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Outline 

 Introduction to the nucleon structure function and the EMC effect 


 JLab E03-103 close to final results:

  Q2-dependence study with Carbon 

  Light nuclei

  Heavy nuclei and Coulomb distortion


  Global analysis

 Coulomb distortion

 Study of the A- and ρ-dependence

 New extrapolation to nuclear matter


  Summary and outlook
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The structure of the nucleon 
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Deep inelastic scattering  probe the constituents of the nucleon: the quarks and the gluons 
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The structure of the nucleon 
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use to
 select DIS 

~ momentum per quark 
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In the infinite-momentum frame, at high Q2:  

  no time for interactions between partons 

  Partons are point-like non-interacting particles: σNucleon = Σi σi  

Structure functions in the parton model 
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The quest for higher precision data 
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To increase the luminosity, physicists
 decided to use heavy nuclei to study
 the structure of the proton instead of
 a hydrogen target. 
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Theoretical prediction:                                                    


after corrections due to the motion of the
 nucleons in the nucleus (slowly moving
 nucleons weakly bound)
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Discovery of the EMC effect 
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(A nucleons = Z protons + N neutrons) 
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Discovery of the EMC effect 

Nuclear structure: 
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EMC effect confirmed 
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Existing EMC Data 

       SLAC E139:


  Most complete data set:  A=4 to 197


  Most precise at large x 


→  Q2-independent

→  universal shape

→  magnitude dependent on A


E139
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Nucleon only model 

Assumptions on the nucleon structure function:


­  not modified in medium

­  the same on and off the energy shell


Fermi momentum << Mnucleon 


    is narrowly peaked and    
€ 
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= dy ⋅ fN (y)F2
N (xA / y)

xA
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∫
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F2
A

A
≈ F2

N  no EMC effect 

Smith & Miller, 
PRC 65, 015211 and 055206 (2002) 

“… some effect not contained within the conventional framework is
 responsible for the EMC effect.” Smith & Miller, PRC 65, 015211 (2002) 
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Nucleons and pions model 

Pion cloud is enhanced and pions carry an access of plus momentum:


and using                                   is enough to reproduce the EMC effect


But excess of nuclear pions  enhancement of the nuclear sea 
€ 

P + = PN
+ + Pπ

+ = MA

€ 

Pπ
+ /MA = 0.04

But this enhancement was not seen in
 nuclear Drell-Yan reaction


E906 projected 
E772 Drell-Yan 

Fig from P. Reimer, Eur.Phys. J A31, 593 (2007) 
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Another class of models 

 Interaction between nucleons


Model assumption:

      nucleon wavefunction is changed by the

 strong external fields created by the other
 nucleons


Cloet, Bentz, and Thomas,  PLB 642, 210 (2006) 

Model requirements:

•  Momentum sum rule

•  Baryon number conservation

•  Vanishing of the structure function 

     at x<0 and x>A

•  Should describe the DIS and DY data


Smith & Miller, PRL 91, 212301 (2003) 
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More data needed 

JLab E03-103 will improve with


 Higher precision data for 4He

 Addition of 3He data

  Precision data at large x for light and heavy nuclei


                  Lowering Q2 to reach high x region
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JLab and HallC 

A C B 
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JLab Experiment E03-103 

A(e,e’) at 5.0 and 5.8 GeV in Hall C�

  Targets: 

         H, 2H, 3He, 4He, 

         Be, C, Al, 

         Cu, Au


  10 angles to measure 

    Q2-dependence


Spokespersons: D. Gaskell and J. Arrington 
Post-doc: P. Solvignon              

Graduate students: J. Seely and A. Daniel              
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E03-103: Carbon EMC ratio and Q2-dependence 

Small angle, low Q2  clear scaling violations for x>0.6-0.7


at x=0.6
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E03-103: Carbon EMC ratio and Q2-dependence 

At larger angles  indication of scaling to very large x
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More detailed look at scaling 

E03-103 
SLAC e139 

W2>4 GeV2 

W2>2 GeV2 

C/D ratios at fixed x are Q2

 independent for:


   W2>2 GeV2 

and


   Q2>3 GeV2 


limits E03-103 coverage 

to x=0.85


Note: Ratios at larger x will be
 shown, but could have small
 HT, scaling violation
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E03-103: Carbon EMC ratio and Q2-dependence 

At larger angles  indication of scaling to very large x


Used the combined
 two highest Q2 in
 the rest of this talk
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E03-103: Carbon EMC ratio 

W2>4.0 GeV2 

W2>2.0 GeV2 

1.2<W2<2.0 GeV2 

SLAC fit A=12
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E03-103: 4He EMC ratio 

JLab results consistent with
 SLAC E139

 Improved statistics and
 systematic errors
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E03-103: 4He EMC ratio 

