρ∗Ja,Ka+q, & U−q = U†
q :∑

s,q

us
q exp(+isωt)ρKa−q,Ja 〈J, a| Uq |K, a− q〉 =

∑
s,q

u−s
−q exp(−isωt)ρKa+q,Ja 〈J, a| U−q |K, a+ q〉

=
∑
s,q

[
us

q exp(+isωt)ρJa,Ka+q 〈K, a+ q| Uq |J, a〉
]∗
(3.48)

This shows that the first sum is just the complex conjugate of the second sum. Using the identity z∗ − z =
−2i�{z}, we can now write ρ̇Ja as just the imaginary part of the second sum:

ρ̇Ja = 2Ω
∑
K,s,q

�{
us

q exp(+isωt)ρJa,Ka+q 〈K, a+ q| Uq |J, a〉
}

(3.49)

Plugging in the form of the coherence ρJa,Ka+q = ρ∗Ka+q,Ja, gives:

ρ̇Ja = 2Ω2
∑

K,s,q

�
{
us

q(u
∓
q )∗ exp(+i(s± 1)ωt)

(ρKa+q − ρJa) 〈K, a+ q| Uq |J, a〉∗
±ω − ωKa+qJa − iγKa+qJa

〈K, a+ q| Uq |J, a〉
}

(3.50)

Applying the rotating wave approximation once again, namely keeping only the s = ∓1 terms, gives:

ρ̇Ja = 2Ω2
∑
K,q

∣∣u∓q ∣∣2 (ρKa+q − ρJa) |〈K, a+ q| Uq |J, a〉|2 �
{
(±ω − ωKa+qJa − iγKa+qJa)−1

}
(3.51)

After collecting all common factors, we find that the denominator is the only complex quantity. We can find
the imaginary part of it by multiplying the top & bottom by the complex conjugate of the bottom. This
finally gives:

ρ̇Ja = 2Ω2
∑
K,q

γKa+qJa (ρKa+q − ρJa)
∣∣u∓q ∣∣2 |〈K, a+ q| Uq |J, a〉|2

(±ω − ωKa+qJa)2 + γ2
Ka+qJa

(3.52)

3.2.4 Expectation Value of the Dipole Moment Operator

It is often useful to calculate the expectation value of the very operators causing the transitions. For the
case of a general harmonic interaction, this means calculating the expectation value of Uq:

〈Uq〉 =
∑

K,n,J,m

〈K,n| ρ |J,m〉 〈J,m| Uq |K,n〉 =
∑

K,n,J

〈K,n| ρ |J, n+ q〉 〈J, n+ q| Uq |K,n〉 (3.53)

There are two different cases which result in either a sum over populations or a sum over coherences. For
the case (K = J & q = 0), we get a sum over populations:

〈U0〉 =
∑
n,J

ρJn 〈J, n| U0 |J, n〉 (3.54)

For all cases other than (K = J & q = 0), we get a sum over coherences due to
∑

q Uq, which we’ve already
calculated, and plugging them in gives:

〈Uq〉 =
∑

K,n,J

{
Ω (ρJn+q − ρKn)

(
u∓q

)∗ |〈J, n+ q| Uq |K,n〉|2
±ω − ωJn+qKn − iγJn+qKn

× exp(±iωt)
}

(3.55)
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3.2.5 Electric Dipole Interaction for the 2S+1LJ Orbital States

The interaction between the atom and the electric field component of the light is:

W = −�d · � �E(�r, t) (3.56)

The electric dipole operator �d is given by the sum
∑

k qk�rk, where qk & �rk are the charge & relative position
of the k-th particle in the atom. If we take the nucleus to be infinitely heavy and measure the position of the
electrons relative to it, then the dipole operator is reduced to the sum over all electrons. Since we’re only
going to be considering transitions of the single valence electron of an alkali atom, the sum further reduces
to a single term which results in �d = −e�r. The position vector of the valence electron, �r, can be expanded
in the irreducible spherical vector basis

∑+1
q=−1 rq ε̂

∗
q . We can now identify the parameters from the general

dipole interaction, Eqn. (3.26), as:

Uq = rq h̄Ω = −eE0 u−q = ε̂∗q · Ê0 u+
q = ε̂∗q · Ê∗

0 (3.57)

The relevant atomic states are the S1/2 ground state and the mixed P1/2 & P3/2 excited states, see Sec. (1.2.4).
Therefore the electric dipole transition matrix elements are 〈P±,m+ q| rq |S,m〉 and their complex conju-
gates for all m & q.

3.2.6 Magnetic Dipole Interaction for the |F, m〉 Hyperfine States

The interaction between the atom and the magnetic field component of the light is:

W = −�μ · � �B(�r, t) (3.58)

In this case, the light is in the form of radio-frequency (RF) waves. The magnetic moment operator is the
sum of nuclear magnetic moment �μI and the total electronic magnetic moment �μJ . Since |�μI | � |�μJ |, we’ll
ignore the coupling to the nuclear spin. In the S1/2 ground state of an alkali atom, J = S = 1/2(L = 0) and
therefore the magnetic moment can written in terms of the spin-1/2 angular momentum operators:

�μ = gSμB
�S = −gSμB (Sxx̂+ Syŷ + Sz ẑ) = gSμB

(
S+ε̂

∗
+ + S−ε̂∗− + Sz ε̂

∗
0

)
(3.59)

where S± = Sx ± iSy and the unit vectors ε̂q are not the same unit vectors used for the electric dipole
operator from the previous section:

ε̂∗± =
x̂∓ iŷ

2
ε̂0 = ẑ (3.60)

We can now identify the parameters from the general dipole interaction, Eqn. (3.26), as:

Uq = Sq h̄Ω = gSμBBrf u−q = ε̂∗q · B̂rf u+
q = ε̂∗q · B̂∗

rf (3.61)

The relevant atomic states are the mixed hyperfine states in the F = I ± 1/2 manifolds, see Sec. (1.3.4).
We will only consider RF frequencies small enough to induce transitions within a manifold and not between
manifolds. Therefore the magnetic dipole transition matrix elements are 〈F,m+ q|Sq |F,m〉 and their
complex conjugates for all m & q.

3.3 Electric Dipole Matrix Elements: Oscillator Strength

3.3.1 Wigner-Eckart Theorem

The probability that an electric dipole transition occurs from an initial state a to a final state b is proportional
to the modulus squared matrix element of the component of the dipole operator that is parallel to the
polarization vector of the light:∣∣∣〈b| �ε · �̂d |a〉∣∣∣2 =

∣∣∣〈b| �ε · (−e�̂r) |a〉
∣∣∣2 = e2

∣∣∣〈b|�ε · �̂r |a〉∣∣∣2 (3.62)
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When the dipole operator, or analogously the radius vector operator, is written as a tensor of rank one
(see appendix B), the matrix element can be evaluated using the Wigner-Eckart theorem. The theorem was
originally derived from group theory considerations and factorizes the matrix element of a tensor operator
T k

q between states labeled with quantum numbers ni, nf and angular momentum (Ji,mi) and (Jf ,mf ) into
two parts:

〈Jf ,mf | T̂ k
q |Ji,mi〉 = CG

(
�Ji + �k = �Jf ; mi, q,mf

)
× R.M.E. (nf , Jf ;ni, Ji) (3.63)

The first part is simply a Clebsch-Gordon coefficient for the addition of angular momenta such that �Ji+�k = �Jf

with mi,mf , q. The second part, called the reduced matrix element, is a term with the essential property
that it is independent of mi, q,mf . The exact form of the reduced matrix element is somewhat arbitrary
so long as it is independent of mi, q,mf and behaves mathematically appropriately. By this, we mean that
the matrix element is a complex number or equivalently the modulus square matrix element is non-negative.
One form of the reduced matrix element that is often chosen in textbooks (for example equation XIII.125
of Messiah [16]) is:

R.M.E. =
1√
[Jf ]

× 〈nf , Jf‖T k ‖ni, Ji〉 (3.64)

For the present discussion, we will drop the ni and nf labels because the D1 and D2 transitions of alkali
metals occur within the same n. To insure positive definiteness of the modulus square matrix element, we’ll
explicitly give ourselves flexibility with the phase:

R.M.E. =
(±)fi√

[Jf ]
× i× 〈Jf‖T k ‖Ji〉 (3.65)

The phase ambiguity of the reduced matrix element is related to the choice made in defining the phase
convention of the Clebsch-Gordon coefficients. Using the notation of Messiah, the Wigner-Eckart Theorem
[17, 18] can be expressed as:

〈Jf ,mf | T̂ k
q |Ji,mi〉 = i

(±)fi√
[Jf ]

〈(Ji, k)mi, q|Jf ,mf 〉 〈Jf‖T k ‖Ji〉 (3.66)

3.3.2 Phase Convention and Positive Definiteness

Care must be taken in choosing the phase convention when evaluating these matrix elements using the
Wigner-Eckart theorem. Let’s consider the modulus square matrix element of a component q of the radius
vector operator �̂r in the spherical tensor basis (k = 1):

|〈Jf ,mf | rq |Ji,mi〉|2 = 〈Jf ,mf | rq |Ji,mi〉∗ 〈Jf ,mf | rq |Ji,mi〉 (3.67)
= 〈Ji,mi| r∗q |Jf ,mf 〉 〈Jf ,mf | rq |Ji,mi〉 (3.68)
= (−1)q 〈Ji,mi| r−q |Jf ,mf 〉 〈Jf ,mf | rq |Ji,mi〉 (3.69)

Before expanding these matrix elements using the WET, we’ll introduce the Wigner 3j symbol [18] which
is related to the Clebsch-Gordon coefficients by:(

Ji k Jf

mi q −mf

)
=

(−1)Ji−k+mf√
[Jf ]

〈(Ji, k)mi, q|Jf ,mf 〉 δmi+q=mf
(3.70)

where the Kronecker Delta insures that angular momentum is conserved (mi + q = mf). Their utility lies in
the fact that they make the symmetry properties of Clebsch-Gordon coefficients more apparent under the
cyclic permutation of all three columns, the interchange of two columns, and the replacement of the second
row with its negative:(

Ji k Jf

mi q −mf

)
=

(
Jf Ji k

−mf mi q

)
=

(
k Jf Ji

q −mf mi

)
(3.71)

= (−1)Ji+k+Jf

(
k Ji Jf

q mi −mf

)
(3.72)

= (−1)Ji+k+Jf

(
Ji k Jf

−mi −q mf

)
(3.73)
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Expanding the modulus squared matrix element using Wigner 3j symbol, enforcing mf = mi + q, and
moving things around:

|〈rq〉|2 = (−1)q 〈Ji,mi| r−q |Jf ,mi + q〉 〈Jf ,mi + q| rq |Ji,mi〉 (3.74)

= (−1)qi(±)if (−1)Jf−1+mi

(
Jf 1 Ji

mi + q −q −mi

)
〈Ji‖ r ‖Jf 〉

×(i)(±)fi(−1)Ji−1+mi+q

(
Ji 1 Jf

mi q −(mi + q)

)
〈Jf‖ r ‖Ji〉 (3.75)

= (±)fi(±)if (−1)Jf+Ji+2mi+1

(
Jf 1 Ji

mi + q −q −mi

)(
Ji 1 Jf

mi q −(mi + q)

)
|〈Jf‖ r ‖Ji〉|2

(3.76)

= (±)fi(±)if (−1)2Jf+2Ji+2mi+2

(
Ji 1 Jf

−mi −q mi + q

)(
Ji 1 Jf

mi q −(mi + q)

)
|〈Jf‖ r ‖Ji〉|2

(3.77)

= (±)fi(±)if (−1)3Jf+3Ji+2mi+1

(
Ji 1 Jf

mi q −(mi + q)

)(
Ji 1 Jf

mi q −(mi + q)

)
|〈Jf‖ r ‖Ji〉|2

(3.78)

= (±)fi(±)if (−1)3Jf+3Ji+2mi+1

(
Ji 1 Jf

mi q −(mi + q)

)2

|〈Jf‖ r ‖Ji〉|2 (3.79)

The last two terms are positive. For the left hand side of the equation to be positive (as it should be), the
following must be true for D1 transitions (Ji, |mi|, Jf = 1

2 ):

+1 = [(±)fi(±)if ] 1
2
(−1)

3
2+ 3

2±1+1 (3.80)

= [(±)fi(±)if ] 1
2
(−1)4±1 (3.81)

= −[(±)fi(±)if ] 1
2

(3.82)

s1 = [(±)fi] 1
2

= −[(±)if ] 1
2

(3.83)

For D2 transitions, the corresponding relations are (Ji, |mi| = 1
2 ; Jf = 3

2 ):

+1 = [(±)fi(±)if ] 3
2
(−1)

9
2+ 3

2±1+1 (3.84)

= [(±)fi(±)if ] 3
2
(−1)7±1 (3.85)

= [(±)fi(±)if ] 3
2

(3.86)

s2 = [(±)fi] 3
2

= [(±)if ] 3
2

(3.87)

In both cases, we have hidden the sign in an s factor. The positive definiteness of the modulus square matrix
element defines for the phase convention of the reduced matrix element. For a D1 transition, the reduced
matrix elements for a matrix element and its complex conjugate must have opposite signs. However, the
reduced matrix elements for a D2 matrix element and its complex conjugate must have the same sign.

3.3.3 Connecting the Radial Integral to Physical Observables

The double barred term
〈
b‖T k‖a〉 of the reduced matrix element (also sometimes called the reduced matrix

element itself) is a radial integral. In practice, rather than being calculated from first principles, the value of
the radial integral for the radius vector between atomic states is inferred from measurements of the natural
atomic lifetimes. The spontaneous decays of the P 1

2
and P 3

2
excited states for neutral alkali atoms are

dominated by the D1 and D2 transitions. Therefore the lifetime τ of these states are nearly equal to the
inverse of the spontaneous decay probability rate (as known as the Einstein A coefficient), see equation 4.23
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of Corney [19]:

τ−1
b = Ab =

e2ω3
ab

3πε0h̄c3

∑
mb

[Jb]

∑
ma

∣∣∣〈Ja,ma| �̂r |Jb,mb〉
∣∣∣2 (3.88)

=
4αω3

ab

3c2

∑
mb

[Jb]︸ ︷︷ ︸
mean

∑
ma︸︷︷︸
sum

∣∣∣〈Ja,ma| �̂r |Jb,mb〉
∣∣∣2 (3.89)

where Ab is averaged over all the initial (upper mb) states and summed over all the final (lower ma) states.
Typical lifetimes for alkali metals are tens of nanoseconds, see table blah. Another form of the averaged,
summed modulus square matrix element is the oscillator strength. In the classical picture, an atom is
modeled as a collection of many damped oscillators with frequencies that correspond to all possible atomic
transitions. An atom in a state a can make transitions to other states through a subset of oscillators that
connect that state with all other states. The fraction of oscillators that connect state a to another state b
is called the oscillator strength. For absorption (emission), the oscillator strength is chosen to be positive
(negative) by convention. Just as for the probability rate, the modulus square matrix element is averaged
over initial (lower ma) states and summed over final (upper mb) states. For transitions from initial state a
to final state b, where the sign is chosen based on the physical process under consideration, the oscillator
strength is:

fa→b = ±2mωab

3h̄

∑
ma

2Ja + 1

∑
mb

|〈Ja,mb|�r |Ja,mb〉|2 (3.90)

By convention, we will always refer to the absorption oscillator strength unless otherwise noted. In addition,
since we will always be discussing transitions from the S 1

2
ground states to one of either the P 1

2
or P 3

2
excited

states, the oscillator strength will simply be labeled by the J of the final excited state.
Both the oscillator strength and the spontaneous decay rate involve sums over the initial and final m

states. This sum, which depends only on Ja, Jb, and the reduced matrix element, is called the line strength
(first introduced on page 98 of Condon & Shortley [20]) and for transitions between the lower state a and
the higher state b, it is given by:

Sab = Sba =
∑
ma

∑
mb

∣∣∣〈Ja,ma| e�̂r |Jb,mb〉
∣∣∣2 (3.91)

=
∑
ma

∑
mb

∣∣∣〈Jb,mb| e�̂r |Ja,ma〉
∣∣∣2 (3.92)

=
3h̄e2

2mωab
· [Ja]fb (3.93)

=
3c2[Jb]e2

4αω3
ab

· 1
τb

(3.94)

=
3πε0h̄c3[Jb]

ω3
ab

·Ab (3.95)

Note that the line strength is explicitly defined as a positive quantity. This insures that the absorption oscil-
lator strength fb, spontaneous lifetime τb, and the spontaneous probability rate are all positive. Evaluating
the line strength using WET:

Sab =
∑
ma

∑
mb

∣∣∣〈Jb,mb| e�̂r |Ja,ma〉
∣∣∣2 (3.96)

=
∑
ma

∑
mb

∣∣∣∣∣〈Jb,mb| e
∑

q

(−1)qr̂q ε̂−q |Ja,ma〉
∣∣∣∣∣
2

(3.97)

=
∑
ma

∑
mb

〈Ja,ma| e
∑
q′

(−1)q′
r̂q′ ε̂−q′ |Jb,mb〉 · 〈Jb,mb| e

∑
q

(−1)qr̂q ε̂−q |Ja,ma〉 (3.98)
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=
∑
ma

∑
mb

∑
q

(−1)q 〈Ja,ma| er̂−q |Jb,mb〉 〈Jb,mb| er̂q |Ja,ma〉 (3.99)

= ±s2a,bi
2

∑
ma,mb,q

(−1)q 〈(Jb, 1)mb,−q|Ja,ma〉√
[Ja]

〈Ja||er||Jb〉 〈(Ja, 1)ma, q|Jb,mb〉√
[Jb]

〈Jb||er||Ja〉

(3.100)

= |〈Jb||er||Ja〉|2 · ςb (3.101)

ςb = ∓
∑
ma,q

(−1)q√
[Ja][Jb]

〈(Jb, 1)ma + q,−q|Ja,ma〉 〈(Ja, 1)ma, q|Jb,ma + q〉 (3.102)

where the lower (upper) sign is taken for D1 (D2) transitions to insure positive definiteness. Again since
we will always be discussing transitions from the S 1

2
ground states to one of either the P 1

2
or P 3

2
excited

states, the Clebsch-Gordon sum ς will simply be labeled by the J of the final excited state. This gives us the
following equivalent relationships between the modulus squared reduced matrix element (which is difficult to
calculate accurately from theory) with physical observables (which we determine empirically) for transitions
from the lower level a to the higher level b:

|〈Jb||r||Ja〉|2 =
Sab

ςabe2
(3.103)

=
3h̄

2mωab
· [Ja]fb

ςb
(3.104)

=
3c2

4αω3
ab

· [Jb]
ςbτb

(3.105)

=
3πε0h̄c3

e2ω3
ab

· [Jb]Ab

ςb
(3.106)

3.3.4 Evaluation of the Clebsch-Gordon Coefficients and Sums

The general forms of the D1 matrix elements are:〈
P 1

2
, q ± 1

2

∣∣∣∣ rq
∣∣∣∣S 1

2
,±1

2

〉
=

〈(
1
2
, 1

)
± 1

2
, q|1

2
, q ± 1

2

〉(
i
s1√
2

)〈
P 1

2

∥∥∥ r ∥∥∥S 1
2

〉
(3.107)

= −i s1√
2

〈(
1,

1
2

)
q,±1

2
|1
2
, q ± 1

2

〉〈
P 1

2

∥∥∥ r ∥∥∥S 1
2

〉
(3.108)

= ±is1
√

1 ∓ q

6

〈
P 1

2

∥∥∥ r ∥∥∥S 1
2

〉
(3.109)〈

S 1
2
, q ± 1

2

∣∣∣∣ rq
∣∣∣∣P 1

2
,±1

2

〉
=

〈(
1
2
, 1

)
± 1

2
, q|1

2
, q ± 1

2

〉(
−i s1√

2

)〈
S 1

2

∥∥∥ r ∥∥∥P 1
2

〉
(3.110)

= i
s1√
2

〈(
1,

1
2

)
q,±1

2
|1
2
, q ± 1

2

〉〈
S 1

2

∥∥∥ r ∥∥∥P 1
2

〉
(3.111)

= ∓is1
√

1 ∓ q

6

〈
S 1

2

∥∥∥ r ∥∥∥P 1
2

〉
(3.112)

(3.113)

The general forms of the D2 matrix elements are:〈
P 3

2
, q ± 1

2

∣∣∣∣ rq
∣∣∣∣S 1

2
,±1

2

〉
=

〈(
1
2
, 1

)
± 1

2
, q|3

2
, q ± 1

2

〉(
i
s2
2

)〈
P 3

2

∥∥∥ r ∥∥∥S 1
2

〉
(3.114)

= i
s2
2

〈(
1,

1
2

)
q,±1

2
|3
2
, q ± 1

2

〉〈
P 3

2

∥∥∥ r ∥∥∥S 1
2

〉
(3.115)

= is2

√
2 ± q

12

〈
P 3

2

∥∥∥ r ∥∥∥S 1
2

〉
(3.116)
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〈
S 1

2
,m± 1

∣∣∣ r± ∣∣∣P 3
2
,m

〉
=

〈(
3
2
, 1

)
m,±1|1

2
,m± 1

〉(
i
s2√
2

)〈
S 1

2

∥∥∥ r ∥∥∥P 3
2

〉
(3.117)

= is2

√(
1
2 ∓m

) (
3
2 ∓m

)
24

〈
S 1

2

∥∥∥ r ∥∥∥P 3
2

〉
(3.118)〈

S 1
2
,±1

2

∣∣∣∣ r0
∣∣∣∣P 3

2
,±1

2

〉
=

〈(
3
2
, 1

)
± 1

2
, 0|1

2
,±1

2

〉(
i
s2√
2

)〈
S 1

2

∥∥∥ r ∥∥∥P 3
2

〉
(3.119)

= −is2
√

1
6

〈
S 1

2

∥∥∥ r ∥∥∥P 3
2

〉
(3.120)

The D1 matrix elements are:〈
S 1

2
,+

1
2

∣∣∣∣ r+
∣∣∣∣P 1

2
,−1

2

〉
=

〈
P 1

2
,− 1

2

∣∣∣ r− ∣∣∣S 1
2
,+ 1

2

〉
= +is1

√
1
3

〈
P 1

2

∥∥∥ r ∥∥∥S 1
2

〉
(3.121)

−
〈
S 1

2
,+

1
2

∣∣∣∣ r0
∣∣∣∣P 1

2
,+

1
2

〉
=

〈
P 1

2
,+ 1

2

∣∣∣ r0 ∣∣∣S 1
2
,+ 1

2

〉
= +is1

√
1
6

〈
P 1

2

∥∥∥ r ∥∥∥S 1
2

〉
(3.122)

−
〈
S 1

2
,−1

2

∣∣∣∣ r0
∣∣∣∣P 1

2
,−1

2

〉
=

〈
P 1

2
,− 1

2

∣∣∣ r0 ∣∣∣S 1
2
,− 1

2

〉
= −is1

√
1
6

〈
P 1

2

∥∥∥ r ∥∥∥S 1
2

〉
(3.123)〈

S 1
2
,−1

2

∣∣∣∣ r−
∣∣∣∣P 1

2
,+

1
2

〉
=

〈
P 1

2
,+ 1

2

∣∣∣ r+ ∣∣∣S 1
2
,− 1

2

〉
= −is1

√
1
3

〈
P 1

2

∥∥∥ r ∥∥∥S 1
2

〉
(3.124)〈

S 1
2

∥∥∥ r ∥∥∥P 1
2

〉
=

〈
P 1

2

∥∥∥ r ∥∥∥S 1
2

〉
(3.125)

The D2 matrix elements are:〈
S 1

2
,+

1
2

∣∣∣∣ r+
∣∣∣∣P 3

2
,−1

2

〉
=

〈
P 3

2
,− 1

2

∣∣∣ r− ∣∣∣S 1
2
,+ 1

2

〉
= +is2

√
1
12

〈
P 3

2

∥∥∥ r ∥∥∥S 1
2

〉
(3.126)〈

S 1
2
,−1

2

∣∣∣∣ r+
∣∣∣∣P 3

2
,−3

2

〉
=

〈
P 3

2
,− 3

2

∣∣∣ r− ∣∣∣S 1
2
,− 1

2

〉
= +is2

1
2

〈
P 3

2

∥∥∥ r ∥∥∥S 1
2

〉
(3.127)

