

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

New global study of the A-dependence of the EMC effect and the extrapolation to nuclear matter

Patricia Solvignon Argonne National Laboratory

> Work done in collaboration with: John Arrington, Dave Gaskell, Aji Daniel and Jason Seely

> > Physics Division Seminar Argonne National Laboratory October 6, 2008

Outline

***** Introduction to the nucleon structure function and the EMC effect

JLab E03-103 close to final results:
 Q²-dependence study with Carbon
 Light nuclei
 Heavy nuclei and Coulomb distortion

Global analysis

Coulomb distortion
 Study of the A- and ρ-dependence
 New extrapolation to nuclear matter

Summary and outlook

The structure of the nucleon

Deep inelastic scattering \rightarrow probe the constituents of the nucleon: the quarks and the gluons

4-momentum transfer squared $Q^{2} = -q^{2} = 4 EE' \sin^{2} \frac{\theta}{2}$ Invariant mass squared $W^{2} = M^{2} + 2Mv - Q^{2}$ Bjorken variable $x = \frac{Q^{2}}{2Mv}$

$$\frac{d^2\sigma}{d\Omega dE'} = \sigma_{Mott} \left[\frac{1}{\nu} F_2(x,Q^2) + \frac{2}{M} F_1(x,Q^2) \tan^2 \frac{\theta}{2} \right]$$

The structure of the nucleon

Deep inelastic scattering \rightarrow probe the constituents of the nucleon: the quarks and the gluons

Structure functions in the parton model

In the infinite-momentum frame, at high Q²:

- > no time for interactions between partons
- > Partons are point-like non-interacting particles: $\sigma_{\text{Nucleon}} = \Sigma_i \sigma_i$

$$F_1(x) = \frac{1}{2} \sum_{i} e_i^2 [q_i^{\uparrow}(x) + q_i^{\downarrow}(x)] = \frac{1}{2x} F_2(x)$$

The quest for higher precision data

To increase the luminosity, physicists decided to use heavy nuclei to study the structure of the proton instead of a hydrogen target.

Discovery of the EMC effect

Discovery of the EMC effect

EMC effect confirmed

Existing EMC Data

SLAC E139:

- Most complete data set: A=4 to 197
- Most precise at large *x*
 - \rightarrow Q²-independent
 - \rightarrow universal shape
 - \rightarrow magnitude dependent on A

х_{вј}

Nucleon only model

Assumptions on the nucleon structure function:

- not modified in medium
- the same on and off the energy shell

"... some effect not contained within the conventional framework is responsible for the EMC effect." Smith & Miller, PRC 65, 015211 (2002)

Smith & Miller,

Nucleons and pions model

Pion cloud is enhanced and pions carry an access of plus momentum:

$$P^{+} = P_{N}^{+} + P_{\pi}^{+} = M_{A}$$

and using $P_{\pi}^{+}/M_{A} = 0.04$ is enough to reproduce the EMC effect

But excess of nuclear pions \rightarrow enhancement of the nuclear sea

But this enhancement was not seen in nuclear Drell-Yan reaction

Another class of models

Interaction between nucleons

Model assumption:

nucleon wavefunction is changed by the strong external fields created by the other nucleons

1.1 R_P80 0.9 0.8 0.7 0.2 0.4 0.5 0.8 . 1,1 2 1 2 0.9 0.8 0.70.05 0.1 0.15 0.2 0.25 ×:

Smith & Miller, PRL 91, 212301 (2003)

Model requirements:

- Momentum sum rule
- Baryon number conservation
- Vanishing of the structure function at x<0 and x>A
- Should describe the DIS and DY data

More data needed

JLab E03-103 will improve with

- Higher precision data for ⁴He
- Addition of ³He data
- Precision data at large *x* for light and heavy nuclei

\Rightarrow Lowering Q² to reach high *x* region

JLab and HallC

JLab Experiment E03-103

Spokespersons: D. Gaskell and J. Arrington Post-doc: P. Solvignon Graduate students: J. Seely and A. Daniel

A(e,e') at 5.0 and 5.8 GeV in Hall C

- Targets: H, ²H, ³He, ⁴He, Be, C, Al, Cu, Au
- 10 angles to measure
 Q²-dependence

E03-103: Carbon EMC ratio and Q²-dependence

Small angle, low $Q^2 \rightarrow$ clear scaling violations for *x*>0.6-0.7

E03-103: Carbon EMC ratio and Q²-dependence

At larger angles \rightarrow indication of scaling to very large x

More detailed look at scaling

C/D ratios at fixed x are Q^2 independent for:

 $W^2 > 2 \text{ GeV}^2$ and $Q^2 > 3 \text{ GeV}^2$ limits E03-103 coverage to x=0.85

Note: Ratios at larger *x* will be shown, but could have small HT, scaling violation

E03-103: Carbon EMC ratio and Q²-dependence

At larger angles \rightarrow indication of scaling to very large x

E03-103: Carbon EMC ratio

E03-103: ⁴He EMC ratio

E03-103: ⁴He EMC ratio

JLab results consistent with SLAC E139 →Improved statistics and systematic errors

