

Spin duality on the neutron (³He)

Patricia Solvianon **Temple University**

The E01-012 Experiment

- Inclusive experiment: ³He(e,e)X

- Measure polarized cross sections and asymmetries in the resonance region for $1.0 < Q^2 < 4.0 (GeV/c)^2$

Recent data of proton spin independent and dependent structure functions measured in the resonance region demonstrate Quark-Hadron Duality. Quark-Hadron Duality is observed when the nucleon resonances average on the high Q^2 scaling curve when an appropriate scaling variable is used. The goal of the experiment E01-012 is to provide precision data of the neutron spin structure function in order to:

- Understand the transition between partons and hadrons
- Study of the interactions between guarks and gluons might help us understand the mecanism of confinement
- Look into the spin and flavor dependence of Quark-Hadron Duality
- Possible access to the high x_{bi} region, where theoretical models predictions for A1 are very different, if duality is demonstrated and well understood

Experimental setup

Motivations

- JLab e- beam at 3, 4 and 5 GeV; $P_{avg} = 77\%$

- High Resolution Spectrometers in symmetric configuration at 25° and 32°: double the statistics and control of the systematics

- Particle identification with Cerenkov counter combined with EM calorimeter: reduce pion contamination by 10⁴ while keeping the electron efficiency > 99%

- Hall A polarized ³He target:
 - based on spin exchange between optically pumped Rb and³He
 - Longitudinal and transverse configurations
 - High luminosity: 10³⁶ s⁻¹ cm⁻²
 - Two independent polarimetries: NMR and EPR
 - Average polarization during E01-012 = 37%

• NMR

Preliminary results for ³He

Preliminary interpretations

- For $Q^2 < 2.0$ GeV², the (1232) is large and negative in both g, and A1.

- For $Q^2 > 2.0 \text{ GeV}^2$, the (1232) vanishes while the non-resonant backgroung is rising. Thus the g, resonance data oscillate around the DIS fit (no Q²-evolution) showing a hint of Quark-Hadron Duality for g1(3He). In A1(3He), the resonance data follow the same trend as the DIS data and seem to show no Q2-dependence.

- The polarised ³He target is used as an effective neutron target and because ³He as neutron target

of the dominant S state, the neutron spin structure functions are expected to show the same behavior as 3He ones, since the effect of the two protons should be small.

Conclusion

- E01-012 provides precision data of the spin structure functions on neutron (3 He) for 1.0 < Q² < 4.0 (GeV/c)²
- Test of Quark-Hadron Duality for neutron and ³He spin structure functions by comparing E01-102 data with DIS data
 - E01-012 data combined with proton data allow us to study the spin and flavor dependence of duality