−
〈
S 1

2
,+

1
2

∣∣∣∣ r0
∣∣∣∣P 3

2
,+

1
2

〉
=

〈
P 3

2
,+ 1

2

∣∣∣ r0 ∣∣∣S 1
2
,+ 1

2

〉
= +is2

√
1
6

〈
P 3

2

∥∥∥ r ∥∥∥S 1
2

〉
(3.128)

−
〈
S 1

2
,−1

2

∣∣∣∣ r0
∣∣∣∣P 3

2
,−1

2

〉
=

〈
P 3

2
,− 1

2

∣∣∣ r0 ∣∣∣S 1
2
,− 1

2

〉
= +is2

√
1
6

〈
P 3

2

∥∥∥ r ∥∥∥S 1
2

〉
(3.129)〈

S 1
2
,−1

2

∣∣∣∣ r−
∣∣∣∣P 3

2
,+

1
2

〉
=

〈
P 3

2
,+ 1

2

∣∣∣ r+ ∣∣∣S 1
2
,− 1

2

〉
= +is2

√
1
12

〈
P 3

2

∥∥∥ r ∥∥∥S 1
2

〉
(3.130)〈

S 1
2
,+

1
2

∣∣∣∣ r−
∣∣∣∣P 3

2
,+

3
2

〉
=

〈
P 3

2
,+ 3

2

∣∣∣ r+ ∣∣∣S 1
2
,+ 1

2

〉
= +is2

1
2

〈
P 3

2

∥∥∥ r ∥∥∥S 1
2

〉
(3.131)〈

S 1
2

∥∥∥ r ∥∥∥P 3
2

〉
=

〈
P 3

2

∥∥∥ r ∥∥∥S 1
2

〉
(3.132)

Note that the radial integral is real. Putting these results together allows us to evaluate the Clebsch-Gordon
sums:

ς 1
2

= s21

[
− i√

3
i√
3

+
−i√

6
i√
6

+
i√
6
−i√

6
− −i√

3
−i√

3

]
= +1 (3.133)

ς 3
2

= s22

[
− i√

12
i√
12

− i

2
i

2
+

−i√
6
i√
6

+
−i√

6
i√
6
− i√

12
i√
12

− i

2
i

2

]
= +1 (3.134)

Therefore the radial integrals for the D1 and D2 transitions are:∣∣∣〈PJ‖ r
∥∥∥S 1

2

〉∣∣∣2 =
3h̄
mωJ

fJ (3.135)
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3.3.5 The Radial Integral in the coupled LS basis

In the uncoupled basis, there is only one radial integral between the S and P states. First we must fix the
phase convention of the uncoupled matrix elements:

|〈rq〉|2 = (−1)q

〈
±1

2

∣∣∣∣
S

〈0|L r−q |q〉L
∣∣∣∣±1

2

〉
S

〈
±1

2

∣∣∣∣
S

〈q|L rq |0〉L
∣∣∣∣±1

2

〉
S

(3.136)

= (−1)q 〈0|L r−q |q〉L 〈q|L rq |0〉L (3.137)

= (±)PS(±)SP (−1)3+1

(
0 1 1
0 q −q

)2

|〈P‖ r ‖S〉|2 (3.138)

+1 = (±)PS(±)SP (−1)4 (3.139)
= (±)PS(±)SP (3.140)

s = (±)PS = (±)SP (3.141)

When the radial integral is evaluated in the coupled LS basis J , there is radial integral for each J . The rela-
tionship between the radial integrals evaluated in the two different basis sets can be shown by an expansion
in the uncoupled basis and by application of the WET:〈

P 3
2
,+

3
2

∣∣∣∣ r+
∣∣∣∣S 1

2
,+

1
2

〉
= 〈+1|L

〈
+

1
2

∣∣∣∣
S

r+ |0〉L
∣∣∣∣+1

2

〉
S

(3.142)

= 〈+1| r+ |0〉L
〈

+
1
2
| + 1

2

〉
S

(3.143)

= 〈(0, 1) 0,+1|1,+1〉
(
is√
3

)
〈P‖ r ‖S〉 (3.144)

=
is√
3
〈P‖ r ‖S〉 (3.145)

= +is2
1
2

〈
P 3

2

∥∥∥ r ∥∥∥S 1
2

〉
(3.146)〈

P 1
2
,+

1
2

∣∣∣∣ r+
∣∣∣∣S 1

2
,−1

2

〉
=

(√
2
3
〈+1|L

〈
−1

2

∣∣∣∣
S

−
√

1
3
〈0|L

〈
+

1
2

∣∣∣∣
S

)
r+ |0〉L

∣∣∣∣−1
2

〉
S

(3.147)

=

√
2
3
〈+1| r+ |0〉L

〈
−1

2
| − 1

2

〉
S

−
√

1
3
〈0| r+ |0〉L

〈
+

1
2
| − 1

2

〉
S

(3.148)

=

√
2
3
〈+1| r+ |0〉L (3.149)

=

√
2
3
〈(0, 1) 0,+1|1,+1〉

(
is√
3

)
〈P‖ r ‖S〉 (3.150)

=
is
√

2
3

〈P‖ r ‖S〉 (3.151)

= −is1
√

1
3

〈
P 1

2

∥∥∥ r ∥∥∥S 1
2

〉
(3.152)

We can do the same calculation for the complex conjugates of the same matrix elements:〈
S 1

2
,+

1
2

∣∣∣∣ r−
∣∣∣∣P 3

2
,+

3
2

〉
= 〈0|L

〈
+

1
2

∣∣∣∣
S

r− |+1〉L
∣∣∣∣+1

2

〉
S

(3.153)

=
is√
3
〈S‖ r ‖P 〉 (3.154)

= +is2
1
2

〈
S 1

2

∥∥∥ r ∥∥∥P 3
2

〉
(3.155)〈

S 1
2
,−1

2

∣∣∣∣ r−
∣∣∣∣P 1

2
,+

1
2

〉
= 〈0|L

〈
−1

2

∣∣∣∣
S

r+

(√
2
3
|+1〉L

∣∣∣∣−1
2

〉
S

−
√

1
3
|0〉L

∣∣∣∣+1
2

〉
S

)
(3.156)
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=
is
√

2
3

〈S‖ r ‖P 〉 (3.157)

= −is1
√

1
3

〈
S 1

2

∥∥∥ r ∥∥∥P 1
2

〉
(3.158)

Note that the reduced matrix element in the uncoupled LS basis does not have any sign ambiguity due
to positive definiteness, because for the transitions under consideration, the Clebsch-Gordon coefficient is
always +1. Note also that the radial integral in the uncoupled basis is real. Since the radial integral is
independent of mL and mJ , we only had to evaluate one matrix element for each J . Summarizing these
results:

s2

〈
P 3

2

∥∥∥ r ∥∥∥S 1
2

〉
= +s

2√
3
〈P‖ r ‖S〉 (3.159)

s2

〈
S 1

2

∥∥∥ r ∥∥∥P 3
2

〉
= +s

2√
3
〈S‖ r ‖P 〉 (3.160)

s1

〈
P 1

2

∥∥∥ r ∥∥∥S 1
2

〉
= −s

√
2
3
〈P‖ r ‖S〉 (3.161)

s1

〈
S 1

2

∥∥∥ r ∥∥∥P 1
2

〉
= −s

√
2
3
〈S‖ r ‖P 〉 (3.162)

where s21 = s22 = s2 = +1. This implies the following relationships between the quantities relating to D1 and
D2 transitions:

s1s2 = −1 (3.163)〈
P 3

2

∥∥∥ r ∥∥∥S 1
2

〉
〈
P 1

2

∥∥∥ r ∥∥∥S 1
2

〉 = −
√

2
s1
s2

= +
√

2 (3.164)

〈PJ‖ r
∥∥∥S 1

2

〉
=

〈
S 1

2

∥∥∥ r ‖PJ〉 = +
√

3h̄
mωJ

fJ (3.165)

S 3
2

S 1
2

= 2 (3.166)

f 3
2

f 1
2

= 2

(
ω 3

2

ω 1
2

)
(3.167)

τ 3
2

τ 1
2

=

(
ω 1

2

ω 3
2

)3

(3.168)

A 3
2

A 1
2

=

(
ω 3

2

ω 1
2

)3

(3.169)

3.3.6 Explicit Forms of the Matrix Elements

First we’ll calculate the modulus square matrix elements neglecting fine structure mixing. This is easily
done given the following matrix elements in terms of the oscillator strength. The D1 matrix elements are:〈

S 1
2
,+

1
2

∣∣∣∣ r+
∣∣∣∣P 1
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,−1

2

〉
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2
,+ 1

2

〉
= +is1

√
h̄

m

f 1
2

ω 1
2

(3.170)

−
〈
S 1

2
,+

1
2
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∣∣∣ r0 ∣∣∣S 1
2
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(3.171)

−
〈
S 1

2
,−1

2

∣∣∣∣ r0
∣∣∣∣P 1
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(3.172)

52



〈
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The D2 matrix elements are:〈
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2
,+

1
2

〉
=

〈
P 3

2
,+ 1

2

∣∣∣ r+ ∣∣∣S 1
2
,− 1

2

〉
= +is2

√
h̄

4m

f 3
2

ω 3
2

(3.178)

〈
S 1

2
,+

1
2

∣∣∣∣ r−
∣∣∣∣P 3

2
,+

3
2

〉
=

〈
P 3

2
,+ 3

2

∣∣∣ r+ ∣∣∣S 1
2
,+ 1

2

〉
= +is2

√
3h̄
4m

f 3
2

ω 3
2

(3.179)

The modulus squared matrix elements for transitions involving the absorption of photon with helicity +1
are calculated below: ∣∣∣∣

〈
P 1

2
,+

1
2

∣∣∣∣ r+
∣∣∣∣S 1

2
,−1

2

〉∣∣∣∣2 =
h̄

m

f 1
2

ω 1
2

(3.180)

∣∣∣∣
〈
P 3

2
,+

1
2

∣∣∣∣ r+
∣∣∣∣S 1

2
,−1

2

〉∣∣∣∣2 =
h̄

4m

f 3
2

ω 3
2

(3.181)

∣∣∣∣
〈
P 3

2
,+

3
2

∣∣∣∣ r+
∣∣∣∣S 1

2
,+

1
2

〉∣∣∣∣2 =
3h̄
4m

f 3
2

ω 3
2

(3.182)

The modulus squared matrix elements for transitions involving the absorption of photon with helicity 0 are
calculated below: ∣∣∣∣

〈
P 1

2
,−1

2

∣∣∣∣ r0
∣∣∣∣S 1

2
,−1

2

〉∣∣∣∣2 =
h̄

2m

f 1
2

ω 1
2

(3.183)

∣∣∣∣
〈
P 1

2
,+

1
2

∣∣∣∣ r0
∣∣∣∣S 1

2
,+

1
2

〉∣∣∣∣2 =
h̄

2m

f 1
2

ω 1
2

(3.184)

∣∣∣∣
〈
P 3

2
,−1

2

∣∣∣∣ r0
∣∣∣∣S 1

2
,−1

2

〉∣∣∣∣2 =
h̄

2m

f 3
2

ω 3
2

(3.185)

∣∣∣∣
〈
P 3

2
,+

1
2

∣∣∣∣ r0
∣∣∣∣S 1

2
,+

1
2

〉∣∣∣∣2 =
h̄

2m

f 3
2

ω 3
2

(3.186)

The modulus squared matrix elements for transitions involving the absorption of photon with helicity −1:∣∣∣∣
〈
P 1

2
,−1

2

∣∣∣∣ r−
∣∣∣∣S 1

2
,+

1
2

〉∣∣∣∣2 =
h̄

m

f 1
2

ω 1
2

(3.187)

∣∣∣∣
〈
P 3

2
,−1

2

∣∣∣∣ r−
∣∣∣∣S 1

2
,+

1
2

〉∣∣∣∣2 =
h̄

4m

f 3
2

ω 3
2

(3.188)

∣∣∣∣
〈
P 3

2
,−3

2

∣∣∣∣ r−
∣∣∣∣S 1

2
,−1

2

〉∣∣∣∣2 =
3h̄
4m

f 3
2

ω 3
2

(3.189)
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Because some of the excited eigenstates are mixed, now we’ll evaluate the modulus squared matrix element
in a general form.

|〈rq〉|2 =
∣∣∣(c∗1 〈P 3

2
,m+ q

∣∣∣ + c∗2
〈
P 1

2
,m+ q

∣∣∣) rq ∣∣∣S 1
2
,m

〉∣∣∣2 (3.190)

=
∣∣∣c∗1 〈P 3

2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉
+ c∗2

〈
P 1

2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉∣∣∣2 (3.191)

= |c1|2
∣∣∣〈P 3

2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉∣∣∣2 + |c2|2
∣∣∣〈P 1

2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉∣∣∣2
+c∗1

〈
P 3

2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉
· c2

〈
S 1

2
,m

∣∣∣ r∗q ∣∣∣P 1
2
,m+ q

〉
+c1

〈
S 1

2
,m

∣∣∣ r∗q ∣∣∣P 3
2
,m+ q

〉
· c∗2

〈
P 1

2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉
(3.192)

The c1 and c2 are the fine mixing coefficients which are real:

|〈rq〉|2 = c21

∣∣∣〈P 3
2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉∣∣∣2 + c22

∣∣∣〈P 1
2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉∣∣∣2
+(−1)qc1c2

〈
P 3

2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉〈
S 1

2
,m

∣∣∣ r−q

∣∣∣P 1
2
,m+ q

〉
+(−1)qc1c2

〈
S 1

2
,m

∣∣∣ r−q

∣∣∣P 3
2
,m+ q

〉〈
P 1

2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉
(3.193)

Noting the following relationship:

〈PJ ,m+ q| rq
∣∣∣S 1

2
,m

〉
= (−1)(−1)q

〈
S 1

2
,m

∣∣∣ r−q |PJ ,m+ q〉 (3.194)

the cross terms can be written:

cross terms = (−1)qc1c2

〈
P 3

2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉〈
S 1

2
,m

∣∣∣ r−q

∣∣∣P 1
2
,m+ q

〉
+(−1)qc1c2

〈
S 1

2
,m

∣∣∣ r−q

∣∣∣P 3
2
,m+ q

〉〈
P 1

2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉
(3.195)

= (−1)qc1c2

〈
P 3

2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉
(−1)(−1)q

〈
P 1

2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉
+(−1)qc1c2(−1)(−1)q

〈
P 3

2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉〈
P 1

2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉
(3.196)

= (−1)1+q+q2c1c2
〈
P 3

2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉〈
P 1

2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉
(3.197)

= −2c1c2
〈
P 3

2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉〈
P 1

2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉
(3.198)

Therefore the general form of the modulus square matrix element accounting for fine structure mixing is:

|〈rq〉|2 = c21

∣∣∣〈P 3
2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉∣∣∣2 + c22

∣∣∣〈P 1
2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉∣∣∣2
−2c1c2

〈
P 3

2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉〈
P 1

2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉
(3.199)

For the following, we’ve used equations (1.89) and (3.167). For the transitions involving light with −1
helicity: ∣∣∣∣

〈
P+,−3

2

∣∣∣∣ r−
∣∣∣∣S 1

2
,−1

2

〉∣∣∣∣2 =
3h̄
4m

f 3
2

ω 3
2

(3.200)

∣∣∣∣
〈
P−,−1

2

∣∣∣∣ r−
∣∣∣∣S 1

2
,+

1
2

〉∣∣∣∣2 =

(
h̄

m

f 1
2

ω 1
2

)[
1 + a1a

+
2

√
2 −

(
a+
2

)2

2

]
(3.201)

∣∣∣∣
〈
P+,−1

2

∣∣∣∣ r−
∣∣∣∣S 1

2
,+

1
2

〉∣∣∣∣2 =

(
h̄

4m

f 3
2

ω 3
2

)[
1 − a1a

+
2 2

√
2 +

(
a+
2

)2
]

(3.202)
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For the transitions involving light with 0 helicity:∣∣∣∣
〈
P−,−1

2

∣∣∣∣ r0
∣∣∣∣S 1

2
,−1

2

〉∣∣∣∣2 =

(
h̄

2m

f 1
2

ω 1
2

)[
1 − a1a

−
2 2

√
2 +

(
a−2

)2
]

(3.203)

∣∣∣∣
〈
P+,−1

2

∣∣∣∣ r0
∣∣∣∣S 1

2
,−1

2

〉∣∣∣∣2 =

(
h̄

2m

f 3
2

ω 3
2

)[
1 + a1a

−
2

√
2 −

(
a−2

)2

2

]
(3.204)

∣∣∣∣
〈
P−,+

1
2

∣∣∣∣ r0
∣∣∣∣S 1

2
,+

1
2

〉∣∣∣∣2 =

(
h̄

2m

f 1
2

ω 1
2

)[
1 + a1a

+
2 2

√
2 +

(
a+
2

)2
]

(3.205)

∣∣∣∣
〈
P+,+

1
2

∣∣∣∣ r0
∣∣∣∣S 1

2
,+

1
2

〉∣∣∣∣2 =

(
h̄

2m

f 3
2

ω 3
2

)[
1 − a1a

+
2

√
2 −

(
a+
2

)2

2

]
(3.206)

For the transitions involving light with +1 helicity:

∣∣∣∣
〈
P−,+

1
2

∣∣∣∣ r+
∣∣∣∣S 1

2
,−1

2

〉∣∣∣∣2 =

(
h̄

m

f 1
2

ω 1
2

)[
1 − a1a

−
2

√
2 −

(
a−2

)2

2

]
(3.207)

∣∣∣∣
〈
P+,+

1
2

∣∣∣∣ r+
∣∣∣∣S 1

2
,−1

2

〉∣∣∣∣2 =

(
h̄

4m

f 3
2

ω 3
2

)[
1 + a1a

−
2 2

√
2 +

(
a−2

)2
]

(3.208)

∣∣∣∣
〈
P+,+

3
2

∣∣∣∣ r+
∣∣∣∣S 1

2
,+

1
2

〉∣∣∣∣2 =
3h̄
4m

f 3
2

ω 3
2

(3.209)

3.4 Magnetic Dipole Matrix Elements

The main field B defines the z-axis. In order to probe ΔmF ± 1 transitions, a small set of coils creates an
RF field in a direction transverse to the main B-field. In our lab, the RF field produced at the center of our
cell by a 1.3 cm radius, 20 turn coil with a resistance of 3.9 Ω & an inductance of 0.5 μH driven at 16 VPP
at a frequency of about 7 MHz is on order of hundreds of microgauss to a few milligauss. Therefore, we can
treat the RF field �Brf as a time dependent perturbation to our original Hamiltonian:

HEPR = H + W (3.210)

W = − �μI · �Brf − �μJ · �Brf (3.211)

We’ll choose the rf-field to be in the x̂ direction. After expressing the angular momentum operators as
ladder operators

(
Ĵx = 1

2

(
Ĵ+ + Ĵ−

))
and treating only the case of stimulated emission (mF → mF − 1),

the matrix element of interest becomes:

Wfi =
h̄

2
〈mF − 1|ωI Î− + ωJ Ĵ− |mF 〉 (3.212)

=
h̄

2
〈mF − 1|ωI F̂− + (ωJ − ωI) Ĵ− |mF 〉 (3.213)

=
h̄

2
〈f |ωI F̂− + (ωJ − ωI) Ĵ− |i〉 (3.214)

ωI = −gIμNBRF

h̄
(3.215)

ωJ = −gSμBBRF

h̄
(3.216)

To start with, let’s calculate the matrix element of F̂−:〈
F̂−

〉
=

〈
m±

F − 1
∣∣ F̂−

∣∣m±
F

〉
(3.217)
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=
[
a1 (mF − 1)

〈
I ± 1

2
,mF − 1

∣∣∣∣± a2 (mF − 1)
〈
I ∓ 1

2
,mF − 1

∣∣∣∣
]

F̂−

[
a1 (mF )

∣∣∣∣I ± 1
2
,mF

〉
± a2 (mF )

∣∣∣∣I ∓ 1
2
,mF

〉]
(3.218)

=
[
a1 (mF − 1)

〈
I ± 1

2
,mF − 1

∣∣∣∣± a2 (mF − 1)
〈
I ∓ 1

2
,mF − 1

∣∣∣∣
]

[
f±a1 (mF )

∣∣∣∣I ± 1
2
,mF − 1

〉
± f∓a2 (mF )

∣∣∣∣I ∓ 1
2
,mF − 1

〉]
(3.219)

= f±a1 (mF ) a1 (mF − 1) + f∓a2 (mF ) a2 (mF − 1) (3.220)
= f±a1fa1i + f∓a2fa2i (3.221)

f± =

√(
I +

1
2

)(
I +

1
2
± 1

)
−mF (mF − 1) (3.222)

Now let’s calculate the matrix element of Ĵ−:〈
Ĵ−

〉±
=

〈
m±

F − 1
∣∣ Ĵ− ∣∣m±

F

〉
(3.223)

= (a1fb1f − a2fb2f )
〈
mF − 1 ∓ 1

2
,±1

2

∣∣∣∣± (a1fb2f + a2fb1f )

×
〈
mF − 1 ± 1

2
,∓1

2

∣∣∣∣ ]Ĵ−[ (a1ib1i − a2ib2i)

×
∣∣∣∣mF ∓ 1

2
,±1

2

〉
± (a1ib2i + a2ib1i)

∣∣∣∣mF ± 1
2
,∓1

2

〉
(3.224)

〈
Ĵ−

〉+

= (a1fb1f − a2fb2f )
〈
mF − 3

2
,+

1
2

∣∣∣∣ + (a1fb2f + a2fb1f )

×
〈
mF − 1

2
,−1

2

∣∣∣∣
]√

1
2

3
2

+
1
2

1
2

[
(a1ib1i − a2ib2i)

∣∣∣∣mF − 1
2
,−1

2

〉
(3.225)

= [a1fb2f + a2fb1f ] × [a1ib1i − a2ib2i] (3.226)〈
Ĵ−

〉−
= (a1fb1f − a2fb2f )

〈
mF − 1

2
,−1

2

∣∣∣∣− (a1fb2f + a2fb1f )

×
〈
mF − 3

2
,+

1
2

∣∣∣∣
]√

1
2

3
2

+
1
2

1
2

[
− (a1ib2i + a2ib1i)

∣∣∣∣mF − 1
2
,−1

2

〉
(3.227)

= [a2fb2f − a1fb1f ] × [a1ib2i + a2ib1i] (3.228)

Note the following relations:

b2fb1i =

√(
I + 1

2

) (
I + 3

2

)−mF (mF − 1)

2I + 1
=

f+
2I + 1

(3.229)

b1fb2i =

√(
I + 1

2

) (
I − 1

2

)−mF (mF − 1)

2I + 1
=

f−
2I + 1

(3.230)

b1fb1i =

√(
I + 1

2

) (
I − 1

2

)
+mF (mF − 1) + 2mF

(
I + 1

2

)
2I + 1

=
g−

2I + 1
(3.231)

b2fb2i =

√(
I + 1

2

) (
I + 3

2

)
+mF (mF − 1) − 2mF

(
I + 1

2

)
2I + 1

=
g+

2I + 1
(3.232)

g± =

√(
I +

1
2

)(
I +

1
2
± 1

)
+mF (mF − 1) ∓ 2mF

(
I +

1
2

)
(3.233)
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Going back to
〈
Ĵ−

〉±
:

〈
Ĵ−

〉+

= [a1fb2f + a2fb1f ] × [a1ib1i − a2ib2i] (3.234)

= a1fa1i
f+

2I + 1
+ a2fa1i

g−
2I + 1

− a1fa2i
g+

2I + 1
− a2fa2i

f−
2I + 1

(3.235)〈
Ĵ−

〉−
= [a2fb2f − a1fb1f ] × [a1ib2i + a2ib1i] (3.236)