Models shown do a reasonable job describing the data, but very few real few-body calculations (most neglect structure, scale NM)

Isoscalar correction

Isoscalar correction

E03-103: ³He EMC ratio

Coulomb distortions on heavy nuclei

Initial (scattered) electrons are accelerated (decelerated) in Coulomb field of nucleus with Z protons

- Not accounted for in typical radiative corrections
- Usually, not a large effect at high energy machines
- Important for E' << E (e.g. large θ , *x*)

x

⁵⁶Fe, 40

0.9

0.8

E03-013 heavy target results

Before coulomb corrections

E03-013 heavy target results

After coulomb corrections

E03-103: EMC effect in heavy nuclei

E03-103 data corrected for coulomb distortion

Scale errors: 1.6-2%

Figs from J. Gomez, PRC49, 4348 (1994))

Density calculated assuming a uniform sphere of radius: $R_e (r=3A/4pR_e^3)$

Magnitude of the EMC effect for C and ⁴He very similar, and $\rho(^{4}\text{He}) \sim \rho(^{12}\text{C})$

> EMC effect: ρ-dependent (A-dep. → factor of 2)

A = 12

to

Slope [Norm.

Fit of the EMC ratio for 0.3<x<0.7 and look at A-dependence of the slope

Fit of the EMC ratio for 0.3<x<0.7 and look at A-dependence of the slope

Fit of the EMC ratio for 0.3<x<0.7 and look at A-dependence of the slope

World data re-analysis

Experiments	E (GeV)	Α	x-range	Pub. 1 st author
CERN-EMC	280	56	0.050-0.650	Aubert
		12,63,119	0.031-0.443	Ashman
CERN-BCDMS	280	15	0.20-0.70	Bari
		56	0.07-0.65	Benvenuti
CERN-NMC	200	4,12,40	0.0035-0.65	Amaudruz
	200	6,12	0.00014-0.65	Arneodo
SLAC-E61	4-20	9,27,65,197	0.014-0.228	Stein
SLAC-E87	4-20	56	0.075-0.813	Bodek
SLAC-E49	4-20	27	0.25-0.90	Bodek
SLAC-E139	8-24	4,9,12,27,40,56,108,197	0.089-0.8	Gomez
SLAC-E140	3.7-20	56,197	0.2-0.5	Dasu
DESY-HERMES	27.5	3,14,84	0.013-0.35	Airapetian

Extrapolation to nuclear matter

Improved density calculation (calculated with density distributions from R. Wiringa and S. Pieper)

Extrapolation to nuclear matter

Improved density calculation (calculated with density distributions from R. Wiringa and S. Pieper)

> Apply coulomb distortion correction

Extrapolation to nuclear matter

Improved density calculation (calculated with density distributions from R. Wiringa and S. Pieper).

> Apply coulomb distortion correction.

> In progress: n/p at large Q² and low x, and large x and large Q².

Target mass correction to be looked at.

Note: n/p correction is also A-dependent !

Summary

- ✤ JLab E03-103 provides:
 - Precision nuclear structure ratios for light nuclei
 - Access to large *x* EMC region for ${}^{3}\text{He} \rightarrow {}^{197}\text{Au}$
- Preliminary observations:
 - Scaling of the structure function ratios for W<2GeV down to low Q²
 - First measurement of the EMC effect in ³He: very sensitive to isoscalar correction
 - Similar large x shape of the structure function ratios for A>3
- In progress:
 - Coulomb correction systematics
 - Nuclear density calculations
 - Smeared n/p at correct kinematics and for each nucleus
 - Target mass correction

Outlook

New JLab data (light nuclei and high x precision) indicate:
✓ the need to go beyond the simple A- or ρ-based fits
✓ the importance of detailed calculations with real n/p input

- Updated/new extrapolation to the EMC effect in nuclear matter
- Important to understand EMC effect for neutrinos experiments.
- Future related measurements:
 - ³H and ³He (n/p in nuclei) at Jlab 12 GeV
 - JLab BONUS (6 and 12 GeV)
 → free n/p
 - First measurement of the polarized EMC effect first test

Back-ups

with $r_{eff} = \sqrt{\langle r \rangle^2 + 0.9^2}$

E03-103: QE subtraction effect

Quark-hadron duality

First observed by Bloom and Gilman in the 1970's on F_2 :

Scaling curve seen at high Q^2 is an accurate average over the resonance region at lower Q^2

Quark-hadron duality

First observed by Bloom and Gilman in the 1970's on F_2 :

Scaling curve seen at high Q^2 is an accurate average over the resonance region at lower Q^2

In nuclei, the averaging is in part done by the Fermi motion.

.5

.6

.7

.4

10⁻²

J. Arrington, et al., PRC73:035205 (2006)

.8

Scaling of the nuclear structure functions

E03-103: Experimental details

Main improvement over SLAC due to improved ⁴He targets:

Main drawback is lower beam energy:

- Requires larger scattering angle to reach same Q²
- \rightarrow Larger π^- contamination
- → Large charge-symmetric background
- Larger Coulomb distortion corrections