JLab results consistent with
 SLAC E139

 Improved statistics and
 systematic errors


Models shown do a
 reasonable job describing
 the data, but very few real
 few-body calculations
 (most neglect structure,
 scale NM)
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Isoscalar correction 
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Isoscalar correction 
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E03-103: 3He EMC ratio 

Large proton excess
 correction
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Initial (scattered) electrons are accelerated (decelerated) in Coulomb field of
 nucleus with Z protons 

–  Not accounted for in typical radiative corrections

–  Usually, not a large effect at high energy machines

–  Important  for E’<<E (e.g. large θ, x)


E03-103 uses modified Effective Momentum 

Approximation (EMA) 

   Aste and Trautmann,  Eur, Phys. J. A26, 167-178(2005)


          E      E+Δ

          E’  E’+Δ 



Coulomb distortions on heavy nuclei 

Δ ~ “boost in the Coulomb field”
 calibrated against lower E
 quasi-elastic cross sections
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E03-013 heavy target results 

Before coulomb corrections
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E03-013 heavy target results 

After coulomb corrections
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E03-103: EMC effect in heavy nuclei 

E03-103 data corrected for coulomb distortion


Scale errors: 1.6-2% 
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Figs from J. Gomez, PRC49, 4348 (1994)) 

A or density dependence ? 

Density calculated assuming a uniform
 sphere of radius: Re (r=3A/4pRe

3)
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Magnitude of the EMC effect for C
 and 4He very similar, and 

                                 ρ(4He) ~ ρ(12C)


A or density dependence ? 
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Magnitude of the EMC effect for C
 and 4He very similar, and 

                                 ρ(4He) ~ ρ(12C)


A or density dependence ? 

EMC effect:  ρ-dependent 
(A-dep.  factor of 2) 

Magnitude of the EMC effect for C
 and 9Be very similar, but 

                              ρ(9Be) << ρ(12C)


EMC effect:  A-dependent 
(ρ-dep.  factor of 2)  
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A or density dependence ? 

Fit of the EMC ratio for 0.3<x<0.7
 and look at A-dependence of the slope
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A or density dependence ? 

Fit of the EMC ratio for 0.3<x<0.7
 and look at A-dependence of the slope


E03-103 

SLAC A-dep. parametrization 
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SLAC ρ-dependence fit 

A or density dependence ? 

Fit of the EMC ratio for 0.3<x<0.7
 and look at A-dependence of the slope


E03-103 

SLAC A-dep. parametrization 
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SLAC ρ-dependence fit 

A or density dependence ? 

Fit of the EMC ratio for 0.3<x<0.7
 and look at A-dependence of the slope


E03-103 

SLAC A-dep. parametrization 
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9Be ~ 2α-cluster+n 

 

<ρ> small 

but   

ρlocal(9Be) ~ ρ(4He) 

  hint of local density dependence 

  overlap with nearest neighbors ?   
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World data re-analysis 
Experiments E (GeV) A x-range Pub. 1st author 

CERN-EMC 280 56 0.050-0.650 Aubert 

12,63,119 0.031-0.443 Ashman 

CERN-BCDMS 280 15 0.20-0.70 Bari 

56 0.07-0.65 Benvenuti 

CERN-NMC 200 4,12,40 0.0035-0.65 Amaudruz 

200 6,12 0.00014-0.65 Arneodo 

SLAC-E61 4-20 9,27,65,197 0.014-0.228 Stein 

SLAC-E87 4-20 56 0.075-0.813 Bodek 

SLAC-E49 4-20 27 0.25-0.90 Bodek 

SLAC-E139 8-24 4,9,12,27,40,56,108,197 0.089-0.8 Gomez 

SLAC-E140 3.7-20 56,197 0.2-0.5 Dasu 

DESY-HERMES 27.5 3,14,84 0.013-0.35 Airapetian 
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Extrapolation to nuclear matter 

NM

NM


  Improved density calculation (calculated with density distributions from R. Wiringa
 and S. Pieper )


EMC 

SLAC 

fit A≥12 

fit A≥3 
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After coulomb corrections


A
-1/3

(!
A
/!
d
) I
S

0.8

0.9

1

0 0.2 0.4 0.6 0.8

!*(A-1)/A
("
A
/"
d
) I
S

0.8

0.9

1

0 0.05 0.1 0.15

NM
 NM


  Improved density calculation (calculated with density distributions from R. Wiringa
 and S. Pieper )

  Apply coulomb distortion correction


Extrapolation to nuclear matter 
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NM


After coulomb corrections


Note: n/p correction is
 also A-dependent !


NM


  Improved density calculation (calculated with density distributions from R. Wiringa
 and S. Pieper ).

  Apply coulomb distortion correction.

  In progress: n/p at large Q2 and low x, and large x and large Q2.


  Target mass correction to be looked at. 