= a2fa1i
g+

2I + 1
− a1fa1i

f−
2I + 1

+ a2fa2i
f+

2I + 1
− a1fa2i

g−
2I + 1

(3.237)〈
Ĵ−

〉±
= ±a1fa1i

f±
2I + 1

+ a2fa1i
g∓

2I + 1
− a1fa2i

g±
2I + 1

∓ a2fa2i
f∓

2I + 1
(3.238)

Putting this altogether,

Wfi =
h̄

2
ωI (f±a1fa1i + f∓a2fa2i) +

h̄

2
(ωJ − ωI)

×
(
±a1fa1i

f±
2I + 1

+ a2fa1i
g∓

2I + 1
− a1fa2i

g±
2I + 1

∓ a2fa2i
f∓

2I + 1

)
(3.239)

=
h̄

2

(
2IωI + (1 ∓ 1)ωI ± ωJ

2I + 1

)
f±a1fa1i +

h̄

2

(
2IωI + (1 ± 1)ωI ∓ ωJ

2I + 1

)

×f∓a2fa2i +
h̄

2

(
ωJ − ωI

2I + 1

)
(g∓a2fa1i − g±a1fa2i) (3.240)

Using the small field approximations from before:

a1 = 1 − β2

2
x2 (3.241)

a2 = −βx+ 2αβx2 (3.242)

We’re interested in the mod square of the matrix element to first order in x:

|Wfi|2 � h̄2

4

(
2IωI + (1 ∓ 1)ωI ± ωJ

2I + 1

)2

f2
± − h̄2

4

(
2IωI + (1 ∓ 1)ωI ± ωJ

2I + 1

)

×
(
ωJ − ωI

2I + 1

)
f± (g∓βf − g±βi)x+ O(x2) (3.243)

3.5 Population Differences

3.5.1 Two State Systems: Polarization

Polarization

For a system with only two states, for example the two Zeeman levels mJ = ±1 of the S1/2 ground state,
we can label the populations as ρ±. Their sum and difference are given by:

ρ+ + ρ− = Tr(ρ) = 1 ρ+ − ρ− = P (3.244)

where P is called the polarization. Using these two equations, it is straightforward to find the populations
of the two states:

ρ± =
1 ± P

2
(3.245)

The polarization P and the expectation value of Sz are related by:

〈Sz〉 = Tr (ρSz) = Tr
{[

ρ+ 0
0 ρ−

] [
+ 1

2 0
0 − 1

2

]}
= Tr

{[
+ ρ+

2 0
0 − ρ−

2

]}
=
ρ+ − ρ−

2
=
P

2
(3.246)
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Thermal Equilibrium

At thermal equilibrium, for a canonical ensemble (fixed number of particles in equilibrium with a heat
reservoir at a common temperature T ), the population of each state is given by:

ρn =
exp

(−En

kT

)
Z

Z =
∑

n

exp
(
−En

kT

)
(3.247)

where Z is the partition function. Specifying to our two level case, the energies for S1/2 states are:

E± = E

(∣∣∣∣S 1
2
,±1

2

〉)
= ES

0 ±
[
gS

−2

]
μBB (3.248)

This gives for the relative population of each state at thermodynamic equilibrium:

Z = exp
(
−E+

kT

)
+ exp

(
−E−
kT

)
(3.249)

= exp

⎛
⎝−

ES
0 +

[
gS

−2

]
μBB

kT

⎞
⎠ + exp

⎛
⎝−

ES
0 −

[
gS

−2

]
μBB

kT

⎞
⎠ (3.250)

= exp
(
−E

S
0

kT

)[
exp

(
−

[
gS

−2

]
μBB

kT

)
+ exp

(
+

[
gS

−2

]
μBB

kT

)]
(3.251)

ρ± =
exp

(
−ES

0
kT

)
exp

(
∓

[
gS

−2

]
μBB
kT

)
exp

(
−ES

0
kT

) [
exp

(
+

[
gS

−2

]
μBB
kT

)
+ exp

(
−

[
gS

−2

]
μBB
kT

)] (3.252)

=
exp

(
∓

[
gS

−2

]
μBB
kT

)
exp

(
+

[
gS

−2

]
μBB
kT

)
+ exp

(
−

[
gS

−2

]
μBB
kT

) (3.253)

=
exp (mJβ)

exp
(
+β

2

)
+ exp

(
−β

2

) (3.254)

We have introduced the β parameter which we’ll call the “spin temperature,” even though it is a unitless
quantity, is inversely proportional to temperature at thermal equilibrium, and is, in this case, negative. It’s
usefulness far outweighs those peccadilloes and will be more apparent when we discuss the role of nuclear
spin in spin-exchange collisions in section (3.5.2). For the S 1

2
ground states at thermal equilibrium, the spin

temperature is:

β =
gSμBB

kT
=

[
gS

−2

](−2μBB

kT

)
(3.255)

We can express the polarization as a function of the spin temperature:

P =
exp

(
+β

2

)
exp

(
+β

2

)
+ exp

(
−β

2

) −
exp

(
−β

2

)
exp

(
+β

2

)
+ exp

(
−β

2

) (3.256)

=
exp

(
+β

2

)
− exp

(
−β

2

)
exp

(
+β

2

)
+ exp

(
−β

2

) (3.257)

P = tanh
(
β

2

)
(3.258)

We’ll see later on that this result is true regardless of the mechanism that producing the polarization.
Inverting to get the spin temperature as a function of polarization:

P =
exp

(
+β

2

)
− exp

(
−β

2

)
exp

(
+β

2

)
+ exp

(
−β

2

) =
x− 1

x

x+ 1
x

=
x2 − 1
x2 + 1

(3.259)
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Px2 + P = x2 − 1 (3.260)
(P − 1)x2 = −P − 1 (3.261)

x2 =
[
exp

(
+
β

2

)]2

=
1 + P

1 − P
(3.262)

β = log
(

1 + P

1 − P

)
(3.263)

3.5.2 Multiple State Systems: Spin Temperature

It has been shown [21] that under the optical pumping, spin exchange, high pressure conditions that exist
within a cell, the populations are given by:

ρmF =
eβmF

ZF
=
eβmJ

ZJ

eβmI

ZI
(3.264)

where mF = mJ +mI and the partition function, in general, is given by [22]:

ZJ =
+J∑

m=−J

eβm =
sinh(β[J ]/2)
sinh(β/2)

=
(1 + P )[J] − (1 − P )[J]

2P (1 − P 2)J
(3.265)

where P is the polarization and [J ] = 2J + 1.
The motivation of using β, spin temperature, is best described by the original 1959 reference by Anderson,

Pipkin, & Baird [23]:

Direct substitution into these equations shows that in the steady state the solution is given by

a 3
2

: a 1
2

: a− 1
2

: a− 3
2

= α3 : α2 : α : 1
b 1

2
: b− 1

2
= α : 1

This solution suggests the general form of the steady-state solution for all spin-exchange problems.
It is the most probable way in which two sets of particles can be arranged so that the number
of particles in each set is a constant and so that the total z component of angular momentum
is a constant. This implies that the density matrix for a system of Na and N in spin-exchange
equilibrium is given by

ρ =
exp [− (I1z + S1z)β] exp [− (I2z + S2z)β]

Tr {exp [− (I1z + S1z)β] exp [− (I2z + S2z)β]} ,

where β is such that the total z component of the angular momentum of the system is given
by Tr[(I1s + S1z + I2z + S2z)ρ]. The parameter β might be called an angular momentum spin
temperature.

They were discussing spin-exchange between sodium and nitrogen, but it is perfectly applicable to other
spin-exchange systems including “pure” and “hybrid” cells.

To calculate the population difference between states m and m−1, we first must calculate the population
of states with m. In our case, J = S = 1/2 & [J ] = 2, and consequently Z1/2 is

Z1/2 =
(1 + P )2 − (1 − P )2

2P
√

1 − P 2
=

2√
(1 − P )(1 + P )

=
2

1 + P

√
1 + P

1 − P
=

2 exp(β/2)
1 + P

(3.266)

Plugging this in for the population of the m state gives [24]:

ρm =
exp(βm)
ZIZS

=
exp(β(m− 1/2))

ZI

1 + P

2
= QIm̄

1 + P

2
QIm̄ =

exp(βm̄)
ZI

(3.267)
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where P is the polarization, I is the nuclear spin, and m̄ = (m+m− 1)/2 = m− 1/2 is the mean m of the
transition. For the adjacent state m− 1, the population is:

ρm−1 =
exp(β(m− 1 − 1/2))

ZI

1 + P

2
= QIm̄

1 + P

2
exp(−β) = QIm̄

1 + P

2

(
1 − P

1 + P

)
= QIm̄

1 − P

2
(3.268)

Putting this altogether gives the population difference between the states m and m− 1 as:

ρm − ρm−1 = QIm̄

(
1 + P

2
− 1 − P

2

)
= QIm̄P (3.269)
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Chapter 4

The Effect on Polarized Light Due to
Spin-Polarized Alkali Atoms

4.1 General Formula for Atomic Polarizability

As we’ve seen before, we can write the electric field component of an electromagnetic wave in the complex
representation as:

�E = E0Ê0 exp(i�k · �r − iωt) (4.1)

The speed of wave is given the ratio ω/|�k|. The effect of a uniform, isotropic, and linear medium on a beam
of light is given by the (possibly complex) index of refraction of the medium, n:∣∣∣�k∣∣∣ =

ω

c
n =

2πn
λvac

(4.2)

where �k is the wave vector of the light and λvac is the wavelength of the light in vacuum. However, in
general, different components of the light polarization vector have different values of �k depending on the
symmetry properties of an anisotropic medium. The symmetry of a vapor of alkali metal in a magnetic field
is described by the spherical vector basis; therefore there are in general three different wave vectors of the
light in an alkali vapor: ∣∣∣�kq

∣∣∣ =
ω

c
nq (4.3)

where q = 0,±1 labels the components relative to the atomic coordinate system. If �k is imaginary, then its
useful to split it into its real and imaginary parts:

�E = E0Ê0 exp(−�{�k · �r}) exp(i�{�k · �r} − iωt) (4.4)

The real part of the index of refraction yields the dispersion relation which affects the phase of the wave. A
difference in the real part for q = ±1 gives rise to circular birefringence; whereas, a difference in the real part
between the q = 0 and q = ± gives rise to linear birefringence. The imaginary part of the index of refraction
yields the attenuation constant which affects the amplitude of the wave. A difference in the imaginary part
for q = ±1 gives rise to circular dichroism; whereas, a difference in the imaginary part between q = 0 and
q = ±1 gives rise to linear dichroism. The details of the atomic system, beyond its symmetry, are hidden in
the index of refraction:

nq =
√
εqμq

ε0μ0
(4.5)

where εq & μq are the dielectric constant & permeability of the medium and ε0 & μ0 are the dielectric
constant & permeability of free space.

Applying Maxwell’s equations, in the complex representation:

�D =
↔
ε �E = ε0 �E + �P = ε0 �E + [A]

〈
�d
〉

(4.6)
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where �P is the electric polarization of the medium and [A] is the atomic number density of the medium.
The dipole moment, �d, is evaluated as the expectation value of the quantum mechanical dipole operator
averaged over every atom or molecule in the medium. The expectation value for the electric dipole operator
is given by:

�
〈
�d
〉

= −e 〈�r〉 = −e
∑

q

〈rq〉 ε∗q (4.7)

Plugging in the result from Eqn. (3.55), where Uq = rq:

�
〈
�d
〉

= −e
∑

K,n,J,q

{
Ω (ρJn+q − ρKn)

(
u∓q

)∗ |〈J, n+ q| rq |K,n〉|2
±ω − ωJn+qKn − iγJn+qKn

× exp(±iωt)
}
ε∗q (4.8)

Using Eqn. (3.57) to identify the rest of the parameters:

�
〈
�d
〉

=
e2

h̄

∑
K,n,J,q

ε̂∗q

{
(ρJn+q − ρKn) |〈J, n+ q| rq |K,n〉|2

±ω − ωJn+qKn − iγJn+qKn

}
εq · E0Ê

±
0 exp(±iωt) =

e2

h̄
(Σ1 + Σ2) (4.9)

where
(
u∓q

)∗ = ε̂qÊ
±
0 and Ê0 = Ê−

0 & Ê∗
0 = Ê+

0 . When |K,n〉 are the |S,±1/2〉 ground states, then the
sum becomes:

Σ1 =
∑
n,s,q

ε̂∗q

{
(ρPsn+q − ρSn) |〈Ps, n+ q| rq |S, n〉|2

+ω − ωPsn+qSn + iγPsn+qJn

}
εq ·E0Ê

∗
0 exp(+iωt) (4.10)

where s = ± labels the mixed fine structure state. When |J, n+ q〉 are the |S,±1/2〉 ground states, then the
sum becomes:

Σ2 =
∑
s,n,q

ε̂∗q

{
(ρSn+q − ρPsn) |〈S, n+ q| rq |Ps, n〉|2

−ω − ωSn+qPsn − iγSn+qPsn

}
εq ·E0Ê0 exp(−iωt) (4.11)

Reversing the sum, relabeling the sum variables, and multiplying the top & bottom by −1, the sum becomes:

Σ2 =
∑
s,n,q

ε̂∗q

{
(ρPsn+q − ρSn) |〈Ps, n+ q| rq |S, n〉|2

+ω − ωPsn+qSn + iγPsn+qSn

}
εq ·E0Ê0 exp(−iωt) (4.12)

Finally, putting the two sums together again, we get:

�
〈
�d
〉

=
e2

h̄

∑
s,n,q

ε̂∗q

{
(ρSn − ρPsn+q) |〈Ps, n+ q| rq |S, n〉|2

ωPsn+qSn − ω − iγPsn+qSn

}
εq ·

[
E0Ê0 exp(−iωt) +

(
E0Ê0 exp(−iωt)

)∗]
(4.13)

The relationship between the induced dipole moment and the applied electric field defines the atomic polar-
izability tensor:

��d =
↔
α ·� �E =

∑
q

ε̂∗qαq ε̂q

[
�E + C.C.

2

]
(4.14)

which immediately yields the components of the atomic polarizability tensor:

αq =
e2

h̄

∑
s,n

{
(ρSn − ρPsn+q) |〈Ps, n+ q| rq |S, n〉|2

ωPsn+qSn − ω − iγPsn+qSn

}
(4.15)

4.2 Explicit Calculation of Atomic Polarizability

4.2.1 Description of Terms

To calculate the polarizability, we need to use many of the results from the previous sections:
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1. the populations of the states, Sec. (3.5.1)

2. the transition matrix elements, Sec. (3.3)

3. the frequencies of the transitions, Sec. (1.2.5)

Putting these together, we see that every term in the sum looks like this:

(
e2

h̄

) [(Δρ)]

matrix element squared︷ ︸︸ ︷[(
T h̄fn

mωn

)(
1 + c1a1a2 + c2a

2
2

)]
ωn − δ2 − ω − iγn

=
(
4πε0rec2

)( (Δρ)Tfn

ωn

)(
1 + c1a1a2 + c2a

2
2

ωn − δ2 − ω − iγn

)
︸ ︷︷ ︸

field dependent

(4.16)

where ε0 is the electric permittivity of free space, re is the classical electron radius, c is the speed of light
in a vacuum, e is the elementary charge, h̄ is Planck’s constant divided b y 2π, (Δρ) is the difference in
population between the ground & excited states, T = {1/4, 1/2, 3/4, 1}, c1 = ±{2, 2√2},& c2 = {−1/2,+1}
are numerical constants that depends on the specific transition, fn is the oscillator strength for the Dn
transition, m is the mass of the electron, ωn is the zero-field transition frequency for the Dn transition,
δ2 is the frequency shift due to the magnetic field & depends on the specific transition, ω is the incident
light frequency, γ is the full width half maximum for the Dn transition, and a1 & a2 are the fine structure
mixing coefficients and depend on the specific transition. When we say “specific” transition, we mean that
it depends on the specific mJs involved; on the other hand, when we say “Dn” transition, it only depends
on the LJs involved, where n = 1 or 2. The last term is magnetic field dependent.

We’ll specify the populations of the |S,±〉, |P−,±〉, & |P+, (±1/2,±3/2)〉 states. Under our spin-exchange
optical pumping conditions inside the cells, the optical pumping rate is 1 MHz or less and the non-radiative
quenching rate due to N2 molecules is 1 GHz. This limits the populations of the |P±, (±1/2,±3/2)〉 excited
states to ≈ 1/1000. We can safely treat this as zero and set ρPsn+q = 0. Therefore, we only need to calculate
the population of the |S,±〉 ground states. These are given by the electron spin polarization P as:

ρS,± =
1 ± P

2
(4.17)

Note that we can write everything in terms of the D1 oscillator strength f1 by using:

fn/ωn = nf1/ω1 C−1 = 4πε0rec2f1/ω1 (4.18)

4.2.2 Expansion to Second Order in Magnetic Field

Before we can expand the last term to second order in field, we’ll first need to specify the field dependence
of each parameter. For convenience, the field will be represented by the fine structure scaling parameter
y. We are considering the fine structure mixing for the P states, so L = 1 and taking gS = −2 gives
y = μBB/(h̄ωso), where the fine structure splitting is given by Aso[L]/2 = h̄ωso. The field dependence of
the fine structure mixing coefficients a1 & a2 and frequency shift δ2 to second order in y (field) is:

a1 = 1 − β0y
2 (4.19)

a2 = −β1y + β2y
2 (4.20)

δ2 = ωso(ay + by2) (4.21)

where β0 = 1/9, β1 =
√

2/3, β2 = ±√
2/9, a = ±{1/3, 2/3, 1, 4/3, 5/3}, and b = ±2/9 depending on the

transition involved. First we’ll multiply the top and bottom by the complex conjugate of the bottom:

G = G(y) =
1 + c1a1a2 + c2a

2
2

ωn − δ2 − ω − iγn
=

(
1 + c1a1a2 + c2a

2
2

ωn − δ2 − ω − iγn

)(
ωn − δ2 − ω + iγn

ωn − δ2 − ω + iγn

)
(4.22)

which allows us to write G as a sum of its real and imaginary parts:

G =

(
1 + c1a1a2 + c2a

2
2

)
(ωn − ω − δ2 + iγn)

(ωn − ω − δ2)2 + γ2
n

=

(
1 + c1a1a2 + c2a

2
2

)
(−Δn − δ2 + iγn)

(−Δn − δ2)2 + γ2
n

(4.23)
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where Δn = ω − ωn is the detuning. We now need to remove the field dependence from the bottom. To
separate the bottom into a sum of field dependent and independent terms, we expand the square:

(−Δn − δ2)2 + γ2
n = Δ2

n + 2Δnδ2 + δ22 + γ2
n = D2

n + δ1 (4.24)

where D2
n = Δ2

n + γ2
n and δ1 = 2Δnδ2 + δ22 . Expanding the bottom to second order in y:

1
D2

n + δ1
= D−2

n

(
1 +

δ1
D2

n

)−1

= D−2
n

(
1 − δ1

D2
n

+
δ21
D4

n

)
(4.25)

where D2
n = Δ2

n + γ2
n is the field independent denominator of G. Altogether, this gives:

G =

(
1 + c1a1a2 + c2a

2
2

)
(−Δn − δ2 + iγn)

(−Δn − δ2)2 + γ2
n

= D−2
n (−Δn + iγn − δ2)

(
1 + c1a1a2 + c2a

2
2

)(
1 − δ1

D2
n

+
δ21
D4

n

)
(4.26)

The part of the field dependence of the numerator that is common to both the real and imaginary parts of
G comes from this product:

(1 + c1a1a2 + c2a
2
2)

(
1 − δ1

D2
n

+
δ21
D4

n

)
= 1 +

[
c1a1a2 − δ1

D2
n

]
+

[
δ21
D4

n

− δ1
D2

n

c1a1a2 + c2a
2
2

]
= 1 +A1y +A2y

2

(4.27)
where we’ve kept on term second order in y. For only the real part, there is an additional term:

−δ2(1 + c1a1a2 + c2a
2
2)

(
1 − δ1

D2
n

+
δ21
D4

n

)
= −δ2 +

[
δ1δ2
D2

n

− c1δ2a1a2

]
= ωso

(
B1y +B2y

2
)

(4.28)

Now we have:

G(y) =
(−Δn + iγn)

(
1 +A1y +A2y

2
)

+ ωso(B1y + B2y
2)

Δ2
n + γ2

n

(4.29)

The second order expansion of the product of parameters are:

a1a2 = −β1y + β2y
2 (4.30)

a2
2 = β2

1y
2 (4.31)

δ22 = a2ω2
soy

2 (4.32)
δ1 = 2Δnδ2 + δ22 = 2Δnωso(ay + by2) + a2ω2

soy
2 (4.33)

δ21 = = 4a2Δ2
nω

2
soy

2 (4.34)
δ1δ2 = 2a2Δnω

2
soy

2 (4.35)
δ2a1a2 = −aβ1ωsoy

2 (4.36)
δ1a1a2 = −2aβ1Δnωsoy

2 (4.37)

Plugging these in and collecting them by powers of y allows us to identify A1, A2, B1,&B2:

A1 = −c1β1 − 2aΔnωso
D2

n

(4.38)

A2 = +c1β2 + c2β
2
1 +

2(ac1β1 − b)Δnωso − a2ω2
so

D2
n

+
4a2Δ2

nω
2
so

D4
n

(4.39)

B1 = −a (4.40)

B2 = ac1β1 − b +
2a2Δnωso

D2
n

(4.41)

where the values for the parameters for all the transitions are listed in Tab. (4.1). We’ll define a lorentzian
and dispersive line shape in the following way:

Ln =
γn

D2
n

=
γn

Δ2
n + γ2

n

Dn =
−Δn

D2
n

=
−Δn

Δ2
n + γ2

n

(4.42)
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m q s m + q n T c1 c2 β2 a b −c1β1 a2 (ac1β1 − b) (c1β2 + c2β2
1)

− − + −3/2 2 3/4 0 0 0 +1 0 0 1 0 0

+ − − −1/2 1 1 +
√

2 −1/2 −√
2/9 +4/3 +2/9 −2/3 16/9 +2/3 −1/3

+ − + −1/2 2 1/4 −2
√

2 +1 −√
2/9 +5/3 −2/9 +4/3 25/9 −2 +2/3

− 0 − −1/2 1 1/2 −2
√

2 +1 −√
2/9 −2/3 +2/9 +4/3 4/9 +2/3 +2/3

− 0 + −1/2 2 1/2 +
√

2 −1/2 −√
2/9 −1/3 −2/9 −2/3 1/9 0 −1/3

+ 0 − +1/2 1 1/2 +2
√

2 +1 +
√

2/9 +2/3 +2/9 −4/3 4/9 +2/3 +2/3

+ 0 + +1/2 2 1/2 −√
2 −1/2 +

√
2/9 +1/3 −2/9 +2/3 1/9 0 −1/3

− + − +1/2 1 1 −√
2 −1/2 +

√
2/9 −4/3 +2/9 +2/3 16/9 +2/3 −1/3

− + + +1/2 2 1/4 +2
√

2 +1 +
√

2/9 −5/3 −2/9 −4/3 25/9 −2 +2/3
+ + + +3/2 2 3/4 0 0 0 −1 0 0 1 0 0

Table 4.1: Low Field Expansion Parameters. Dn transition due to rq from |S,m〉 to |Ps,m+ q〉. For all
transitions, β0 = 1/9 and β1 =

√
2/3.

Using this notation, we rewrite G(y) and the parameters within it:

G(y) = (Dn + iLn)
(
1 +A1y +A2y

2
)

+
ωso
γn

Ln(B1y +B2y
2) (4.43)

A1 = −c1β1 + 2aωsoDn (4.44)

A2 = +(c1β2 + c2β
2
1) − 2(ac1β1 − b)ωsoDn + a2ω2

so

(
4D2

n − Ln

γn

)
(4.45)

B1 = −a (4.46)
B2 = (ac1β1 − b) − 2a2ωsoDn (4.47)

The real part is written as:

�G = Dn

{
1 + [−c1β1 + 2aωsoDn] y +

[
(c1β2 + c2β

2
1) − 2(ac1β1 − b)ωsoDn + a2ω2

so

(
4D2

n − 3
Ln

γn

)]
y2

}
+Ln

ωso
γn

{−ay + (ac1β1 − b)y2
}

(4.48)

The imaginary part is written as:

�G = Ln

{
1 + [−c1β1 + 2aωsoDn] y +

[
(c1β2 + c2β

2
1) − 2(ac1β1 − b)ωsoDn + a2ω2

so

(
4D2

n − Ln

γn

)]
y2

}
(4.49)

4.2.3 Imaginary Part of the Polarizability: Absorption

The imaginary part of each term in the sum is written as:

nT (1 ± P )
2C

Ln

{
1 + [−c1β1 + 2aωsoDn] y +

[
(c1β2 + c2β

2
1) − 2(ac1β1 − b)ωsoDn + a2ω2

so

(
4D2

n − Ln

γn

)]
y2

}
(4.50)

where as a reminder 1/C = 4πε0rec2f1/ω1, n refers to the Dn transition, P is the polarization of the ground
state, and the other parameters are obtained from Tab. (4.1). Plugging in the parameters for the q = −1
component gives:

C�α− =
3
4
(1 − P )L2

{
1 + [2ωsoD2] y +

[
ω2
so

(
4D2

2 − L2

γ2

)]
y2

}

+
1
6
(1 + P )L1

{
3 + [−2 + 8ωsoD1] y +

[
−1 − 4ωsoD1 +

16
3
ω2
so

(
4D2

1 −
L1

γ1

)]
y2

}

+
1
12

(1 + P )L2

{
3 + [4 + 10ωsoD2] y +

[
2 + 12ωsoD2 +

25
3
ω2
so

(
4D2

2 − L2

γ2

)]
y2

}
(4.51)
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Combining the D2 terms while separating the polarization dependent terms gives:

C�α− = L2

{
1 +

[
1
3

+
7
3
ωsoD2

]
y +

[
1
6

+ ωsoD2 +
13
9
ω2
so

(
4D2

2 − L2

γ2

)]
y2

}

−P
2
L2

{
1 +

[
−2

3
+

4
3
ωsoD2

]
y +

[
−1

3
− 2ωsoD2 +

1
9
ω2
so

(
4D2

2 −
L2

γ2

)]
y2

}

+
(1 + P )

2
L1

{
1 +

[
−2

3
+

8
3
ωsoD1

]
y +

[
−1

3
− 4

3
ωsoD1 +

16
9
ω2
so

(
4D2

1 −
L1

γ1

)]
y2

}
(4.52)

Plugging in the parameters for the q = 0 component gives:

C�α0 = +
1
4
(1 − P )L1

{
1 +

[
4
3
− 4

3
ωsoD1

]
y +

[
2
3
− 4

3
ωsoD1 +

4
9
ω2
so

(
4D2

1 − L1

γ1

)]
y2

}

+
1
2
(1 − P )L2

{
1 +

[
−2

3
− 2

3
ωsoD2

]
y +

[
−1

3
+

1
9
ω2
so

(
4D2

2 −
L2

γ2

)]
y2

}

+
1
4
(1 + P )L1

{
1 +

[
−4

3
+

4
3
ωsoD1

]
y +

[
2
3
− 4

3
ωsoD1 +

4
9
ω2
so

(
4D2

1 − L1

γ1

)]
y2

}

+
1
2
(1 + P )L2

{
1 +

[
2
3

+
2
3
ωsoD2

]
y +

[
−1

3
+

1
9
ω2
so

(
4D2

2 − L2

γ2

)]
y2

}
(4.53)

Combining the D1 & D2 terms while separating the polarization dependent terms gives:

C�α0 = +
1
2
L1

{
1 +

[
2
3
− 4

3
ωsoD1 +

4
9
ω2
so

(
4D2

1 −
L1

γ1

)]
y2

}

+L2

{
1 +

[
−1

3
+

1
9
ω2
so

(
4D2

2 − L2

γ2

)]
y2

}
+P {L1 [−1 + ωsoD1] + L2 [+1 + ωsoD2]} 2y

3
(4.54)

Plugging in the parameters for the q = +1 component gives:

C�α+ =
(1 − P )

2
L1

{
1 +

[
2
3
− 8

3
ωsoD1

]
y +

[
−1

3
− 4

3
ωsoD1 +

16
9
ω2
so

(
4D2

1 −
L1

γ1

)]
y2

}

+
1
4
(1 − P )L2

{
1 +

[
−4

3
− 10

3
ωsoD2

]
y +

[
2
3

+ 4ωsoD2 +
25
9
ω2
so

(
4D2

2 − L2

γ2

)]
y2

}

+
3
4
(1 + P )L2

{
1 + [−2ωsoD2] y +

[
ω2
so

(
4D2

2 −
L2

γ2

)]
y2

}
(4.55)

Combining the D2 terms while separating the polarization dependent terms gives:

C�α+ =
(1 − P )

2
L1

{
1 +

[
2
3
− 8

3
ωsoD1

]
y +

[
−1

3
− 4

3
ωsoD1 +

16
9
ω2
so

(
4D2

1 −
L1

γ1

)]
y2

}

+L2

{
1 +

[
−1

3
− 7

3
ωsoD2

]
y +

[
1
6

+ ωsoD2 +
13
9
ω2
so

(
4D2

2 − L2

γ2

)]
y2

}

+
P

2
L2

{
1 +

[
2
3
− 4

3
ωsoD2

]
y +

[
−1

3
− 2ωsoD2 +

1
9
ω2
so

(
4D2

2 − L2

γ2

)]
y2

}
(4.56)

Putting all three results together gives for q = 0,±1:

C�αq =
(1 − qP )

2
L1

{
1 + q

[
2
3
− 8

3
ωsoD1

]
y +

[
2
3
− q2 − 4

3
ωsoD1 +

4 + 12q2

9
ω2
so

(
4D2

1 −
L1

γ1

)]
y2

}
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+L2

{
1 − q

[
1
3

+
7
3
ωsoD2

]
y +

[
−1

3
+
q2

2
+ q2ωsoD2 +

1 + 12q2

9
ω2
so

(
4D2

2 − L2

γ2

)]
y2

}

+
qP

2
L2

{
1 + q

[
2
3
− 4

3
ωsoD2

]
y +

[
−1

3
− 2ωsoD2 +

1
9
ω2
so

(
4D2

2 −
L2

γ2

)]
y2

}
+(1 − q2)P {L1 [−1 + ωsoD1] + L2 [+1 + ωsoD2]} 2y

3
(4.57)

4.2.4 Real Part of the Polarizability: Phase Shift

The real part of each term in the sum is written as the sum between one part that has an imaginary analogue:

nT (1 ± P )
2

Dn

[
1 + [−c1β1 + 2aωsoDn] y +

[
(c1β2 + c2β

2
1) − 2(ac1β1 − b)ωsoDn + a2ω2

so

(
4D2

n − 3
Ln

γn

)]
y2

]
(4.58)

and an additional term that does not have an imaginary analogue:

nT (1 ± P )
2

Ln
ωso
γn

{−ay + (ac1β1 − b)y2
}

(4.59)

where again 1/C = 4πε0rec2f1/ω1, n refers to the Dn transition, P is the polarization of the ground state,
and the other parameters are obtained from Tab. (4.1) To be explicit, the three main differences between
the calculation for the imaginary part (that we’ve already done) and this one for the real part are:

1. the overall Ln outside the brackets becomes Dn

2. the last term in the y2 bracket goes from −Lnγn to −3Ln/γn

3. there is an additional term proportional to Ln
ωso

γn
that we must work out as well

Using the results for the imaginary part, the first term (α1
q) for the real part for the q = 0,±1 component is:

C�α1
q =

(1 − qP )
2

D1

{
1 + q

[
2
3
− 8

3
ωsoD1

]
y +

[
2
3
− q2 − 4

3
ωsoD1 +

4 + 12q2

9
ω2
so

(
4D2

1 − 3
L1

γ1

)]
y2

}

+D2

{
1 − q

[
1
3

+
7
3
ωsoD2

]
y +

[
−1

3
+
q2

2
+ q2ωsoD2 +

1 + 12q2

9
ω2
so

(
4D2

2 − 3
L2

γ2

)]
y2

}

+
qP

2
D2

{
1 + q

[
2
3
− 4

3
ωsoD2

]
y +

[
−1

3
− 2ωsoD2 +

1
9
ω2
so

(
4D2

2 − 3
L2

γ2

)]
y2

}
+(1 − q2)P {D1 [−1 + ωsoD1] + D2 [+1 + ωsoD2]} 2y

3
(4.60)

Now calculating the second term (α2
q) for the real part for the q = −1 component:

C�α2
− =

3(1 − P )
4

L2
ωso
γ2

{−y} +
(1 + P )

2
L1
ωso
γ1

{
−4

3
y +

2
3
y2

}
+

(1 + P )
4

L2
ωso
γ2

{
−5

3
y − 2y2

}
(4.61)

Combining the D2 terms while separating the polarization dependent terms gives:

C�α2
− = (1 + P )L1

ωso
γ1

{
−2

3
y +

1
3
y2

}
+ L2

ωso
γ2

{
−7

6
y − 1

2
y2

}
+ PL2

ωso
γ2

{
1
3
y − 1

2
y2

}
(4.62)

Now calculating the second term (α2
q) for the real part for the q = 0 component:

C�α2
0 =

(1 − P )
4

L1
ωso
γ1

{
2
3
y +

2
3
y2

}
+

(1 − P )
2

L2
ωso
γ2

{
1
3
y

}

+
(1 + P )

4
L1
ωso
γ1

{
−2

3
y +

2
3
y2

}
+

(1 + P )
2

L2
ωso
γ2

{
−1

3
y

}
(4.63)
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Combining the D2 terms while separating the polarization dependent terms gives:

C�α2
0 = L1

ωso
γ1

{
1
3
y2

}
− PL1

ωso
γ1

{
1
3
y

}
− PL2

ωso
γ2

{
1
3
y

}
(4.64)

Now calculating the second term (α2
q) for the real part for the q = +1 component:

C�α2
+ = +

(1 − P )
2

L1
ωso
γ1

{
4
3
y +

2
3
y2

}
+

(1 − P )
4

L2
ωso
γ2

{
5
3
y − 2y2

}
+

3(1 + P )
4

L2
ωso
γ2

{y} (4.65)

Combining the D2 terms while separating the polarization dependent terms gives:

C�α2
+ = (1 − P )L1

ωso
γ1

{
2
3
y +

1
3
y2

}
+ L2

ωso
γ2

{
7
6
y − 1

2
y2

}
+ PL2

ωso
γ2

{
1
3
y +

1
2
y2

}
(4.66)

Putting this altogether gives:

C�α2
q = (1 − qP )L1

ωso
γ1

{
q
2
3
y +

1
3
y2

}
+ L2

ωso
γ2

{
q
7
6
y − q2

1
2
y2

}

−(1 − q2)PL1
ωso
γ1

{
1
3
y

}
+ PL2

ωso
γ2

{
2q2 − 1

3
y + q

1
2
y2

}
(4.67)

Finally, combining both terms gives for the real part αq where q = 0,±1:

C�αq =
(1 − qP )

2
D1

{
1 + q

[
2
3
− 8

3
ωsoD1

]
y +

[
2
3
− q2 − 4

3
ωsoD1 +

4 + 12q2

9
ω2
so

(
4D2

1 − 3
L1

γ1

)]
y2

}

+D2

{
1 − q

[
1
3

+
7
3
ωsoD2

]
y +

[
−1

3
+
q2

2
+ q2ωsoD2 +

1 + 12q2

9
ω2
so

(
4D2

2 − 3
L2

γ2

)]
y2

}

+
qP

2
D2

{
1 + q

[
2
3
− 4

3
ωsoD2

]
y +

[
−1

3
− 2ωsoD2 +

1
9
ω2
so

(
4D2

2 − 3
L2

γ2

)]
y2

}

+(1 − q2)P
{
D1 [−1 + ωsoD1] + D2 [+1 + ωsoD2] − 1

2
L1
ωso
γ1

}
2y
3

+(1 − qP )L1
ωso
γ1

{
2q
3
y +

1
3
y2

}
+ L2

ωso
γ2

{
7q
6
y − q2

2
y2

}
+ PL2

ωso
γ2

{
2q2 − 1

3
y +

q

2
y2

}
(4.68)

4.3 Atomic Polarization Vector

4.3.1 Light Propagation At a Skew Angle

It is useful to know how light is effected by the presence of a polarized alkali vapor when (1) optical pumping
or (2) measuring alkali polarization and densities using Faraday Rotation. We’ll assume that the polarized
alkali vapor is located within a magnetic field that orients the alkali angular momentum. In other words, the
magnetic field provides one axis of a coordinate system that naturally describes the alkali atoms. The light
and the alkali atoms are connected through the atomic polarizability, which itself is related to the dielectric
permittivity. We’ll start with Maxwell’s equations and end with a matrix eigenvalue equation. The solution
to this equation will give the wave numbers and polarization vectors for the two eigenmodes of propagation
through the vapor. An eigenmode of propagation has the property that its polarization vector does not
change as it propagates through the alkali vapor.

In SI, Maxwell’s equations are:

�∇ · �D = ρ �∇× �E = −∂ �B/∂t
�∇ · �B = 0 �∇× �H = �J + ∂ �D/∂t

(4.69)

and the constitutive relations for a linear medium between the electric vector �E & the electric displacement
�D and between the magnetic induction �B & the magnetic vector �H are:

�D =
↔
ε · �E �B =

↔
μ · �H (4.70)
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where
↔
ε &

↔
μ are the dielectric permittivity & the magnetic permeability tensors, respectively. In our case,

there are no free charges ρ and currents �J . Since the light has optical frequencies, the magnetic permeability
tensor

↔
μ is very nearly equal to the scalar free space value μ0:

�∇ · �D = 0 �∇× �E = −μ0∂ �H/∂t
�∇ · �H = 0 �∇× �H = ∂ �D/∂t

(4.71)

Representing the spatial and time dependence of �E, �D, �B, & �H in plane wave form, such as �E →
�E exp

[
i�k · �r − iωt

]
, results in:

�k · �D = 0 �k × �E = ωμ0
�H

�k · �H = 0 �k × �H = −ω �D (4.72)

where �k is the wave number and ω = 2πν is the frequency. Combining the two cross product equations
results in:

�k ×
(
�k × �E

)
= �k

(
�k · �E

)
− k2 �E = −ω2μ0

�D (4.73)

where we’ve used the identity �a ×
(
�b× �c

)
= �b (�a · �c) − �c

(
�a ·�b

)
. Finally, using the constitutive relation for

�D, factoring out �E, and moving things around gives:⎛
⎝

⎡
⎣ k2 0 0

0 k2 0
0 0 k2

⎤
⎦ −

⎡
⎣ k2

1 k1k2 k1k3

k2k1 k2
2 k2k3

k3k1 k3k2 k2
3

⎤
⎦ − ω2μ0

↔
ε

⎞
⎠ · �E = 0 (4.74)

The derivation of this equation can also be found in chapter 15 of Born & Wolf [25] and also Yariv & Yeh
[26].

4.3.2 Wave Number Eigenvalues

The following calculation is a detailed extension to the one found in [27]. There are in general three coordinate
systems that one could use to solve for the possible eigenvalues for k:

1. the atomic basis, namely one that reflects the symmetry of the alkali vapor
(
r̂∗+; r̂∗−; r̂∗0 = B̂0

)
which

is determined by the magnetic field �B0

2. the linear
(
P ;S;Z = k̂

)
or circular (R;L;Z) polarization basis of the light

3. the polarization eigenvector basis, namely the one for which the matrix multiplying �E is diagonal

Unfortunately, we usually do not know beforehand what the polarization eigenvector basis is. However,
when the magnetic field and light propagation direction point in the same direction, all three coordinates
systems happen to coincide. Therefore we’ll take advantage of this fact and choose to work in the circular
polarization basis of the light. Consequently, the wave number dyad is represented as:

�k�k =

⎡
⎣ 0 0 0

0 0 0
0 0 k2

⎤
⎦ (4.75)

where k1 = k2 = 0 and
√
k2
1 + k2

2 + k2
3 = k2 due to the orthonormality of the circular polarization basis.

In the atomic basis
(
r̂∗+; r̂∗−; r̂∗0

)
, the dielectric tensor is, by construction, diagonal and given as:

↔
ε= ε0

⎛
⎝1 +

[A]
ε0

⎡
⎣ α+ 0 0

0 α− 0
0 0 α0

⎤
⎦
⎞
⎠ (4.76)

69



where ε0 is the dielectric permittivity of free space and [A] is the alkali number density. When the magnetic
field is zero, the polarizabilities are given by:

αq =
ε0rec

2

2π

⎡
⎢⎢⎢⎣ f1/ν1
ν1 − ν − iΓ1/2

(1 − qPA)︸ ︷︷ ︸
D1 transition

+
f2/ν2

ν2 − ν − iΓ2/2

(
1 +

qPA

2

)
︸ ︷︷ ︸

D2 transition

⎤
⎥⎥⎥⎦ (4.77)

where re is the classical electron radius, c is the speed of light in a vacuum, PA is the alkali polarization,
q(= 0,±1) is the amount of angular momentum transferred to an alkali atom, fn is the oscillator strength,
νn is the transition frequency, and Γn is the full width half maximum of the transition. The subscripts
n(= 1, 2) refer to the D1 and D2 transitions of the alkali atom.

We’ll have to transform the polarizability tensor from the
(
r̂∗+; r̂∗−; r̂∗0

)
basis to the (R;L;Z) basis in the

following way:

1. switch from the
(
r̂∗+; r̂∗−; r̂∗0

)
basis to the (x̂; ŷ; ẑ) basis relative to the atomic system

2. rotate by an angle θ from the (x̂; ŷ; ẑ) basis relative to the atomic system to the (P ;S;Z) basis relative
to the light polarization, where θ is the angle between the magnetic field and the light propagation
direction as in B̂0 · k̂ = cos(θ)

3. switch from the (P ;S;Z) basis to the (R;L;Z) basis relative to the light polarization

We’ll note the following relationships between the different bases relative to the light system:

R =
P + iS√

2
L =

P − iS√
2

(4.78)

between the different bases relative to the atomic system:

�r = r+r̂
∗
+ + r−r̂∗− + r0r̂

∗
0 = xx̂ + yŷ + zẑ (4.79)

r+ = −
(
x+ iy√

2

)
r− =

x− iy√
2

r0 = z (4.80)

and finally between the atomic and light systems:

x̂ = P cos(θ) − Z sin(θ) ẑ = P sin(θ) + Z cos(θ) (4.81)

Switching the basis of the polarizability tensor from the circular basis to linear basis relative to the atomic
system gives:

↔
α=

1√
2

⎡
⎣ −1 +1 0

−i −i 0
0 0 +1

⎤
⎦
⎡
⎣ α+ 0 0

0 α− 0
0 0 α0

⎤
⎦ 1√

2

⎡
⎣ −1 +i 0

+1 +i 0
0 0 +1

⎤
⎦ =

1
2

⎡
⎣ σ −iδ 0
iδ σ 0
0 0 2α0

⎤
⎦ (4.82)

where σ & δ are the sum & difference of α+ & α−:

σ = α+ + α− = 2α0 δ = α+ − α− (4.83)

To simplify things, we’ll break the the resulting matrix up into the following:

↔
α=

1
2

⎡
⎣ σ −iδ 0
iδ σ 0
0 0 2α0

⎤
⎦ =

σ

2
+ i

δ

2

⎡
⎣ 0 −1 0

1 0 0
0 0 0

⎤
⎦ (4.84)

Now we rotate by θ from the linear basis of atomic system to linear polarization basis of the light:⎡
⎣ cos(θ) 0 sin(θ)

0 1 0
− sin(θ) 0 cos(θ)

⎤
⎦
⎡
⎣ 0 −1 0

1 0 0
0 0 0

⎤
⎦
⎡
⎣ cos(θ) 0 − sin(θ)

0 1 0
sin(θ) 0 cos(θ)

⎤
⎦ =

⎡
⎣ 0 − cos(θ) 0

cos(θ) 0 − sin(θ)
0 sin(θ) 0

⎤
⎦

(4.85)
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Finally we’ll switch from the linear polarization basis of the light to the circular one:

1√
2

⎡
⎣ +1 −i 0

+1 +i 0
0 0 +1

⎤
⎦
⎡
⎣ 0 − cos(θ) 0

cos(θ) 0 − sin(θ)
0 sin(θ) 0

⎤
⎦ 1√

2

⎡
⎣ +1 +1 0

+i −i 0
0 0 +1

⎤
⎦ (4.86)

which gives: ⎡
⎣ −i cos(θ) 0 − i

2 sin(θ)
0 +i cos(θ) + i

2 sin(θ)
+ i

2 sin(θ) − i
2 sin(θ) 0

⎤
⎦ (4.87)

Therefore, the polarizability in the circular polarization basis of the is:

↔
α=

1
2

⎡
⎣ σ + δ cos(θ) 0 + δ

2 sin(θ)
0 σ − δ cos(θ) − δ

2 sin(θ)
− δ

2 sin(θ) + δ
2 sin(θ) σ

⎤
⎦ =

⎡
⎣ αR 0 + δ

4 sin(θ)
0 αL − δ

4 sin(θ)
− δ

4 sin(θ) + δ
4δ sin(θ) α0

⎤
⎦ (4.88)

and consequently the matrix equation is written as⎡
⎣ k2 − k2

R 0 −Δ2
k

0 k2 − k2
L +Δ2

k

+Δ2
k −Δ2

k −k2
0

⎤
⎦ · �E = 0 (4.89)

where we have defined the following quantities:

k2
Q = ω2

c2

(
1 + [A]

ε0
αQ

)
Δ2

k = ω2

c2
[A]
ε0

(
α+−α−

4

)
sin(θ) (4.90)

αQ = ε0rec2

2π

[
f1/ν1

ν1−ν−iΓ1/2 (1 − qPA cos(θ)) + f2/ν2
ν2−ν−iΓ2/2

(
1 + qPA cos(θ)

2

)]
(4.91)

where q = +1, 0,−1 for Q = R, 0,L respectively. This equation is solved by setting the determinant of the
matrix to zero:∣∣∣∣∣∣

k2 − k2
R 0 −Δ2

k

0 k2 − k2
L +Δ2

k

+Δ2
k −Δ2

k −k2
0

∣∣∣∣∣∣ =
(
k2 − k2

R
) [− (

k2 − k2
L
)
k2
0 + Δ4

k

]
+ Δ4

k

(
k2 − k2

L
)

= 0 (4.92)

This can be rearranged to:

k4 + k2
[−k2

L − k2
R − 2Δ4

k/k
2
0

]
+

[
k2
Rk

2
L +

(
k2
R + k2

L
)
Δ4

k/k
2
0

]
= 0 (4.93)

and is then solved using the quadratic equation:

k2 =
1
2

[
k2
R + k2

L + 2Δ4
k/k

2
0 ±

√
(k2

R − k2
L)2 + 4Δ8

k/k
4
0

]
(4.94)

The two eigenvalues for k2 are given by the two solutions above. However, a more illuminating form for k2

can be obtained if we compare the size of Δ2
k against two different scales:

Δ2
k

k2
0

=
[A] (α+ − α−) sin(θ)

4ε0
(
1 + [A]

ε0
α0

) ≈ 10−3

(
sin(θ)

4

)
Δ2

k

k2
R − k2

L
=

tan(θ)
4

(4.95)

where we have used the fact that the maximum absolute value of the polarizability occurs at resonance for
the D2 transition ν = ν2 which corresponds to:[

[A]
ε0
α0

]
max

=
[
[A]
ε0

(
α+ − α−

PA

)]
max

=
[A]recλ2f2

πΓ2
= 10−3 ×

(
[A]

1015 cm−3

)(
λ2

780 nm

)(
140 GHz

Γ2

)
(4.96)

and we have put in typical values for the alkali density and absorption line width. Therefore, the angle for
which the two terms under the square root are equal, for PA = 1, is about θ = 89.993. In almost all cases,
the first term dominates over the second term under the square root and we can write the two solutions as:

k2 =
(
k2
R or k2

L
)

+ Δ4
k/k

2
0 (4.97)
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4.3.3 Light Polarization Eigenvectors

The polarization eigenvectors that correspond to these wave number eigenvalues are found by solving the
following system of equations: (

k2 − k2
R
)
E1 − Δ2

kE3 = 0(
k2 − k2

L
)
E2 + Δ2

kE3 = 0 (4.98)

Δ2
kE1 − Δ2

kE2 − k2
0E3 = 0

which can be rearranged to give the following useful ratios among the components of the eigenvectors:(
k2 − k2

R
)
E1 = − (

k2 − k2
L
)
E2 E3 =

Δ2
k

k2
0

(E1 − E2) (4.99)

Finally, the two eigenvectors in the circular polarization basis of the light (R ; L ; Z) to lowest order in Δ2
k

are:

kR : ( 1 ; 0 ; 0 ) +
Δ2

k

k2
0

(
0 ; − tan(θ)

4
; +1

)
(4.100)

kL : ( 0 ; 1 ; 0 ) +
Δ2

k

k2
0

(
+

tan(θ)
4

; 0 ; −1
)

(4.101)

This means that polarization eigenvector basis:

1. is very well approximated by the circular polarization basis of the light

2. has a small admixture of linear polarization

3. is slightly parallel to the propagation direction

4.3.4 Generalization to Atomic Polarization Vector

We’ve found that when we have a skew angle θ, the polarization P in the atomic polarizability is replaced
by P cos(θ). This is very suggestive, and following the argument of Dehmelt [28], we’ll replace P cos(θ) with
k̂ · �P where k̂ is the beam propagation direction and �P is the polarization vector. The quantum mechanical
form of this polarization vector is given by �P = 2

〈
�S
〉

where �S is the vector spin-1/2 operator. Therefore,

all instances of P should be replaced by k̂ · �P :

P → 2 (kx 〈Sx〉 + ky 〈Sy〉 + kz 〈Sz〉) k2
x + k2

y + k2
z = 1 (4.102)

When the beam is parallel to the magnetic field, then kz = 1 and P → 2 〈Sz〉. Since Sz is parallel to the
magnetic field by definition, its expectation value is since the difference in populations or P , as expected.
On the other hand, when the beam is perpendicular to the magnetic field, say kx = 1, then P → 2 〈Sx〉.
The expectation value of Sx involves coherences. If there is no external RF field, then the coherences are
oscillating at the Larmor frequency. If there is an external RF field, then the coherences will be oscillating
at the frequency of the RF field. In either case, the expectation value of Sx will be oscillatory and as a
consequence so will the polarizability.