Extrapolation to nuclear matter 

EMC 

SLAC 

JLab E03-103 prel. 

fit A≥12 

fit A≥3 
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EMC effect in nuclear matter 

43 

0 0.2 0.4 0.6 0.8 1
x

0.7

0.8

0.9

1

1.1

1.2

(!
A
/!
D
) i
s

Sick & Day, PLB274 (1992)

All world data (cc)

0 0.2 0.4 0.6 0.8 1
x

0.7

0.8

0.9

1

1.1

1.2

(!
A
/!
D
) i
s

Sick & Day, PLB274 (1992)

All world data (cc)

From A-1/3 dependence From ρ-dependence 



44 

0 0.2 0.4 0.6 0.8 1
x

0.7

0.8

0.9

1

1.1

1.2

(!
A
/!
D
) i
s

Sick & Day, PLB274 (1992)

All world data (cc)

including E03-103 prel. (cc)

0 0.2 0.4 0.6 0.8 1
x

0.7

0.8

0.9

1

1.1

1.2

(!
A
/!
D
) i
s

Sick & Day, PLB274 (1992)

All world data (cc)

including E03-103 prel. (cc)

EMC effect in nuclear matter 

From A-1/3 dependence From ρ-dependence 



45 

0 0.2 0.4 0.6 0.8 1
x

0.7

0.8

0.9

1

1.1

1.2

(!
A
/!
D
) i
s

Sick & Day, PLB274 (1992)

All world data (cc)

including E03-103 prel. (cc)

Cloet et al, PLB642, 210 (2006)

Smith & Miller, PRL91, 212301 (2003)

0 0.2 0.4 0.6 0.8 1
x

0.7

0.8

0.9

1

1.1

1.2

(!
A
/!
D
) i
s

Sick & Day, PLB274 (1992)

All world data (cc)

including E03-103 prel. (cc)

Cloet et al, PLB642, 210 (2006)

Smith & Miller, PRL91, 212301 (2003)

EMC effect in nuclear matter 

From A-1/3 dependence From ρ-dependence 



46 

Summary 

  JLab E03-103 provides:

  Precision nuclear structure ratios for light nuclei

  Access to large x EMC region for 3He → 197Au


  Preliminary observations:

  Scaling of the structure function ratios for W<2GeV down to low Q2

  First measurement of the EMC effect in 3He: very sensitive to isoscalar
 correction

  Similar large x shape of the structure function ratios for A>3


  In progress:

  Coulomb correction systematics

  Nuclear density calculations

  Smeared n/p at correct kinematics and for each nucleus

  Target mass correction 
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Outlook 

  New JLab data (light nuclei and high x precision) indicate:

  the need to go beyond the simple A- or ρ-based fits

  the importance of detailed calculations with real n/p input


  Updated/new extrapolation to the EMC effect in nuclear matter


  Important to understand EMC effect for neutrinos experiments.


   Future related measurements:

  3H and 3He (n/p in nuclei) at 

   Jlab 12 GeV

  JLab BONUS (6 and 12 GeV) 

    free n/p

  First measurement of the polarized 

   EMC effect first test


Cloet, Bentz, and Thomas,  PLB 642, 210 (2006) 
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Back-ups 
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Density calculations 
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E03-103: QE subtraction effect 
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Quark-hadron duality 

First observed by Bloom and Gilman
 in the 1970’s on F2: 

  Scaling curve seen at high Q2  is an  
 accurate average over the
 resonance region at lower Q2 

I. Niculescu et al., PRL85:1182 (2000) 
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Quark-hadron duality 

In nuclei, the averaging is
 in part done by the Fermi
 motion. 

J. Arrington, et al., PRC73:035205 (2006) 

First observed by Bloom and Gilman
 in the 1970’s on F2: 

  Scaling curve seen at high Q2  is an  
 accurate average over the
 resonance region at lower Q2 
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Scaling of the nuclear structure functions 

 F2(x,Q2) consistent with
 QCD evolution in Q2 for
 low x values (x<0.5) 

 Huge scaling violations at
 large x (especially for
 x>1) 

 F2(ξ,Q2) consistent with QCD
 evolution in Q2 to much
 larger ξ values 

 Scaling violations are mostly
 the “target-mass”
 corrections (plus a clear
 contribution from the QE peak)  

    Nearly independent of A 
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E03-103:  Experimental details 

Ratio of e+ to e-
 production 

Requires larger scattering
 angle to reach same Q2 

 Larger π- contamination 
 Large charge-symmetric

 background 
 Larger Coulomb distortion

 corrections 

Ratio of e+ to e-
 production 

Main drawback is lower beam energy: 

Source of uncertainty 
Statistics 

*Density fluctuations 
Absolute density 

* - size of correction is
 8% at 4 uA vs.            

 4% at 80 uA 

SLAC E139 
1.0-1.2% 

1.4% 
2.1% 

JLab E03-103 
0.5-0.7% 

0.4% 
1.0%  

(1.5% for 3He) 

Main improvement over SLAC due to improved 4He targets: 