A more rigorous derivation of this generalization involving group theoretical methods can be found in
Happer & Mathur [29]. They derive an irreducible tensor decomposition of the atomic polarizability (in the
linear polarization basis):

↔
α= αS

↔
1 +αV (〈�μ〉×) + αT

〈↔
Q

〉
(4.103)

where αS,V,T are the scalar, vector, & tensor polarizabilities, �μ is the magnetic dipole operator, and
↔
Q is

the electric quadrupole operator. Dropping the electric quadrupole part, we can write atomic polarizability
in matrix form:

↔
α=

⎡
⎣ αS 0 0

0 αS 0
0 0 αS

⎤
⎦ +

αV gSμB

2

⎡
⎣ 0 −Pz Py

Pz 0 −Px

−Py Px 0

⎤
⎦ (4.104)
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where �μ = gSμB
�S, Pn = 2 〈Sn〉, and we used the matrix form of the cross product. This looks suspiciously

like Eqn. (4.84):

↔
α=

1
2

⎡
⎣ σ −iδ 0
iδ σ 0
0 0 2α0

⎤
⎦ =

σ

2
+ i

δ

2

⎡
⎣ 0 −1 0

1 0 0
0 0 0

⎤
⎦ (4.105)

where we can equate σ/2 = α0 = αS , iδ/2 = αV gsμBPz/2 , Px = Py = 0. We’ll now proceed with the rest
of the analysis from Sec.(4.3.2), but now with Px �= 0 and Py �= 0. As a reminder, we’re starting in the linear
atomic basis. We rotate by θ from the linear basis of atomic system to linear polarization basis of the light:⎡

⎣ cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

⎤
⎦
⎡
⎣ 0 −Pz Py

Pz 0 −Px

−Py Px 0

⎤
⎦
⎡
⎣ cos(θ) 0 − sin(θ)

0 1 0
sin(θ) 0 cos(θ)

⎤
⎦ (4.106)

where we get:

PzMz + PxMx + PyMy =

⎡
⎣ 0 −Pz cos(θ) + Px sin(θ) Py

+Pz cos(θ) − Px sin(θ) 0 −Pz sin(θ) − Px cos(θ)
−Py Pz sin(θ) + Px cos(θ) 0

⎤
⎦

(4.107)
Finally we’ll switch from the linear polarization basis of the light to the circular one. We already know how
to transform PzMz:

PzM
′
z =

1√
2

⎡
⎣ +1 −i 0

+1 +i 0
0 0 +1

⎤
⎦Pz

⎡
⎣ 0 − cos(θ) 0

cos(θ) 0 − sin(θ)
0 sin(θ) 0

⎤
⎦ 1√

2

⎡
⎣ +1 +1 0

+i −i 0
0 0 +1

⎤
⎦ (4.108)

which gives:

PzM
′
z =

⎡
⎣ −iPz cos(θ) 0 − i

2Pz sin(θ)
0 +iPz cos(θ) + i

2Pz sin(θ)
+ i

2Pz sin(θ) − i
2Pz sin(θ) 0

⎤
⎦ (4.109)

If we make the substitutions Pz cos(θ) → −Px sin(θ) and Pz sin(θ) → Px cos(θ), then if can immediately
transform Mx to M ′

x to give:

PxM
′
x =

⎡
⎣ +iPx sin(θ) 0 − i

2Px cos(θ)
0 −iPx sin(θ) + i

2Px cos(θ)
+ i

2Px cos(θ) − i
2Px cos(θ) 0

⎤
⎦ (4.110)

Finally, we need to transforms PyMy in the following way:

PyM
′
y =

1√
2

⎡
⎣ +1 −i 0

+1 +i 0
0 0 +1

⎤
⎦Py

⎡
⎣ 0 0 1

0 0 0
−1 0 0

⎤
⎦ 1√

2

⎡
⎣ +1 +1 0

+i −i 0
0 0 +1

⎤
⎦ (4.111)

which gives:

PyM
′
y =

⎡
⎣ 0 0 Py/2

0 0 Py/2
−Py/2 −Py/2 0

⎤
⎦ (4.112)

Putting this altogether gives:

PzM
′
z + PxM

′
x + PyM

′
y = −i

⎡
⎣ +k̂ · �P 0 +pxz/2 + iPy/2

0 −k̂ · �P −pxz/2 + iPy/2
−pxz/2 − iPy/2 +pxz/2 − iPy/2 0

⎤
⎦ (4.113)

where Pz cos(θ) − Px sin(θ) = k̂ · �P and pxz = Pz sin(θ) + Px cos(θ). Therefore, the polarizability in the
circular polarization basis is:

↔
α=

1
2

⎡
⎣ σ + δ′k̂ · �P 0 +δ′(pxz + iPy)/2

0 σ − δ′k̂ · �P −δ′(pxz − iPy)/2
−δ′(pxz + iPy)/2 +δ′(pxz − iPy)/2 σ

⎤
⎦ (4.114)
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where δ′ = δ/P and compared to Eqn. (4.88):

↔
α=

1
2

⎡
⎣ σ + δ cos(θ) 0 + δ

2 sin(θ)
0 σ − δ cos(θ) − δ

2 sin(θ)
− δ

2 sin(θ) + δ
2 sin(θ) σ

⎤
⎦ (4.115)

we see that (1) δ cos(θ) has been replaced by δ′k̂ · �P and (2) the off diagonal elements δ sin(θ)/2 have been
replaced by δ′(pxz ± iPy). Analogous to before, we’ll define the following quantities:

k2
Q = ω2

c2

(
1 + [A]

ε0
αQ

)
αQ = ε0rec2

2π

[
f1/ν1

ν1−ν−iΓ1/2

(
1 − qk̂ · �PA

)
+ f2/ν2

ν2−ν−iΓ2/2

(
1 + qk̂·�PA

2

)]
(4.116)

where q = +1, 0,−1 for Q = R, 0,L respectively. Just as before, the eigenvalues are essentially kR and kL
with very small corrections at the level of δ′2(pxz ± iPy)2/(16k2

0). Corrections due to a non-zero field slightly
modify these very small corrections and therefore can safely be ignored as well.

4.3.5 Components Without An RF Field (Calculation of 〈Sz〉)
The components of the atomic polarization vector �P are just the expectation values of the spin-1/2 operators
Sx,Sy,&Sz. We’ll work in the |F,m〉 basis To calculate the expectation values of Sz, Sx & Sy, we’ll first
calculate it for Sq (S0 = Sz ; S± = Sx ± iSy) using:

〈Sq〉 =
∑

F,F ′,m

〈F ′,m| ρ |F,m± 1〉 〈F,m+ q|Sq |F ′,m〉 (4.117)

The coherences are simply:

〈F ′,m| ρ |F,m+ q〉 = ρF ′mFm+q(0) exp [−iωF ′mFm+qt] (4.118)

For a large collection of atoms at equilibrium, the spins have all dephased and ρF ′mFm+q(0) is equal to
zero. Therefore, all the coherences are zero. Consequently, the only nonzero terms are ones that involve
populations:

〈Sz〉 =
∑
F,m

ρm 〈F,m|Sz |F,m〉 (4.119)

Since we originally defined P = 2 〈Sz〉, we should obtain 〈Sz〉 = Pz/2. To evaluate the Sz matrix element,
we’ll have to expand |F,m〉 in the |(I, 1/2),mI ,±1/2〉 basis:

〈Sz〉 =
∑

F,m,mS,m′
S

exp(βm)
ZIZ1/2

×
〈
F,m |

(
I,

1
2

)
,m−m′

S ,m
′
S

〉
〈m−m′

S ,m
′
S |Sz |m−mS ,mS〉

〈(
I,

1
2

)
,m−mS ,mS | F,m

〉
(4.120)

=
∑

F,m,mS

exp(βm)
ZIZ1/2

mS

[〈
F,m |

(
I,

1
2

)
,m−mS ,mS

〉]2

(4.121)

(4.122)

Since there are two manifolds F = I ± 1/2, we’ll split the sum into two pieces:

〈Sz〉 =
m=+I+1/2∑
m=−I−1/2

+1/2∑
mS=−1/2

exp(βm)
ZIZ1/2

mS

[〈
I + 1/2,m |

(
I,

1
2

)
,m−mS ,mS

〉]2

+
m=+I−1/2∑
m=−I+1/2

+1/2∑
mS=−1/2

exp(βm)
ZIZ1/2

mS

[〈
I − 1/2,m |

(
I,

1
2

)
,m−mS ,mS

〉]2

(4.123)

(4.124)
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Using the Clebsch-Gordon formulas from Sec. (C.2):

〈Sz〉 =
m=+I+1/2∑
m=−I−1/2

+1/2∑
mS=−1/2

exp(βm)
ZIZ1/2

mS

[
I + 1/2 + 2mSm

[I]

]

+
m=+I−1/2∑
m=−I+1/2

+1/2∑
mS=−1/2

exp(βm)
ZIZ1/2

mS

[
I + 1/2 − 2mSm

[I]

]

=
m=+I+1/2∑
m=−I−1/2

+1/2∑
mS=−1/2

exp(βm)
ZIZ1/2

[
+2m2

Sm

[I]

]
+

m=+I−1/2∑
m=−I+1/2

+1/2∑
mS=−1/2

exp(βm)
ZIZ1/2

[−2m2
Sm

[I]

]

=
+1/2∑

mS=−1/2

(
exp(+β[I]/2)

ZIZ1/2

[
+2m2

S[I]/2
[I]

]
+

exp(−β[I]/2)
ZIZ1/2

[−2m2
S[I]/2
[I]

])
(4.125)

where the symmetric sum over mS = ±1/2 cancels the mS(I + 1/2)/[I] terms and the 2m2
Sm/[I] term from

one manifold cancels the one from the other manifold, except for the edge states m = I ± 1/2:

〈Sz〉 =
2 exp(+β[I]/2)

4ZIZ1/2
− 2 exp(−β[I]/2)

4ZIZ1/2
=

sinh(β[I]/2)
ZIZ1/2

=
sinh(β/2)

√
1 − P 2

z

2

=

(√
1 + Pz

1 − Pz
−

√
1 − Pz

1 + Pz

) √
1 − P 2

z

4
=

(
(1 + Pz) − (1 − Pz)√

1 − P 2
z

) √
1 − P 2

z

4
=
Pz

2
(4.126)

where we’ve used Eqns. (3.265) & (3.266) (with P → Pz) and as expected Pz = 2 〈Sz〉.

4.3.6 Components With An RF Field (Calculation of 〈Sx〉 & 〈Sy〉)
In this section, we’ll assume that there is an RF Field with frequency ω creating coherences only within
a manifold. In other words, there are no RF fields that induce F = I + 1/2 ↔ F ′ = I − 1/2 transitions.
Therefore, the expectation value for Sz is the same as the last section. To calculate the expectation values
of Sx and Sy, we’ll first calculate S± = Sx ± iSy using Eqn. (3.55) in the form of:

〈S±〉 =
∑
m

{
Ω (ρm − ρm∓1)

(
u∓±

)∗ |〈F,m| U± |F,m∓ 1〉|2
±ω − ωFmFm∓1 − iγFmFm∓1

× exp(±iωt)

+
Ω (ρm − ρm∓1)

(
u±±

)∗ |〈F ′,m| U± |F ′,m∓ 1〉|2
∓ω − ωF ′mF ′m∓1 − iγF ′mF ′m∓1

× exp(∓iωt)
}

(4.127)

where we’ve split the sum over the two manifolds (F = I + 1/2 & F ′ = I − 1/2) and the population of
each state depends only on m. As a reminder, ± is the sign of ωFm+qFm = ωFm+q − ωFm. Finally, for the
F = I + 1/2 manifold, the energy of the m state is higher than the energy of the m− 1 state, whereas for
the F ′ = I − 1/2 manifold, the opposite is true. Therefore the frequency of the transition m ↔ m − 1 is
positive for the F = I + 1/2 manifold, whereas its negative for the F ′ manifold. Since Sx = (S+ + S−)/2,
we can write its expectation value as:

〈Sx〉 =
∑
m

{
Ω (ρm − ρm−1)

(
u−+

)∗ |〈F,m|S+ |F,m− 1〉|2
+ω − ωFmFm−1 − iγFmFm−1

× exp(+iωt)
2

+
Ω (ρm − ρm+1)

(
u+
−
)∗ |〈F,m|S− |F,m+ 1〉|2

−ω − ωFmFm+1 − iγFmFm+1
× exp(−iωt)

2

+
Ω (ρm − ρm−1)

(
u+

+

)∗ |〈F ′,m|S+ |F ′,m− 1〉|2
−ω − ωF ′mF ′m−1 − iγF ′mF ′m−1

× exp(−iωt)
2
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+
Ω (ρm − ρm+1)

(
u−−

)∗ |〈F ′,m|S− |F ′,m+ 1〉|2
+ω − ωF ′mF ′m+1 − iγF ′mF ′m+1

× exp(+iωt)
2

}
(4.128)

where Ω = gSμBBrf/h̄, u−q = ε∗q · B̂rf, and u+
q = ε∗q · B̂∗

rf. As mentioned before, we’ll label the transition by
the higher m involved. Relabeling the terms in the sum and moving a few minus signs around gives:

〈Sx〉 =
∑
m

{
Ω (ρm − ρm−1)

(
u−+

)∗ |〈F,m|S+ |F,m− 1〉|2
+ω − ωFmFm−1 − iγFmFm−1

× exp(+iωt)
2

+
Ω (ρm − ρm−1)

(
u+
−
)∗ |〈F,m− 1|S− |F,m〉|2

+ω − ωFmFm−1 + iγFm−1Fm
× exp(−iωt)

2

− Ω (ρm − ρm−1)
(
u+

+

)∗ |〈F ′,m|S+ |F ′,m− 1〉|2
+ω − ωF ′m−1F ′m + iγF ′mF ′m−1

× exp(−iωt)
2

− Ω (ρm − ρm−1)
(
u−−

)∗ |〈F ′,m− 1|S− |F ′,m〉|2
+ω − ωF ′m−1F ′m − iγF ′m−1F ′m

× exp(+iωt)
2

}
(4.129)

We’ve already calculated that:

ρm − ρm−1 = QIm̄Pz (4.130)

|〈F,m|S± |F,m∓ 1〉|2 =
F (F + 1) −m(m∓ 1)

[I]
(4.131)

So we just need to work out what this term looks like:

u∗ exp(+iωt)/2
ω − ω0 − iγ

+
u exp(−iωt)/2
ω − ω0 + iγ

= �
{
u exp(−iωt)
ω − ω0 + iγ

}
= �{u [cos(ωt) − i sin(ωt)] [D − iL]} (4.132)

where the two terms are just complex conjugates of each other, which makes their sum just the real part of
either term and we’ve made the substitutions:

D =
ω − ω0

(ω − ω0)2 + γ2
L =

γ

(ω − ω0)2 + γ2
(4.133)

Expanding this out and grouping terms by phase:

�{u [cos(ωt) − i sin(ωt)] [D − iL]} = [D�{u} + L�{u}] cos(ωt) + [D�{u} − L�{u}] sin(ωt) (4.134)

Using this, we can anticipate the final form of the expectation value of Sx:

〈Sx〉 = Pz [〈Sx〉c cos(ωt) + 〈Sx〉s sin(ωt)] (4.135)

where c(s) refers to the cosine (sine) component, ± refers to the manifold, and we get:

〈Sx〉c =
Ω
[I]

∑
(±),m

(±)QIm̄ [(I + 1/2)(I + 1/2 ± 1) −m(m− 1)]
[D±

m�{u−±} + L±
m�{u−±}

]
(4.136)

〈Sx〉s =
Ω
[I]

∑
(±),m

(±)QIm̄ [(I + 1/2)(I + 1/2 ± 1) −m(m− 1)]
[D±

m�{u−±} − L±
m�{u−±}

]
(4.137)

where I is the nuclear spin, ± refers to the manifold, we sum over both m and ± and:

D+
m =

ω − ωFmFm−1

(ω − ωFmFm−1)2 + γ2
FmFm−1

(4.138)

L+
m =

γFmFm−1

(ω − ωFmFm−1)2 + γ2
FmFm−1

(4.139)

D−
m =

ω − ωF ′m−1F ′m

(ω − ωF ′m−1F ′m)2 + γ2
F ′m−1F ′m

(4.140)

L−
m =

γF ′m−1F ′m

(ω − ωF ′m−1F ′m)2 + γ2
F ′m−1F ′m

(4.141)
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where F = I + 1/2 and F ′ = I − 1/2.
For Sy = (S+ − S−)/(2i), we get terms that look like:

u∗ exp(+iωt)/(2i)
ω − ω0 − iγ

− u exp(−iωt)/(2i)
ω − ω0 + iγ

= −�
{
u exp(−iωt)
ω − ω0 + iγ

}
= −�{u [cos(ωt) − i sin(ωt)] [D − iL]}

(4.142)
Expanding this out and grouping terms by phase:

−�{u [cos(ωt) − i sin(ωt)] [D − iL]} = [D�{u} + L�{u}] sin(ωt) − [D�{u} − L�{u}] cos(ωt) (4.143)

This is the same as for Sx except we make the substitutions cos → sin and sin → − cos:

〈Sy〉 = Pz

[〈Sy〉c cos(ωt) + 〈Sy〉s sin(ωt)
]

(4.144)

〈Sy〉c =
Ω
[I]

∑
(±),m

(∓)QIm̄ [(I + 1/2)(I + 1/2± 1) −m(m− 1)]
[D±

m�{u−±} − L±
m�{u−±}

]
(4.145)

〈Sy〉s =
Ω
[I]

∑
(±),m

(±)QIm̄ [(I + 1/2)(I + 1/2± 1) −m(m− 1)]
[D±

m�{u−±} + L±
m�{u−±}

]
(4.146)

The expectation values contain both lorentzian L) and dispersive (D) line shapes. They both contain
in-phase and out-of-phase terms. Finally, the two manifolds appear with opposite signs.

4.4 Synthesis

We’re now in a position to write the wave vector kq in terms of the polarizability:

kq =
ω

c
nq =

ω

c

√
εqμq

ε0μ0
=
ω

c

√
1 +

[A]αq

ε0
=
ω

c

(
1 +

[A]αq

2ε0
− [A]2α2

q

8ε20
+ · · ·

)
(4.147)

Expanding kq in terms of its real and imaginary parts gives, up to second order:

kq =
ω

c

(
1 +

[A]
2ε0

(�αq + i�αq) − [A]2

8ε20

{
(�αq)2 − (�αq)2 + 2i(�αq)(�αq)

})
(4.148)

Under our typical densities, the second order term is quite small and keep only up to first order:

kq =
ω

c
+ [A]2πrecf1

ω

ω1

( �αq + i�αq

4πε0rec2f1/ω1

)
=
ω

c
+ [A]recf1

(
ω

ω1

)
(2πC�αq + i2πC�αq) (4.149)

where 1/C = 4πε0rec2f1/ω1. Making the substitution P → k̂· �PA, the imaginary part of the polarizability is
for q = 0,±1:

C�αq =
(1 − qk̂ · �PA)

2
L1

{
1 + q

[
2
3
− 8

3
ωsoD1

]
y +

[
2
3
− q2 − 4

3
ωsoD1 +

4 + 12q2

9
ω2
so

(
4D2

1 − L1

γ1

)]
y2

}

+L2

{
1 − q

[
1
3

+
7
3
ωsoD2

]
y +

[
−1

3
+
q2

2
+ q2ωsoD2 +

1 + 12q2

9
ω2
so

(
4D2

2 − L2

γ2

)]
y2

}

+
qk̂· �PA

2
L2

{
1 + q

[
2
3
− 4

3
ωsoD2

]
y +

[
−1

3
− 2ωsoD2 +

1
9
ω2
so

(
4D2

2 −
L2

γ2

)]
y2

}
+(1 − q2)k̂ · �PA {L1 [−1 + ωsoD1] + L2 [+1 + ωsoD2]} 2y

3
(4.150)

and similarly for the real part:

C�αq =
(1−qk̂· �PA)

2
D1

{
1+q

[
2
3
− 8

3
ωsoD1

]
y+

[
2
3
−q2− 4

3
ωsoD1 +

4 + 12q2

9
ω2
so

(
4D2
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L1

γ1

)]
y2

}
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+D2

{
1 − q

[
1
3

+
7
3
ωsoD2

]
y +

[
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3
+
q2

2
+ q2ωsoD2 +

1 + 12q2

9
ω2
so

(
4D2
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L2

γ2

)]
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}

+
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2
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[
2
3
− 4

3
ωsoD2

]
y +
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3
− 2ωsoD2 +

1
9
ω2
so

(
4D2

2 − 3
L2

γ2

)]
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}

+(1 − q2)k̂ · �PA

{
D1 [−1 + ωsoD1] + D2 [+1 + ωsoD2] − 1

2
L1
ωso
γ1

}
2y
3

+(1 − qk̂· �PA)L1
ωso
γ1

{
2q
3
y +

1
3
y2

}
+ L2

ωso
γ2

{
7q
6
y − q2

2
y2

}
+ k̂· �PAL2

ωso
γ2

{
2q2 − 1

3
y +

q

2
y2

}
(4.151)

and finally :

k̂ · �PA = PA

[
kz +

(
kx 〈Sx〉c + ky 〈Sy〉c

)
cos(ωrft) +

(
kx 〈Sx〉s + ky 〈Sy〉s

)
sin(ωrft)

]
(4.152)

where Pz = PA and ωrf is the frequency of the RF field.
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Chapter 5

Experimental Applications

5.1 Accessing Observables Using Polarized Light

5.1.1 Modulating Polarized Light Using a PEM

The effect of the atomic interaction on the light is expressed by the complex index of refraction through
the wave vector �k. The direction of �k is always in the direction that the light is propagating. On the other
hand, the magnitude of �k depends on the details of the atomic system and the polarization vector of the
light. Our general experiment will consist of polarized traveling through a PEM, then the alkali vapor, and
finally a beam splitting polarizing cube for detection. We’ll start with a arbitrarily polarized plane wave:

�E = |E〉 ei�k·�r−iωt (5.1)

|E〉 = E0e
iφp

[(√
1 − P

e+iθ

2
+

√
1 + P

e−iθ

2

)
|P〉 +

(√
1 − P

e+iθ

2i
−√

1 + P
e−iθ

2i

)
|S〉

]
(5.2)

Going through a photoelastic modulator:

|E〉 = E0e
iφp

[(√
1 − P

e+iθ+

2
+
√

1 + P
e−iθ−

2

)
|P〉 +

(√
1 − P

e+iθ−

2i
−√

1 + P
e−iθ+

2i

)
|S〉

]
(5.3)

θ± = θ ± β(t)
2

(5.4)

Going back into the circular polarization basis, the right (+) and left (−) components are:

|E〉± = +
E0

2
√

2
ei(φp)

[{
e+iθ− ∓ e+iθ+

}√
1 − P − {

e−iθ+ ± e−iθ−
}√

1 + P
]

(5.5)

Going through the atomic vapor, each polarization component q of the light propagates with wave vector
�kq:

�E =
∑

q

|E〉q ε̂qe
i(�kq·�r−ωt) (5.6)

After traversing a distance of l in the atomic vapor and reentering a uniform and isotropic medium with
wave vector �k, we get:

�E = ei(�k·�r−ωt) ∑
q

|E〉q ε̂qe
ikq l (5.7)

The time averaged intensity of the light is:

I =
√
ε

μ

�E∗ · �E
2

=
√
ε

μ

∑
q

〈E | E〉q
2

ei(kq−k∗
q )l =

√
ε

μ

∑
q

〈E | E〉q
2

e−2l�kq (5.8)
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The effect of the atomic vapor can be written in (a very suggestive) matrix form in the linear polarization
basis in the light coordinate system:

|E〉aft = M̂ |E〉bef (5.9)

M̂ = ei(k++k−) l
2

⎡
⎣ cos

(
k+−k−

2 l
)

sin
(

k+−k−
2 l

)
− sin

(
k+−k−

2 l
)

cos
(

k+−k−
2 l

)
⎤
⎦ (5.10)

|E〉bef =
E0e

iφp

2

[ √
1 − Pe+iθ+ +

√
1 + Pe−iθ−

−i (√1 − Pe+iθ− −√
1 + Pe−iθ+

) ]
(5.11)

The atomic vapor has the effect of creating an overall complex phase of i(k++k−)l/2 and a complex rotation
through and angle (k+ −k−)l/2. Now we’ll send the light through a half waveplate whose axis is at an angle
φh:

Ŵ 1
2
M̂0 = i

⎡
⎣ + cos

(
k+−k−

2 l + 2φh

)
+ sin

(
k+−k−

2 l + 2φh

)
+ sin

(
k+−k−

2 l + 2φh

)
− cos

(
k+−k−

2 l + 2φh

)
⎤
⎦ (5.12)

The final polarization vector can be written as:

|E〉f = i
E0e

iφ′
p

2

⎡
⎣ √

1−Pe+iθ
(
cos(ψ)e+i β

2 −i sin(ψ)e−i β
2

)
+
√

1+Pe−iθ
(
cos(ψ)e+i β

2 +i sin(ψ)e−i β
2

)
i
√

1−Pe+iθ
(
cos(ψ)e−i β

2 −i sin(ψ)e+i β
2

)
−i√1+Pe−iθ

(
cos(ψ)e−i β

2 +i sin(ψ)e+i β
2

)
⎤
⎦

(5.13)

φ′p = φp + (k+ + k−)
l

2
(5.14)

ψ = (k+ − k−)
l

2
+ 2φh (5.15)

Noting that ψ is complex, the intensities of the two components are:

ζ =
√
ε

μ

E2
0

4
e−l�{k++k−} (5.16)

IP
ζ

= | cos(ψ)|2 + | sin(ψ)|2 + iP
(
cos(ψ∗) sin(ψ)e−iβ − cos(ψ) sin(ψ∗)e+iβ

)
+

√
1 − P 2 ×

�{
e+2iθ

[| cos(ψ)|2 − | sin(ψ)|2 − i cos(ψ∗) sin(ψ)e−iβ − i cos(ψ) sin(ψ∗)e+iβ
]}

(5.17)
IS
ζ

= | cos(ψ)|2 + | sin(ψ)|2 + iP
(
cos(ψ∗) sin(ψ)e+iβ − cos(ψ) sin(ψ∗)e−iβ

)−√
1 − P 2 ×

�{
e+2iθ

[| cos(ψ)|2 − | sin(ψ)|2 − i cos(ψ∗) sin(ψ)e+iβ − i cos(ψ) sin(ψ∗)e−iβ
]}

(5.18)

Using the following relations:

| cos(ψ)|2 = cos(ψ) cos(ψ∗) =
1
2

[cosh(2�ψ) + cos(2�ψ)] (5.19)

| sin(ψ)|2 = sin(ψ) sin(ψ∗) =
1
2

[cosh(2�ψ) − cos(2�ψ)] (5.20)

sin(ψ) cos(ψ∗) =
1
2

[+i sinh(2�ψ) + sin(2�ψ)] (5.21)

sin(ψ∗) cos(ψ) =
1
2

[−i sinh(2�ψ) + sin(2�ψ)] (5.22)

finally gives:

IP,S =
Iσ ± Iδ

2
(5.23)

Iσ = 2ζ
[
cosh(2�ψ) + sinh(2�ψ)

(√
1 − P 2 sin(2θ) sin(β) − cos(β)

)]
(5.24)

Iδ = 2ζ
[
P sin(β) sin(2�ψ) +

√
1 − P 2 (cos(2θ) cos(2�ψ) + sin(2θ) sin(2�ψ) cos(β))

]
(5.25)
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Using the following expansions for the β terms:

β(t) = β0 cos (Ωmodt) (5.26)
sin (β0 cos (Ωmodt)) = 2J1 (β0) cos (Ωmodt) − · · · (5.27)
cos (β0 cos (Ωmodt)) = J0 (β0) − 2J2 (β0) cos (2Ωmodt) + · · · (5.28)

we can extract the DC, the RMS AC1, and the RMS AC2 components of the sum (σ) and difference (δ)
signals:

Iσ(DC) = 2ζ [cosh(2�ψ) − J0(β0) sinh(2�ψ)] (5.29)

Iσ(AC1) = 2ζ
√

2J1 (β0) sinh(2�ψ)
√

1 − P 2 sin(2θ) (5.30)

Iσ(AC2) = 2ζ
√

2J2 (β0) sinh(2�ψ) (5.31)

Iδ(DC) = 2ζ
√

1 − P 2 [cos(2θ) cos(2�ψ) + J0(β0) sin(2θ) sin(2�ψ)] (5.32)

Iδ(AC1) = 2ζ
√

2J1(β0)P sin(2�ψ) (5.33)

Iδ(AC2) = 2ζ
√

2J2(β0)
√

1 − P 2 sin(2θ) sin(2�ψ) (5.34)

2ζ =
√
ε

μ

E2
0

2
e−l�{k++k−} (5.35)

ψ = (k+ − k−)
l

2
+ 2φh (5.36)

where:

1. Jn is a Bessel function of the first kind or order n

2. β0 = 2πβset

(
λset

λlight

)
is the PEM retardation. If there is no PEM, then we can simply set β0 = 0.

3. φh is the angle of the half waveplate axis with respect to the PEM axis

4. P is the degree of circular polarization of the light before the PEM

5. θ is the angle of linear polarization component of the light with respect to the PEM axis before the
PEM

6. � and � refer to the real and imaginary parts of a complex number

The AC components can be picked out using a Lock-In Amplifier referenced to the PEM frequency (Ωmod).
The DC components can be picked out using a low pass filter with a time constant that is several times
longer than the PEM period 1/Ωmod. For the case where there is no atomic vapor (l = 0):

Iσ(DC) =
√
ε

μ

E2
0

2
(5.37)

Iσ(AC1) = 0 (5.38)
Iσ(AC2) = 0 (5.39)

Iδ(DC) = Iσ(DC)
√

1 − P 2 [cos(2θ) cos(4φh) + J0(β0) sin(2θ) sin(4φh)] (5.40)

Iδ(AC1) = Iσ(DC)
√

2J1(β0)P sin(4φh) (5.41)

Iδ(AC2) = Iσ(DC)
√

2J2(β0)
√

1 − P 2 sin(2θ) sin(4φh) (5.42)

This gives a simple method for measuring the degree of circular polarization (Sec. (2.6.2)) using a rotatable
half-waveplate (RHWP). As the RHWP is rotated, the signal Iδ(AC1)/Iσ will oscillate between a maximum
and minimum four times through one complete rotation. The normalized amplitude of this sinusoidal
oscillation is

√
2J1(β0)P . If there is no PEM, then J0(0) = 1 and Iδ(DC)/Iσ will oscillate in the same way,

this time with an amplitude of
√

1 − P 2.
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5.1.2 The Imaginary Part of the Polarizability Sum

The imaginary sum is given by:

� (k+ + k−) =
[A]2πrecf1ω

ω1
C�(α+ + α−) (5.43)

The sum of the imaginary parts of the polarizability is given by:

C�(α++α−) =
(1 − k̂ · �PA)

2
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3
ωsoD1

]
y+

[
−1

3
− 4

3
ωsoD1 +
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[
−1

3
+

1
2

+ ωsoD2 +
1 + 12

9
ω2
so

(
4D2

2 − L2

γ2

)]
y2

}

+
−k̂· �PA

2
L2

{
1 −

[
2
3
− 4

3
ωsoD2

]
y +

[
−1

3
− 2ωsoD2 +

1
9
ω2
so

(
4D2

2 − L2

γ2

)]
y2

}
+(1 − 1)k̂· �PA {L1 [−1 + ωsoD1] + L2 [+1 + ωsoD2]} 2y
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y (5.44)

5.1.3 The Imaginary Part of the Polarizability Difference

The imaginary difference is given by:

2�ψ = 2� (k+ − k−)
l

2
=
l[A]2πrecf1ω

ω1
C�(α+ − α−) (5.45)

The difference of the imaginary parts of the polarizability is given by:

C�(α+−α−) =
(1 − k̂ · �PA)
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(5.46)

5.1.4 The Real Part of the Polarizability Sum

The real sum is given by:

� (k+ + k−) =
[A]2πrecf1ω

ω1
C�(α+ + α−) (5.47)

The sum of the real parts of the polarizability is given by:

C�(α++α−) =
(1−k̂· �PA)
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5.1.5 The Real Part of the Polarizability Difference

The real difference is given by:

2�ψ = 2� (k+ − k−)
l

2
+ 4φh =

l[A]2πrecf1ω
ω1

C�(α+ − α−) + 4φh (5.49)

The difference of the real parts of the polarizability is given by:

C�(α+−α−) =
(1−k̂· �PA)
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(5.50)

5.2 D1 & D2 Absorption Spectroscopy

5.2.1 Experimental Signal: The Absorption Cross Section

For absorption measurements:

1. The intensity of the probe beam is kept very small so that there is essentially no optical pumping.
Therefore the alkali polarization is thermal and essentially zero, PA = 0.

2. The alkali vapor is subject only to the earth’s magnetic field. This is less than a gauss, so we take the
field to be zero, B = y = 0.

3. A PEM will not be used, therefore, β0 = 0 and Jn(0) = δn0.

4. There is no analyzer half-wave plate, φh = 0.

5. Only the total (sum) intensity before and after the alkali vapor is measured.
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The transmitted intensity is therefore given by:

It = 2ζ [cosh(2�ψ) − sinh(2�ψ)] 2ζ = I0e
−l�{k++k−} ψ = � (k+ − k−)

l

2
(5.51)

where I0 is the intensity of the probe beam before the alkali vapor and the imaginary sum & difference of
the polarizabilities are given by:

�(α+ − α−) = 0 �(α+ + α−) = L1 + 2L2 (5.52)

We’ll now introduce the absorption cross section:

σ(ν) =
�(k+ + k−)

[A]�
= 2πrec

[(
ω

ω1

)
f1L1 +

(
ω

ω2

)
f2L2

]
(5.53)

We’ll make the approximations ω ≈ ω1 & ω ≈ ω2 and the substitutions ν = ω/(2/π) & Γ/2 = γ/(2π) to get:

σ(ν) = rec

[
f1Γ1/2

(ν − ν1)2 + Γ2
1/4

+
f2Γ2/2

(ν − ν2)2 + Γ2
2/4

]
(5.54)

where ν is the laser frequency, re is the classical electron radius, c is the speed of light in a vacuum, f1(2)
is the D1(2) oscillator strength, ν1(2) is the D1(2) transition frequency, and Γ1(2) is the full width at half
maximum pressure broadening D1(2) line width.

The probe beam from the Ti:Sapphire (aka Single Frequency aka Ring) laser has a frequency dependent
intensity which is modulated by an optical chopper at a frequency ωmod:

I0(ν, t) = I0(ν)

[
1
2

+
2
π

∞∑
k=1

sin((2k − 1)ωmodt)
2k − 1

]
(5.55)

where we’ve explicitly written the Fourier decomposition of the square wave produced by the chopper. The
reference and transmitted intensities are converted into AC voltages (due to the chopper) by the photodiodes,
amplified by the “photodiode box,” converted into DC signals by the Lock-In amplifiers (referenced to ωmod),
and finally digitized by the “autoscan interface box:”

Nref(ν) = GPD1GPD1−boxGlockin−1GADCI0(ν) (5.56)
Ntrans(ν) = GPD2GPD2−boxGlockin−2GADCIt(ν) (5.57)

where N is the number of bits from 0 to 4095 that the data channel reads. The raw data recorded in the
“.SCN” file are the frequencies and the values of Nref and Ntrans in binary format. Before analysis, they
have to be converted into ASCII format using a LabVIEW vi called “readscn.vi.” We ultimately want to fit
to σ(ν). Therefore the analysis program first makes the following transformation:

x = ν y = log
(
Ntrans

Nref

)
= −[A]σ(x)l + log

(
GPD2GPD2−boxGlockin−2

GPD1GPD1−boxGlockin−1

)
(5.58)

5.2.2 Corrections to the Line Shape

Introduction

Eqn. (5.54) implies that the line shape is a sum of pure lorentzian curves. However, it neglects:

1. An oscillatory background due to imperfect cancellation of the interference pattern produced by the
cover of the photodiodes.

2. Natural line width

3. Doppler broadening

4. Finite hyperfine splittings of the ground and excited states.
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5. Natural isotopic composition of the alkali vapor

6. Possible “leakage” of the wings of nearby absorption lines

Since we claim that the PB method is accurate at the 1 percent level (or even less), we’ll discuss the above
points more carefully.

When trying to determine how small of an effect is small enough to ignore, it’s important to keep in
mind the relative scales of the line shape. The FWHM of the absorption curve is about 20 GHz/amagat;
so, an 8 amagat cell has about a 160 GHz FWHM. The frequency resolution (frequency jitter/noise and line
width) of the Ti:Sapphire is about 1 MHz. Data is acquired in about 1 GHz intervals. The accuracy of the
Autoscan Wavemeter is in principle easily sub-GHz. However, in practice, the frequency can be shifted by
as much as 20 GHz with the shift being independent of frequency. The quantities of interest are insensitive
to the absolute frequency. This is because we only use the width of the line (and not the shift of the line)
to determine the noble gas density. In addition, the alkali density is derived from the “size” of the dip and
not from the “location.” As a final note, it’s important to mention that the data acquisition time interval
and lock-in time constant are chosen carefully to minimize lock-in time averaging signal shaping effects
(minimum time between points > five lock-in time constants).

Natural Line width

The natural line width is given by the spontaneous emission rate. For both lines of potassium and rubidium,
the excited state lifetimes are all about τ ≈ 30 ns. Therefore the natural line width is about γnat = τ−1 ≈
0.03 GHz. This is negligible.

Doppler Broadening

Doppler broadening of a spectral line is due to the Doppler shift. The Doppler width is obtained from the
width of the velocity distribution of the gas molecules or atoms. In our case, this is the Maxwell velocity
distribution, which is Gaussian. The FWHM as a fraction of the transition frequency is given by the formula
(Demtroder, page 68, eq 3.43c):

δνD

ν0
= 7.16 × 10−7

√
T (in Kelvin)

M (in grams per mole)
(5.59)

For the D2 lines of Potassium and Rubidium at 150 C, the doppler widths are 0.91 GHz and 0.60 GHz
respectively. These widths are less than one percent of the pressure broadened widths and are therefore
negligible(?). For much lower pressure broadened widths, this is not negligible and the data must be fit to
a Voigt profile, which is a convolution of a lorentzian line shape (pressure broadening) with a Gaussian line
shape (Doppler broadening). An alternative is to simulate the effect and determine a Doppler correction
factor.

Effect of Buffer Gas Collisions

When the collision between the alkali metal atom and perturbing atom occurs instantaneously (Td = 0),
then the absorption line shape is written as:

L(Δ) =
1
2π

γ

Δ2 + γ2/4
(5.60)

Δ ≡ ω − ω0 − δω(T ) (5.61)
γ = γnat + 〈σv〉pb (T )[N ] (5.62)

where γ is the FWHM broadening rate, Δ is the detuning from resonance (ω0 + δω), δω is the temperature
dependent resonance detuning shift due to collisions, γnat is the natural line width, 〈σv〉pb (T ) is the temper-
ature dependent velocity averaged collisional cross section, and [N ] is the perturber density. This is called
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the impact approximation. Generalizing to finite collision times (Td �= 0) results in a detuning dependent
broadening rate:

L(Δ) =
1
2π

γ(x(T ))
Δ2 + γ(0)2/4

(5.63)

x(T ) ≡ Δ(T )Td(T ) (5.64)

The exact form of γ(x) depends on the interatomic potentials between the alkali atom and the perturber
atom. If a van der Waals potential of the form:

h̄ (Vexcited − Vground) = h̄ΔV (R) = −C6

R6
(5.65)

is assumed to be the interatomic potential (where R is the interatomic separation) and working the low
perturber density regime (Tdγ � 1), then Walkup et al [30] showed that the broadening rate could be
written as:

γ(x) = γnat + 〈σv〉pb (x(T ))[N ] (5.66)

〈σv〉pb (x(T )) = 8πR2
th(T )vth(T )f(x(T )) (5.67)

vth(T ) =

√
2kT
μ

(5.68)

Rth(T ) = 5
√
|C6|v−1

th (5.69)

Td(T ) ≡ Rth

vth
= 5

√
|C6|v−6

th (5.70)

where vth is the most probable thermal velocity in the center of mass system, μ is the reduced mass, Rth is
the effective collision radius, Td is the temperature dependent effective collision duration time, and f(x, T )
is a dimensionless function that contains the detuning dependence.

Walkup et al calculated f(x, T ) in three regimes:

f(x, T ) ≈

⎧⎪⎨
⎪⎩

π
6

√
x x < −2.4

0.3380− 0.2245x −1.5 < x < 0.5
0.8464

√
x exp

[
−2.1341x

5
9

]
x > 2.4

⎫⎪⎬
⎪⎭ (5.71)

Near resonance, x ≈ 0, the FWHM in the numerator should be replaced with:

Γn → Γn

[
1 −

(
0.2245
0.3380

)
T n

d 2π (ν − νn)
]

(5.72)

where n refers to the Dn transition & T n
d is the effective collision time.

Finite Hyperfine Splitting, Isotopic Composition, and Wing Leakage

Table A.6 lists the hyperfine splittings of all the alkali metal isotopes (AIV77 = Arimondo et al, RMP, 49,
p31-75 (1977)). The natural abundance of each of these isotopes is listed in table A.5 (NISTx = NIST
websites). The hyperfine interaction between the nuclear spin and electron angular momentum causes an
additional small splitting of the spectral line. This splitting, if not accounted for, would appear as a slight
additional broadening. All the excited state hyperfine splittings are less that 0.5 GHz and therefore will be
neglected. The ground state hyperfine splitting for both isotopes of Rb are larger than 3 GHz, see table A.6.
The energy shifts due to the hyperfine splitting of ground state are given by:

ΔEF

h
= ΔνF = ΔxF =

A

2

[
F (F + 1) − I(I + 1) − 3

4

]
(5.73)

where I is the nuclear spin of the isotope and F = I ± 1
2 .
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This is large enough to worry about for Rb and therefore each line of Rb should be fit to a set of four
Lorenztians, two for the hyperfine splitting and one for each isotope:

y = 0.7217c0

([
7
12

]
[1 + 0.664 × 2πc1 (x− c2 + 1.264887)]

(x− c2 + 1.264887)2 + c2
3
4

+
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5
12
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[1 + 0.664 × 2πc1 (x− c2 − 1.770844)]

(x− c2 − 1.770844)2 + c2
3
4

)

+0.2783c0

([
5
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]
[1 + 0.664 × 2πc1 (x− c2 + 2.563005)]

(x− c2 + 2.563005)2 + c2
3
4

+
[
3
8

]
[1 + 0.664 × 2πc1 (x− c2 − 4.271676)]

(x− c2 − 4.271676)2 + c2
3
4

)
+ c4 (5.74)

where x, the laser frequency, is in units of GHz and the parameters c0,c1,c2,c3 & c4 are:∫ ∞

0

σ(ν)dν = σ0 = πrecf (5.75)

c0 = − [A]lσ0Γ
2π

(
GHz2

)
(5.76)

c1 = Td

(
GHz−1

)
(5.77)

c2 = ν0 (GHz) (5.78)
c3 = Γ (GHz) (5.79)

c4 = log
(
GPD2GPD2−boxGlockin−2

GPD1GPD1−boxGlockin−1

)
(unitless) (5.80)

Only one isotope of K has a hyperfine splitting of greater than 1 GHz. However, that isotope (40K)
is naturally abundant only at the ppm level, which is negligible. The more abundant isotopes of K have
negligible (< 1 GHz) hyperfine splittings. The potassium D1 and D2 lines are very close (≈ 1700 GHz)
compared to the expected widths (≈ 160 GHz). Note that this is not a problem for Rb, because the D1
and D2 lines are well separated (≈ 7100 GHz) compared to their widths (≈ 160 GHz). Although the D1
line for K and the D2 line for Rb are well separated (≈ 5000 GHz) compared to their widths (≈ 160 GHz),
the relative size of the “peaks” is expected to be about 10 to 1 favoring K. This may mean that the K D1
line leaks into the Rb D2 line. We’ll have to see what the data looks like, but if this is the case, then we’ll
need to fit the K D1, K D2, and Rb D2 lines altogether. If that is not the case, then the Rb D2 can be fit
separately but the K D1 and D2 lines still should be fit together (neglecting the small hyperfine splitting for
K):

y =
c0 [1 + 0.664 × 2πc1 (x− c2)]

(x− c2)
2 + c2

3
4︸ ︷︷ ︸

D1

+
c5 [1 + 0.664× 2πc6 (x− c7 − 1730.32)]

(x− c7 − 1730.32)2 + c2
8
4︸ ︷︷ ︸

D2

+c4 (5.81)

where, for K, (c0,c1,c2,c3) refer to the D1 transition and analogously (c5,c6,c7,c8) refer to the D2 transition.

5.2.3 3He Density: Pressure Broadening

The density of the buffer gas is proportional to the FWHM (full-width half maximum) of the line shape and
for Rubidium [31]:

c3 = Γ = 〈σv〉Rb−3He [3He] + 〈σv〉Rb−N2
[N2] (5.82)

〈σv〉Rb−D1−3He = 18.7
(

T

353 K

)0.05,0.11 GHz
amagat

(5.83)
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〈σv〉Rb−D1−N2
= 17.8

(
T

353 K

)0.30 GHz
amagat

(5.84)

〈σv〉Rb−D2−3He = 20.8
(

T

353 K

)0.53,0.34 GHz
amagat

(5.85)

〈σv〉Rb−D2−N2
= 18.1

(
T

353 K

)0.30 GHz
amagat

(5.86)

To get the correct helium density, one has to know the temperature of the cell and the nitrogen density
(gotten from filling data). (Reference: Romalis, Miron, and Cates, PRA Vol 56 Num 6 p4569 (1997)) For
Potassium, we’ve cross calibrated the number for Helium-3, but assumed the same for Nitrogen:

〈σv〉K−D1−3He = 14.4
(

T

353 K

)0.41 GHz
amagat

(5.87)

〈σv〉Rb−D1−N2
= 17.8

(
T

353 K

)0.30 GHz
amagat

(5.88)

〈σv〉K−D2−3He = 20.15
(

T

353 K

)0.23 GHz
amagat

(5.89)

〈σv〉Rb−D2−N2
= 18.1

(
T

353 K

)0.30 GHz
amagat

(5.90)

5.2.4 Alkali Density: Total Absorption

The alkali density is proportional to the size of the the “absorption dip” of the line shape:

[A] = −c0 2π
lσ0Γ

= −c0 2π
lπrecfc3

= −c0
c3

2
lrecf

(5.91)

where l is the path length through the cell, re = 2.817940325× 10−15 m (classical electron radius), c is the
speed of light, and f is the oscillator strength of the transition. For both rubidium and potassium, f = 1/3
for the D1 transition and f = 2/3 for the D2 transition.

In principle, one can also get the alkali density by integrating over the line shape:∫ c2+Δx

c2−Δx

y(x) dx =
∫ c2+Δx

c2−Δx

c0

(x− c2)
2 + c2

3
4

+
c00.664× 2πc1 (x− c2)

(x− c2)
2 + c2

3
4

+ c4 dx

(5.92)

lim
Δx→∞

∫ c2+Δx

c2−Δx

c0

(x− c2)
2 + c2

3
4

dx = 2π
c0
c3

(5.93)

∫ c2+Δx

c2−Δx

x− c2

(x− c2)
2 + c2

3
4

dx = 0 (by symmetry) (5.94)

∫ c2+Δx

c2−Δx

c4 dx = 2c4Δx (5.95)

where the alkali density is gotten from:

p ≡
∫ c2+Δx

c2−Δx

y(x) dx ≈ 2π
c0
c3

+ 2c4Δx (5.96)

[A] ≈ − (p− 2c4Δx)
lπrecf

(5.97)

To do this, one must be very certain that the background integrates to zero (c4 ≈ 0) or to some well known
value.
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5.3 Paramagnetic Faraday Rotation

5.3.1 Experimental Signal: The Rotation Angle

To measure the Faraday rotation induced by the alkali vapor:

1. The detector is a rotatable half-wave plate mounted in front a beam splitting polarizing cube. The
intensity of each beam from the cube is measured by a photodiode.

2. The rotation angle is encoded in the difference of the intensities.

3. The intensity of the beam must be normalized because there the intensity has a strong wavelength
dependence. This is due to both the probe laser itself and the absorption by the alkali vapor itself.
This can be obtained from the sum of the intensities.

4. Any remaining normalization factors can be obtained by rotating the HWP.

The sum and difference intensities are given by:

Iσ(DC) = 2ζ [cosh(2�ψ) − J0(β0) sinh(2�ψ)] (5.98)

Iδ(DC) = 2ζ
√

1 − P 2 [cos(2θ) cos(2�ψ) + J0(β0) sin(2θ) sin(2�ψ)] (5.99)

Iδ(AC1) = 2ζ
√

2J1(β0)P sin(2�ψ) (5.100)

2ζ =
√
ε

μ

E2
0

2
e−l�{k++k−} (5.101)

ψ = (k+ − k−)
l

2
+ 2φh (5.102)

From these equations, we see for the case where a PEM isn’t used (β0 = 0):

Iδ(DC)
Iσ(DC)

=

[ √
1 − P 2

cosh(2�ψ) − sinh(2�ψ)

]
︸ ︷︷ ︸

normalization

cos(2θ − 2�ψ) (5.103)

With no PEM, we’re interested in the DC difference over the DC sum and the probe beam must be linearly
polarized, P = 0. When we do use a PEM and a Lock-In Amplifier for the difference signal (referenced to
the PEM frequency):

Iδ(AC1)
Iσ(DC)

=

[ √
2J1(β0)P

cosh(2�ψ) − J0(β0) sinh(2�ψ)

]
︸ ︷︷ ︸

normalization

sin(2�ψ) (5.104)

With a PEM, we’re interested in the AC difference over the DC sum and the probe beam must be circularly
polarized, P = ±1. Both rotation formulas contain the term �ψ. The Faraday rotation angle is defined by
φ = �ψ − 2φh = � (k+ − k−) l

2 . This implies that:

1. the electric field polarization vector rotates by an angle of φ due to the atomic vapor

2. the observable quantity is 2φ from the reference axis

3. Faraday rotation (φ) can be canceled by a half waveplate with an angle of −φ/2 between the its axis
and the reference axis

We’ll now calculate the Faraday rotation angle φ starting with:

φ = �ψ − 2φh = � (k+ − k−)
l

2
=
l[A]πrecf1ω

ω1
C�(α+ − α−) (5.105)
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Since we’re making these measurements at very low field ≤ 40 gauss, we’ll only keep terms up to first order
in field, y, which gives for the difference of the real parts of the polarizability:

C�(α+ − α−) = −yωso
3

[
7
(

2D2
2 − L2

γ2

)
+ 4

(
2D2

1 − L1

γ1

)
− 2

(D1 −D2

ωso

)]
+k̂· �PA [D2 −D1] (5.106)

There is a natural separation between the rotation due to the magnetic field (y) and the alkali polarization
(PA). Traditionally, Faraday rotation refers to the part due to the field only and the constant of propor-
tionality is called the Verdet constant. The rotation due to the alkali polarization is called paramagnetic
Faraday rotation and under our conditions will be the dominant term. Making the approximation ω ≈ ω1,
making the substitution yωso = μBB/h̄, using Δn = 2π(ν − νn) where ν is the probe laser frequency, using
γn = 2πΓn/2 where Γn is the pressure broadened FWHM, and noting the following:

2πLn =
Γn/2

(ν − νn)2 + Γ2
n/4

2πDn =
(νn − ν)

(ν − νn)2 + Γ2
n/4

(5.107)

we can write down the rotation formulas:

φB = −l[A]B
(
recf1μB

6h

)[
7

{
(ν − ν2)2 − Γ2

2/4

[(ν − ν2)2 + Γ2
2/4]2

}
+ 4

{
(ν − ν1)2 − Γ2

1/4

[(ν − ν1)2 + Γ2
1/4]2

}

−
(

2
ν1 − ν2

){
(ν − ν1)

(ν − ν1)2 + Γ2
1/4

− (ν − ν2)
(ν − ν2)2 + Γ2

2/4

}]
(5.108)

φP = l[A]PA cos(θ)
(
recf1

2

)[
(ν − ν1)

(ν − ν1)2 + Γ2
1/4

− (ν − ν2)
(ν − ν2)2 + Γ2

2/4

]
(5.109)

When the probe laser frequency is far from resonance (ν − νn)  Γn/2 for both Dn transitions, then these
formulas can be simplified even further to [32]:

φB = −l[A]B
(
recf1μB

6h

)[
7

(ν − ν2)2
+

4
(ν − ν1)2

− 2
(ν − ν1)(ν − ν2)

]
(5.110)

φP = −
(
recf1νso

2

)[
l[A]PA cos(θ)

(ν − ν1)(ν − ν2)

]
(5.111)

where νso is the spin-orbit splitting in frequency. The scales for these two rotations are given by:(
180 deg

π

)(
recf1μB

6h

)
=

(3.76 millidegrees) (1000 GHz)2

(1 cm) (1014 cm−3) (1 gauss)
(5.112)(

180 deg
π

)[
recf1νso

2

]
Rb

=
(57.5 degrees) (1000 GHz)2

(1 cm) (1014 cm−3)
(5.113)(

180 deg
π

)[
recf1νso

2

]
K

=
(14.0 degrees) (1000 GHz)2

(1 cm) (1014 cm−3)
(5.114)

(5.115)

5.3.2 Alkali Number Density

The alkali number densities are obtained by simply fitting the paramagnetic Faraday rotation angle vs
frequency:

y = lPA cos(θ)
(
recf1

2

)
{[K]FK + [Rb]FRb} (5.116)

where the function FX is given by:

FX =
(

(x− ν1)
(x− ν1)2 + Γ2

1/4
− (x− ν2)

(x− ν2)2 + Γ2
2/4

)
(5.117)

To extract the alkali densities, you must know:
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1. the alkali polarization, which is assumed to be the same for K and Rb

2. the laser beam path length through the cell

3. the skew angle which is usually a small correction

4. the absolute calibration of the angle obtained from the normalization with the RHWP

5.4 Probing EPR RF Transitions

5.4.1 Experimental Signal: Relative Change in the Alkali Polarization

The EPR transitions are driven using a small RF coil producing an RF field perpendicular to the main
holding field. When the RF coil frequency is held constant, the holding field is swept changing the transition
frequencies. To obtain an alkali EPR RF spectrum, we need some observable that indicates that an RF
transition is being driven. When the alkali atoms are polarized due to optical pumping, then driving an
RF transition is depolarizing. As the magnetic field is swept, the alkali polarization is lowered when the
transition frequency matches the RF coil frequency. These dips or peaks in the alkali polarization correspond
to a particular EPR RF transition that can be identified provided we know magnitude of the magnetic field.

The alkali polarization is given by:

PA(z) =
R(z)

R(z) + γ + γrf(z)
(5.118)

where R(z) is the position dependent optical pumping rate, γ is the spin relaxation rate, and γrf(z) is the
position dependent effective relaxation rate due to the RF coil.

There are two different ways that we can measure the relative alkali polarization:

1. the paramagnetic Faraday rotation angle

2. the intensity of the D2 fluorescence emitted by the alkali vapor during optical pumping

When the Faraday rotation angle is canceled out by the RHWP, the difference signal will be zero. Therefore,
small changes in the alkali polarization will result in a small changes in the rotation angle. Under the
“small” condition, the change in the difference signal will be proportional to the change in rotation angle
Iδ ∝ sin(Δφ) ≈ Δφ. Therefore the zeroed difference signal is directly a probe of the relative change in the
alkali polarization:

Δφ ∝ ΔPA = PA − P 0
A =

R

R+ γ + γrf
− R

R + γ
≈ R

R+ γ

[
1 − γrf

R+ γ

]
− R

R+ γ
= −P 0

A

[
γrf
R+ γ

]
(5.119)

where P 0
A is the alkali polarization when the RF coil is off or the RF coil frequency is off resonance.

Although the presence of N2 molecules greatly suppresses the number of radiative decays, a few percent
of the transitions back to the ground state still occur radiatively. The amount of D1 and D2 fluorescence is
essentially the same because of collisional mixing of the excited states. However, a filter is placed in front
of a photodiode to allow transmission of only the D2 fluorescence. This is because the large D1 background
from the pump laser light could potentially saturate the photodiode.

Therefore, the signal detected in the photodiode consists mainly of D2 fluorescence. A strong DC
component is present due to the D2 light reaching the photodiode from parts of the cell that are minimally
effected by the EPR excitation coil and due to the fact that the EPR excitation is very small and therefore
the alkali polarization is not changing much. More important is the AC component that is at the modulation
frequency of the EPR excitation coil. For the alkali polarization measurement, the amplitude of the RF coil
is modulated; wheres, for the He-3 polarization measurement, the frequency of the RF coil is modulated.
Either way, a lock-in amplifier is used to detect this small AC signal. The intensity of the D2 fluorescence
detected by a photodiode observing the cell an be estimated by:

ID2 ≈ hν2

(
ΔΩ
Apd

)(
1

1 + Γnonτspon

)
V [A] 〈R〉 (1 − 〈PA〉) (5.120)
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where Γnon is the non-radiative quenching rate, τ−1
spon is the spontaneous emission rate, V is the volume of the

pumping chamber, ΔΩ is the solid angle subtended by the photodiode, Apd is the area of the photodiode,
and the brackets <> refer to a volume average over the whole pumping chamber. Rewriting 〈R〉 (1 − 〈PA〉)
as 〈PA〉 (γ + γrf) can be used to give the change in the D2 intensity due to the RF coils:

ΔID2 ≈ hν2

(
ΔΩ
Apd

)(
1

1 + Γnonτspon

)
V [A]

〈
P 0

A

〉
γrf (5.121)

where the D2 fluorescence intensity depends on 〈γrf〉 the volume averaged effective relaxation rate due to
the RF coil. In both cases, the observable is proportional to the effective relaxation rate due to the RF coil.

5.4.2 Effective Relaxation Rate Due to EPR RF Transitions

We’ve already calculated the change in populations due to a dipole interaction, see Sec. (3.2.3). For an RF
field in the x direction, where the holding field is in the z direction, the change is population is given by:

ρ̇Fm = 2Ω2
rf

{
γm (ρFm+1 − ρFm)

∣∣u−+∣∣2 |〈F,m+ 1|S+ |F,m〉|2
(ω − ωFm+1Fm)2 + γ2

m

+
γm (ρFm−1 − ρFm)

∣∣u+
−
∣∣2 |〈F,m− 1|S− |F,m〉|2

(−ω − ωFm−1Fm)2 + γ2
m

}
(5.122)

The effective relaxation rate is given by the amount of change in 〈Sz〉 times the transition rate. The change
in 〈Sz〉 for every m↔ m− 1 transition is 1/[I]. There the effective relaxation rate is given as:

dPA

dt
=
d2 〈Sz〉
dt

=
4Ω2

rf

[I]

∑
F,m

γm (ρFm−1 − ρFm)
∣∣u+

−
∣∣2 |〈F,m− 1|S− |F,m〉|2

(−ω − ωFm−1Fm)2 + γ2
m

(5.123)

where we’ve labeled the transitions with the higher m value, ω is the RF coil frequency, and we’ve summed
over all m ↔ m− 1 transitions in both manifolds F = I ± 1/2. Since Sx = (S+ + S−)/2,

∣∣u+
−
∣∣2 = 1/4 and

plugging in values for the matrix element & population difference, we find:

dPA

dt
= −PA

Ω2
rf

[I]2
∑
±,m

QIm̄ ((I + 1/2)(I + 1/2 ± 1) −m(m− 1))L±
m = −γrfPA (5.124)

where L±
m is the lorentzian line shape associated with the m↔ m−1 transition in the F = I±1/2 manifold:

L±
m =

γm

(ω − ωFmFm−1)2 + γ2
m

(5.125)

where ωFmFm−1 is the transitions frequency. The effective spin relaxation rate is given by the sum:

γrf =
Ω2
rf

[I]2
∑
±,m

QIm̄ ((I + 1/2)(I + 1/2 ± 1) −m(m− 1))L±
m (5.126)

5.4.3 Alkali Polarization: Ratio of Areas

The observable (rotation angle or D2 light intensity) is proportional to the effective spin relaxation rate
which is given by the sum:

Ω2
rf

[I]2
∑
±,m

QIm̄ ((I + 1/2)(I + 1/2 ± 1) −m(m− 1))L±
m (5.127)

When the field is high enough, the transitions frequency are spaced far enough apart, relative to the width
γm, that only one term dominated the effective relaxation rate. In other words, the peaks corresponding to
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the different transitions are well resolved. In practice, we can make adjacent transitions (m ↔ m − 1 and
m−1 ↔ m−2) well resolved, but the twin transitions (F = I+1/2,m↔ m−1 and F = I−1/2,m↔ m−1)
are unresolved.

The area under each peak is given by [24, 32]:

AFm = A0fI [A]
[
Brf

2I + 1

]2

[F (F + 1) −m(m− 1)]
exp(βm̄)

ZI
(5.128)

where F labels the manifold, m is refers to the m ↔ m − 1 transition, A0 is area factor common to all
transitions, fI is the isotopic fraction of the alkali species, I is the nuclear spin of that species, β is the spin
temperature, and m̄ = m− 1/2 is the mean m of the transition.

The ratio of the area of two peaks for the same alkali species is given by:

r =
AFm +AF ′m

AFm′ +AF ′m′
=

[
F (F + 1) −m(m− 1) + F (F − 1) −m(m− 1)
F (F + 1) −m′(m′ − 1) + F (F − 1) −m′(m′ − 1)

]
exp (β[m−m′]) (5.129)

where F = I +1/2, F ′ = I − 1/2, and exp(β) = (1+PA)/(1−PA). We add the areas of the twin transitions
together because we are assuming that they are unresolved. In addition, there is no m = F ↔ F − 1
transition for the F ′ manifold. Note however that F (F − 1) − F (F − 1) = 0 so the formula still holds. For
the case m−m′ = 1, we find:

r =
[

F (F + 1) −m(m− 1) + F (F − 1) −m(m− 1)
F (F + 1) − (m− 1)(m− 2) + F (F − 1) − (m− 1)(m− 2)

](
1 + PA

1 − PA

)
(5.130)

which can be solved for PA to give:

PA =

[
F 2 − (m− 1)(m− 2)

]
r − [

F 2 −m(m− 1)
]

[F 2 − (m− 1)(m− 2)] r + [F 2 −m(m− 1)]
(5.131)

When the twin transitions are unresolved and we take ratios involving the end transitions, then for a nuclear
spin I = 3/2 isotope like K-39 or Rb-87:

PA =
2r − 1
2r + 1

r =
A22

A21 +A11
(5.132)

PA =
r − 2
r + 2

r =
A20 +A10

A2−1
(5.133)

whereas for a nuclear spin I = 5/2 isotope like Rb-85:

PA =
7r − 3
7r + 3

r =
A33

A32 +A22
(5.134)

PA =
3r − 7
3r + 7

r =
A3−1 +A2−1

A3−2
(5.135)

5.4.4 Alkali Density Ratio: Ratio of Areas

If we look at the same transition for two different alkali species with the same nuclear spin, then the ratio
of areas gives the ratio of densities:

r =
Ai

Fm +Ai
F ′m

Ak
Fm +Ak

F ′m
=

fi[Ai]
fk[A]k

(5.136)

where fi,(k) is the natural isotopic fraction of alkali species i (k). For example, K-39, Rb-87, K-41, and
Na-23 all have I = 3/2. Therefore the ratio of K-39 to Rb-87 for the same transition would give:

r =
(0.93258)[K]
(0.2783)[Rb]

= 3.35 ·D (5.137)
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where D is the ratio of K to Rb. On the other hand, we can take the ratio of K-39 to K-41 for the same
transition:

r =
(0.93258)[K]
(0.06730)[K]

= 13.9 (5.138)

If natural abundance K is being used, then the ratio should be equal to 13.9. This is a powerful cross check
of the method.

5.4.5 3He Polarization: EPR Frequency Shifts

Introduction

It is sometimes profitable to measure the longitudinal nuclear spin polarization of 3He. The method described
here takes advantage of the vaporized alkali metal already present in a glass target cell. Long range and short
range interactions with polarized 3He gas result in an “effective” magnetic field felt by the alkali metal atoms.
A precisely detectable Zeeman shift in the alkali EPR frequency that is proportional to the 3He polarization
and density is produced. The EPR frequency is located by exciting the EPR transition and observing the
resulting change in either the D2 fluorescence intensity or the Faraday rotation angle. A PI feedback loop
is used to lock to the EPR frequency while the direction of the 3He spins is reversed via AFP with respect
to any baseline magnetic fields. This isolates the 3He contribution to the EPR frequency and consequently
the 3He polarization can be extracted. It is appropriate and obligatory to list the following references in
chronological order in which this technique was developed, refined, and “calibrated:” [33, 34, 35, 36, 37].

At “low” field, the Zeeman splitting among the hyperfine states of an alkali metal is approximately linear
in field. “Low” field is judged by the strength of the Zeeman interaction relative to the hyperfine interaction.
For 39K and 85Rb, low field therefore is defined to be much less than 165 gauss and 1080 gauss respectively.
An approximately linear energy splitting results in transition frequencies that are also approximately linear
in field. Traditionally, the target cells are located in a magnetic holding field that is on the order of 10’s of
gauss. The holding field is produced from an external source such as an electromagnet.

The alkali metal atoms experience a small additional “effective” field due to the presence of polarized 3He
gas. Under typical operating conditions, about 1/6 of this “effective” field is due to the classical magnetic
field produced by the bulk magnetization of the polarized 3He gas. The rest of the “effective” field comes
from the very short but frequent spin-exchange collisions that occur between the alkali metal atoms and the
3He atoms. During these spin-exchange collisions, the alkali valence electron is essentially located within
the 3He nucleus thus facilitating a hyperfine-like Fermi contact interaction between their spins. These two
sources of an additional “effective” field are distinguished in at least three important ways:

1. The size of the classical magnetic field is dependent on the geometry of the target cell; whereas the
spin-exchange “effective” field is not.

2. The size of the classical magnetic field is independent of the alkali metal being perturbed; whereas the
size of the spin-exchange “effective” field does depend on the alkali metal.

3. The classical magnetic field can be, in principle, detected by a sufficiently sensitive external magnetic
field probe; whereas the spin-exchange “effective” field can not be.

Because the spin-exchange “effective” field is difficult to calculate precisely from theory, it is usually clumped
together with the classical magnetic field and parametrized by a unitless temperature dependent quantity
called κ0, which must be measured empirically.

The “effective” field produced by the 3He is on the order of 10’s of milligauss, which causes a frequency
shift on the order of 10’s of kHz. The EPR transition is probed by sending a frequency modulated excitation
into a coil located near the pumping chamber of the target cell. This excitation induces EPR transitions
in the alkali metal atoms and therefore depolarizes them. Because of the rapid and efficient spin-exchange
between alkali metal atoms, the equilibrium polarization of a volume of alkali vapor near the EPR excitation
coil tracks the frequency modulation of the excitation. When the excitation is off resonance, the alkali
polarization is high. When the excitation is on resonance, the alkali polarization is lowered. This results
in a modulation of the alkali polarization which in turn results in a modulation of the intensity of the D2
fluorescence or the Faraday rotation angle. Because of the frequency modulation of the EPR excitation, the
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line shape that is produced when the lock-in response is plotted against the central frequency of the EPR
excitation is the derivative of a lorentzian-like line shape.

This “FM sweep” line shape directly determines the behavior of the feedback loop used to lock to the
EPR transition. Modulation and lock-in parameters must be adjusted to produce an optimal “FM sweep”
line shape. The gains of the PI feedback box are then chosen based on the “feedback slope” extracted
from the “FM sweep” line shape. The “feedback slope” is typically in units of μV per kHz and provides a
conversion between the central excitation frequency detuning from EPR frequency and the voltage response
of the excitation/sensing electronics. The analog voltage signal from the lock-in is then processed by a PI
feedback box and converted into a frequency correction that is applied to the central frequency of the VCO
that is generating the EPR excitation.

Once the EPR frequency is locked to by the excitation/sensing electronics, the excitation frequency is
recorded by a counter as a function of time. The 3He spins are then flipped twice relative to the holding
field using NMR frequency sweep AFP. Enough counter data is taken with the 3He in either state to result
in a high precision determination of the EPR frequencies of the alkali atoms. The difference in these EPR
frequencies is, to first order, proportional to the “effective” field and therefore polarization of the 3He.

Extracting the Helium Polarization

When we start the measurement, the field seen by the alkali atoms is B1 = B0 +BHe, which corresponds to
an EPR frequency of ν1. After we’ve measured ν1 we flips the He-3 spins using frequency sweep adiabatic
fast passage (AFP). We measure the EPR frequency again and obtain ν2 which corresponds to a field of
B2 = B0−BHe. Finally we flip the He-3 spins back to their original orientation and get a third frequency ν3.
We’ll assume for now that the He-3 polarization does not change during the measurement. The difference
in fields (B1 −B2)/2 = ΔB/2 = BHe isolates the contribution from the He-3.

There are two ways to calculate ΔB from the frequencies ν1 and ν2. We’ll assume that the end transition
is being probed and consequently the end frequency is being measured. In method 1, we use the following
equation to “invert” the frequency to get the field:

B(ν) =
(

[I]hν
gIμN

)
ε(1 − f)

1 − [I]
{
f(1 − ε) + ε

2

}
+

√(
1 − [I] ε

2

)2 − 2f [I]
(
1 − ε+ [I] (ε−f)

2

) (5.139)

where s = ±1 is the sign of the edge state involved in the transition and:

[I] = 2I + 1 f = sν/νhfs ε = 1 − a =
2gIμN

gIμN − gSμB
= gI

μN

μB

[−2
gS

](
1 − gIμN

gSμB

)−1

(5.140)

Therefore ΔB = B(ν1) − B(ν2). This method only works if we’re probing the end transition because the
analytical form for B is only valid for end transitions. In method 2, we make the following approximation:

ΔB = (ν1 − ν2) ×
(
dν

dB

)−1

(5.141)

where the derivative of the frequency with respect to the field is given by Eqns. (1.292) or (1.293). This
method can be used for any transition.

Once we have ΔB, we can find the He-3 polarization from the effective field due to the He-3 using:

ΔB/2 = BHe =
2μ0

3
(κ0 − 1 + κgeo) [He]gHeμN

PHe

2
(5.142)

where μ0 is the magnetic permeability of free space, κ0 is the empirical shift constant, κgeo is a geometric
factor, [He] is the He-3 number density, gHe is the He-3 g-factor, μN is the nuclear magneton, PHe = 2 〈Sz〉
is the He-3 polarization. The values for κ0 are given by [36, 37]:

Rb : κ0 = 6.39 + 0.00924 · (T − 200 oC) (5.143)
K : κ0 = 5.99 + 0.0086 · (T − 200 oC) (5.144)

Na : κ0 = 4.84 + 0.00914 · (T − 200 oC) (5.145)
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The geometric factor κgeo is the ratio of the classical magnetic field produced by the He-3 for the cell
geometry averaged over the alkali sampling volume (ASV) to the classical magnetic field produced by a
uniformly polarized spherical He-3 sample with the same density and polarization:

κgeo =
1

VASV

∫
ASV

ẑ · �Bc dV

ẑ · �Bsphere

�Bsphere =
2μ0

3
[He]gHeμN

PHe

2
ẑ (5.146)

where ẑ is the direction of the holding field. The classical field �Bc can be calculated using the method of
magnetic scalar potentials (See section 5.9 of Jackson, 3rd Edition):

�Bc = μ0

(
�Hc + �Mc

)
�Hc = −�∇ΦM

�Mc = [He]
gHeμN

2
�Pc(�r) (5.147)

where �Pc(�r) is the possibly position dependent He polarization vector. For a uniformly polarized region
bounded by a surface S, the magnetic scalar potential is given by:

ΦM (�r) =
1
4π

∫
S

n̂′ · �Mc(�r ′)
|�r − �r ′| dA′ (5.148)

where n̂′ is the normal unit vector pointing out of S at a position �r ′ on the surface S. For a region far from
the polarized He-3, the magnetic scalar potential is given by:

ΦM (�r) =
V �Mc × �r

4πr3
(5.149)

where V is the total volume of the region containing the polarized He-3. The value of κgeo for a few different
geometries are given here:

1. κgeo = 1 for a uniformly polarized sphere

2. κgeo = 3/2 for an infinitely long cylinder polarized along its axis

3. κgeo = 3/4 for an infinitely long cylinder polarized perpendicular to its axis
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Appendix A

Physical Constants and Alkali Data

These are tables of physical constants and data relevant to various alkali metals. All units are in SI unless
otherwise noted. Sources are the following:

• CODATA Mohr, Peter J. and Barry N. Taylor. Rev. Mod. Phys, 77, p1 (2005).

• NISTa http://physics.nist.gov/cuu/Constants/index.html

• NISTb http://physics.nist.gov/PhysRefData/ASD/index.html

• NISTc http://physics.nist.gov/PhysRefData/IonEnergy/tblNew.html

• NISTd http://www.physics.nist.gov/PhysRefData/Elements/cover.html

• NISTe http://physics.nist.gov/PhysRefData/Handbook/periodictable.htm

• RS85 Radzig, A.A. and B.M. Smirnov. Reference Data on Atoms, Molecules, and Ions. Berlin:
Springer-Verlag, 1985.

• AIV77 Arimondo, E., M. Inguscio, and P. Violino. Rev. Mod. Phys. 49, pp31-75 (1977).

For each value, only the most significant digits are kept. The uncertainty on each value is in general ±9 on
the last digit, but is usually ±2. Values which are referenced to an equation denoted by () are calculated
with other values found in the tables. The fields for which the Zeeman interaction becomes on order of the
fine and hyperfine interactions are calculated only to three significant digits for illustrative purposes. Some
useful relationships:

α =
e2

4πε0h̄c
=
mc

h̄
re (A.1)

re =
e2

4πε0mc2
=

h̄

mc
α (A.2)
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Symbol Value Units Description

c 299 792 458 m · s−1 definition of the speed of light
ε0 8.854 187 817 × 10−12 C2 · N−1 · m−2 permittivity of free space
μ0 4π × 10−7 N · A−2 permeability of free space

e 1.602 176 5 × 10−19 C electron charge magnitude
m 9.109 383 × 10−31 kg electron mass
gS −2.002 319 304 372 unitless electron g-factor
re 2.817 940 325 × 10−15 m classical electron radius

μB 9.274 000 95 × 10−24 J · T−1 Bohr magneton
μN 5.050 783 4 × 10−27 J · T−1 Nuclear magneton
h 6.626 069 × 10−34 J · s Planck constant
α−1 137.035 999 unitless fine structure constant
amu 1.660 538 9 × 10−27 kg 12·(atomic mass unit) = mass 12C

Table A.1: Fundamental Physical Constants [CODATA 2002]. These values are found at [NISTa].

Element D1 D2
λ(nm, air) τ(ns) f τ(ns) f λ(nm, air) τ(ns) f τ(ns) f

Lithium 670.791 26.9 0.251 27.3 0.247 670.776 26.9 0.502 27.9 0.494
Sodium 589.592 4 16.2 0.322 16.4 0.318 588.995 0 16.1 0.647 16.3 0.637
Potassium 769.896 26.2 0.340 27 0.35 766.490 25.8 0.682 27 0.70
Rubidium 794.760 3 27.7 0.342 28.5 0.32 780.026 8 26.2 0.695 26.5 0.67
Cesium 894.347 34.8 0.344 31 0.39 852.113 30.53 0.7131 31 0.81

Reference NISTb RS85 NISTb RS85

Table A.2: Alkali atom D1 and D2 transition wavelengths (λ), lifetimes (τ), and oscillator strengths (f).

D1 D2
λ1 (air) λ1 (vac) ν1 λ2 (air) λ2 (vac) ν2 νso

Li 670.791 670.976 446 800.6 670.776 670.961 446 810.6 10.0
Na 589.592 4 589.755 8 508 333.2 588.995 0 589.158 2 508 848.8 515.6
K 769.896 770.108 389 286.3 766.490 766.701 391 016.1 1 729.9
Rb 794.760 3 794.978 9 377 107.4 780.026 8 780.241 4 384 230.4 7 123.0
Cs 894.347 894.593 335 116.0 852.113 852.347 351 725.8 16 609.8

Table A.3: Alkali atom D1 & D2 air & vacuum transition wavelengths (λ) in nm, transition frequencies (ν)
in GHz, and spin-orbit splitting (νso) in GHz. Wavelength data from NISTb.
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Element Ground S1/2 P1/2 P3/2 νso(GHz) Field for y = 1
State gJ/gS gJ gJ (Tesla)

Lithium 2 1.000 003 4 −0.667 −1.335 9.994 18 0.712
Sodium 3 1.000 000 9 −0.665 8 −1.334 2 515.730 36.7
Potassium 4 1.000 018 44 1 730.32 123
Rubidium 5 1.000 005 9 7 124.94 508
Cesium 6 1.000 104 474 −0.665 90 −1.334 0 16 614.2 1180

Theory 1.000 000 000 −0.665 894 −1.334 106
(if gS = −2) −2/3 −4/3

Reference NISTc AIV77 (1.57) (1.59)

Table A.4: Alkali atom ground state and first excited states fine structure..

Isotope Mass Natural Nuclear Magnetic g-factor
(amu) Abundance Spin, I Moment (μN ) gI(μN )

Lithium 6.941
6Li 6.015 122 3 0.075 9 1 +0.822 056 +0.822 056
7Li 7.016 004 0 0.924 1 3/2 +3.256 44 +2.170 96

Sodium 22.989 770
23Na 22.989 769 7 1.0 3/2 +2.217 52 +1.478 35

Potassium 39.098 3
39K 38.963 706 9 0.932 58 3/2 +0.391 46 +0.260 97
40K 39.963 998 7 0.000 117 4 −1.298 −0.324 5
41K 40.961 826 0 0.067 30 3/2 +0.214 87 +0.143 25

Rubidium 85.467 8
85Rb 84.911 789 0.721 7 5/2 +1.353 02 +0.541 208
87Rb 86.909 184 0.278 3 3/2 +2.751 2 +1.834 1

Cesium 132.905 45
133Cs 132.905 447 1.0 7/2 +2.579 +0.736 9

Reference NISTd NISTe (1.5)

Table A.5: Alkali atom isotopic and nuclear data.
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Iso. S1/2 P1/2 P3/2

A νhfs x = 1 A νhfs x = 1 A B
(MHz) (MHz) (gauss) (MHz) (MHz) (gauss) (MHz) (MHz)

6Li 152.136 841 228.205 261 81.4 17.38 26.06 27.9 −1.155 −0.1
7Li 401.752 043 3 803.504 086 6 287 45.92 91.83 98.4 −3.055 −0.22

23Na 885.813 064 4 1 771.626 128 632 94.3 188.6 202 18.69 2.9

39K 230.859 860 1 461.719 720 2 165 28.85 57.7 61.8 6.06 2.8
40K −285.731 −1 142.92 −405 −7.59 −3.5
41K 127.006 935 2 254.013 870 4 90.6 3.40 3.3

85Rb 1 011.910 813 3 035.732 439 1 080 120.72 362.16 388 25.01 25.88
87Rb 3 417.341 306 4 6 834.682 612 8 2 440 406.2 812.4 870 84.845 12.52

133Cs 2 298.157 942 5 9 192.631 770 3 280 291.9 1 167 1 250 50.34 −0.4

Ref. AIV77 (1.208) (1.210) ” ” ” AIV77

Table A.6: Alkali atom ground State and first excited states hyperfine structure.
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Appendix B

Irreducible Spherical Vector Basis

A vector is decomposed in the following way:

�r =
3∑

q=1

rq ε̂
∗
q (B.1)

In the rectangular basis, the components rq and unit vectors εq are real and have the following interpretations:

r∗q = rq ↔ ε̂∗q = ε̂q (B.2)
r1 = r∗1 = x ↔ ε̂1 = ε̂∗1 = x̂ (B.3)
r2 = r∗2 = y ↔ ε̂2 = ε̂∗2 = ŷ (B.4)
r3 = r∗3 = z ↔ ε̂3 = ε̂∗3 = ẑ (B.5)

Orthogonality of the unit vectors is defined the following way:

ε̂·pε̂q = ε̂∗p · ε̂q = δq
p (B.6)

which immediately implies the dot product between two vectors and the modulus square of a vector:

�r · �s =
3∑

p,q=1

rpsq ε̂p · ε̂q =
3∑

p,q=1

rpsqδ
q
p =

3∑
q=1

rqsq (B.7)

|�r|2 = �r∗�r =
3∑

q=1

r∗qrq = x2 + y2 + z2 (B.8)

The vector, all dot products, and the modulus squared are all real.
Alternatively, the same vector can be expanded in the spherical basis [38] where the components rq and

unit vectors εq are in general complex and have the following interpretations:

r∗q = (−1)qr−q ↔ ε̂∗q = (−1)qε̂−q (B.9)

r−1 = −r∗+1 = +
(
x− iy√

2

)
↔ ε̂−1 = −ε̂∗+1 = +

(
x̂− iŷ√

2

)
(B.10)

r0 = r∗0 = z ↔ ε̂0 = ε̂∗0 = ẑ (B.11)

r+1 = −r∗−1 = −
(
x+ iy√

2

)
↔ ε̂+1 = −ε̂∗−1 = −

(
x̂+ iŷ√

2

)
(B.12)

Orthogonality of the unit vectors is defined the following way:

ε̂∗p · ε̂q = δq
p → ε̂p · ε̂q = (−1)qδ−q

p (B.13)
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which immediately implies the dot product between two vectors and the modulus square of a vector:

�r · �s =
3∑

p,q=1

(−1)p+qrpsq ε̂−p · ε̂−q =
3∑

p,q=1

(−1)p+q−qrpsqδ
q
−p =

3∑
q=1

r∗qsq (B.14)

|�r|2 = �r∗ · �r =
3∑

p,q=1

(−1)p+qr∗prq ε̂
∗
−p · ε̂−q

=
3∑

p,q=1

(−1)p+qr∗prqδ
−q
−p =

3∑
p,q=1

(−1)2qr∗qrq =
3∑

p,q=1

(−1)qr−qrq = r20 − 2r−1r+1 (B.15)

Note that the irreducible spherical vector basis is just the irreducible spherical tensor basis of rank one.
#check#comment more on this at some point
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Appendix C

Clebsch-Gordon Coefficients

C.1 General Formula

Adapted from equation (17.27) in Wigner’s Group Theory [18] into equation 143(5) in Condon & Shortley
[20]:

〈(J1, J2)m1,m2|J,m〉 =

√
(J + J1 − J2)! (J − J1 + J2)! (J1 + J2 − J)! (J +m)! (J −m)! (2J + 1)

(J + J1 + J2 + 1)! (J1 −m1)! (J1 +m1)! (J2 −m2)! (J2 +m2)!

×δ(m1+m2)
m

κ2∑
κ=κ1

(−1)κ+J2+m2 (J + J2 +m1 − κ)! (J1 −m1 + κ)!
(J − J1 + J2 − κ)! (J +m− κ)!κ! (κ+ J1 − J2 −m)!

(C.1)

κa = max [0, J2 − J1 +m] (C.2)
κb = min [J +m,J2 − J1 + J ] (C.3)
κ1 = min [κa, κb] (C.4)
κ2 = max [κa, κb] (C.5)

where κ is summed over all non-negative integers between κ1 and κ2. Note the usual rules:

〈(J1, J2)m1,m2|J,m〉 = (−1)J−J1−J2 〈(J2, J1)m2,m1|J,m〉 (C.6)
J1, J2, J ≥ 0 J = |J1 − J2| . . . (J1 + J2) (C.7)

m1 = −J1 . . .+J1 m2 = −J2 . . .+J2 m = m1 +m2 = −J . . .+J (C.8)

The following formulas for J = 1/2, 1 and J = 3/2 were derived by E.P. Wigner and F. Seitz and are
catalogued in CU in tables 13, 23,& 33.

C.2 For the case �J1 + �1
2

〈(
J1,

1
2

)
,m1,±1

2
|J1 +

1
2
,m1 ± 1

2

〉
=

〈(
J − 1

2
,
1
2

)
,m∓ 1

2
,±1

2
|J,m

〉

=

√
J1 ±m+ 1

2

[J1]
=

√
J1 ±m1 + 1

[J1]
=

√
J ±m

2J
(C.9)〈(

J1,
1
2

)
,m1,±1

2
|J1 − 1

2
,m1 ± 1

2

〉
=

〈(
J +

1
2
,
1
2

)
,m∓ 1

2
,±1

2
|J,m

〉

= ∓
√
J1 ∓m+ 1

2

[J1]
= ∓

√
J1 ∓m1

[J1]
= ∓

√
J ∓m+ 1
2(J + 1)

(C.10)
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C.3 For the case �J1 +�1

C.3.1 With m = m1 ± 1:

〈(J1, 1) ,m1,±1|J1 + 1,m1 ± 1〉 = 〈(J − 1, 1) ,m∓ 1,±1|J,m〉

=

√
(J1 ±m) (J1 ±m+ 1)

2[J1] (J1 + 1)
(C.11)

=

√
(J1 ±m1 + 1) (J1 ±m1 + 2)

2[J1] (J1 + 1)
(C.12)

=

√
(J ±m− 1) (J ±m)

2J(2J − 1)
(C.13)

〈(J1, 1) ,m1,±1|J1,m1 ± 1〉 = 〈(J, 1) ,m∓ 1,±1|J,m〉

= ∓
√

(J1 ±m) (J1 ∓m+ 1)
2J1 (J1 + 1)

(C.14)

= ∓
√

(J1 ±m1 + 1) (J1 ∓m1)
2J1 (J1 + 1)

(C.15)

= ∓
√

(J ±m) (J ∓m+ 1)
2J (J + 1)

(C.16)

〈(J1, 1) ,m1,±1|J1 − 1,m1 ± 1〉 = 〈(J + 1, 1) ,m∓ 1,±1|J,m〉

=

√
(J1 ∓m) (J1 ∓m+ 1)

2J1[J1]
(C.17)

=

√
(J1 ∓m1 − 1) (J1 ∓m1)

2J1[J1]
(C.18)

=

√
(J ∓m+ 1) (J ∓m+ 2)

2(J + 1)(2J + 3)
(C.19)

C.3.2 With m = m1:

〈(J1, 1) ,m1, 0|J1 ± 1,m1〉 = 〈(J ∓ 1, 1) ,m, 0|J,m〉

= ±
√(

J1 −m+ 1
2 ± 1

2

) (
J1 +m+ 1

2 ± 1
2

)
[J1]

(
J1 + 1

2 ± 1
2

) (C.20)

= ±
√(

J1 −m1 + 1
2 ± 1

2

) (
J1 +m1 + 1

2 ± 1
2

)
[J1]

(
J1 + 1

2 ± 1
2

) (C.21)

= ±
√(

J −m+ 1
2 ∓ 1

2

) (
J +m+ 1

2 ∓ 1
2

)
(2J + 1 ∓ 2)

(
J + 1

2 ∓ 1
2

) (C.22)

〈(J1, 1) ,m1, 0|J1,m1〉 = 〈(J, 1) ,m, 0|J,m〉
=

m1√
J1 (J1 + 1)

=
m√

J (J + 1)
(C.23)
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C.4 For the case �J1 + �3
2

C.4.1 With m = m1 ± 3
2
:

〈(
J1,

3
2

)
,m1,±3

2
|J1 +

3
2
,m1 ± 3

2

〉
=

〈(
J − 3

2
,
3
2

)
,m∓ 3

2
,±3

2
|J,m

〉

=

√(
J1 ±m− 1

2

) (
J1 ±m+ 1

2

) (
J1 ±m+ 3

2

)
2[J1] (J1 + 1) (2J1 + 3)

(C.24)

=

√
(J1 ±m1 + 1) (J1 ±m1 + 2) (J1 ±m1 + 3)

2[J1] (J1 + 1) (2J1 + 3)
(C.25)

=

√
(J ±m− 2) (J ±m− 1) (J ±m)

4J (J − 1) (2J − 1)
(C.26)〈(

J1,
3
2

)
,m1,±3

2
|J1 +

1
2
,m1 ± 3

2

〉
=

〈(
J − 1

2
,
3
2

)
,m∓ 3

2
,±3

2
|J,m

〉

= ∓
√

3
(
J1 ±m− 1

2

) (
J1 ±m+ 1

2

) (
J1 ∓m+ 3

2

)
2J1[J1] (2J1 + 3)

(C.27)

= ∓
√

3 (J1 ±m1 + 1) (J1 ±m1 + 2) (J1 ∓m1)
2J1[J1] (2J1 + 3)

(C.28)

= ∓
√

3 (J ±m− 1) (J ±m) (J ∓m+ 1)
4J (2J − 1) (J + 1)

(C.29)〈(
J1,

3
2

)
,m1,±3

2
|J1 − 1

2
,m1 ± 3

2

〉
=

〈(
J +

1
2
,
3
2

)
,m∓ 3

2
,±3

2
|J,m

〉

=

√
3
(
J1 ±m− 1

2

) (
J1 ∓m+ 1

2

) (
J1 ∓m+ 3

2

)
2[J1] (J1 + 1) (2J1 − 1)

(C.30)

=

√
3 (J1 ±m1 + 1) (J1 ∓m1 − 1) (J1 ∓m1)

2[J1] (J1 + 1) (2J1 − 1)
(C.31)

=

√
3 (J ±m) (J ∓m+ 1) (J ∓m+ 2)

4J (J + 1) (2J + 3)
(C.32)〈(

J1,
3
2

)
,m1,±3

2
|J1 − 3

2
,m1 ± 3

2

〉
=

〈(
J +

3
2
,
3
2

)
,m∓ 3

2
,±3

2
|J,m

〉

= ∓
√(

J1 ∓m− 1
2

) (
J1 ∓m+ 1

2

) (
J1 ∓m+ 3

2

)
2J1[J1] (2J1 − 1)

(C.33)

= ∓
√

(J1 ∓m1 − 2) (J1 ∓m1 − 1) (J1 ∓m1)
2J1[J1] (2J1 − 1)

(C.34)

= ∓
√

(J ∓m+ 1) (J ∓m+ 2) (J ∓m+ 3)
4 (2J + 3) (J + 2) (J + 1)

(C.35)
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C.4.2 With m = m1 ± 1
2
:

〈(
J1,

3
2

)
,m1,±1

2
|J1 +

3
2
,m1 ± 1

2

〉
=

〈(
J − 3

2
,
3
2

)
,m∓ 1

2
,±1

2
|J,m

〉

=

√
3
(
J1 ±m+ 1

2

) (
J1 +m+ 3

2

) (
J1 −m+ 3

2

)
2[J1] (J1 + 1) (2J1 + 3)

(C.36)

=

√
3 (J1 ±m1 + 1)

(
J1 +m1 + 3±1

2

) (
J1 −m1 + 3∓1

2

)
2[J1] (J1 + 1) (2J1 + 3)

(C.37)

=

√
3 (J ±m− 1) (J +m) (J −m)

4J (J − 1) (2J − 1)
(C.38)〈(

J1,
3
2

)
,m1,±1

2
|J1 +

1
2
,m1 ± 1

2

〉
=

〈(
J − 1

2
,
3
2

)
,m∓ 1

2
,±1

2
|J,m

〉

= ∓
(
J1 ∓ 3m+

3
2

)√
J1 ±m+ 1

2

2J1[J1] (2J1 + 3)
(C.39)

= ∓ (J1 ∓ 3m1)

√
J1 ±m1 + 1

2J1[J1] (2J1 + 3)
(C.40)

= ∓ (J ∓ 3m+ 1)

√
J ±m

4J (2J − 1) (J + 1)
(C.41)〈(

J1,
3
2

)
,m1,±1

2
|J1 − 1

2
,m1 ± 1

2

〉
=

〈(
J +

1
2
,
3
2

)
,m∓ 1

2
,±1

2
|J,m

〉

= −
(
J1 ± 3m− 1

2

)√
J1 ∓m+ 1

2

2[J1] (J1 + 1) (2J1 − 1)
(C.42)

= − (J1 ± 3m1 + 1)

√
J1 ∓m1

2[J1] (J1 + 1) (2J1 − 1)
(C.43)

= − (J ± 3m)

√
J ∓m+ 1

4J (J + 1) (2J + 3)
(C.44)〈(

J1,
3
2

)
,m1,±1

2
|J1 − 3

2
,m1 ± 1

2

〉
=

〈(
J +

3
2
,
3
2

)
,m∓ 1

2
,±1

2
|J,m

〉

= ±
√

3
(
J1 +m− 1

2

) (
J1 −m− 1

2

) (
J1 ∓m+ 1

2

)
2J1[J1] (2J1 − 1)

(C.45)

= ±
√

3
(
J1 +m1 − 1∓1

2

) (
J1 −m1 − 1±1

2

)
(J1 ∓m1)

2J1[J1] (2J1 − 1)
(C.46)

= ±
√

3 (J +m+ 1) (J −m+ 1) (J ∓m+ 2)
4 (2J + 3) (J + 2) (J + 1)

(C.47)

109



C.5 Expansion of Zero Field Eigenbasis for I = 0

∣∣∣∣S 1
2
,
1
2
,+

1
2

〉
=

∣∣∣∣+1
2

〉
S

(C.48)∣∣∣∣S 1
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2
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〉
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