

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Does a nucleon appears different when inside a nucleus ?

Patricia Solvignon Argonne National Laboratory

> Postdoctoral Research Symposium September 11-12, 2008

Outline

***** Brief introduction to the EMC effect

- ***** JLab E03-103 preliminary results:
 - $> Q^2$ -dependence study with Carbon
 - > ³He and ⁴He
 - > Heavy nuclei and Coulomb distortion
- New extrapolation to nuclear matter

The structure of the nucleon

Deep inelastic scattering \rightarrow probe the constituents of the nucleon: the quarks and the gluons

To increase the luminosity, physicists decided to use heavy nuclei to study the structure of the proton instead of a hydrogen target.

But ...

What is the EMC effect ?

Existing EMC Data

SLAC E139

- Most complete data set: A=4 to 197
- Most precise at large *x*
 - \rightarrow Q²-independent
 - → universal shape
 - → magnitude dependent on A

E03-103 will improve with

- Higher precision data for ⁴He
- Addition of ³He data
- Precision data at large *x* and on heavy nuclei
- \Rightarrow Lowering Q² to reach high x region

X_{Bj}

JLab Experiment E03-103

Spokespersons: D. Gaskell and J. Arrington Post-doc: P. Solvignon Graduate students: J. Seely and A. Daniel

A(e,e') at 5.0 and 5.8 GeV in Hall C

- Targets: H, ²H, ³He, ⁴He, Be, C, Al, Cu, Au
- 10 angles to measure
 Q²-dependence

E03-103: Carbon EMC ratio and Q²-dependence

Small angle, low $Q^2 \rightarrow$ clear scaling violations for x > 0.7, but surprisingly good agreement at lower x

E03-103: Carbon EMC ratio and Q²-dependence

At larger angles \rightarrow indication of scaling to very large *x*

E03-103: Carbon EMC ratio

E03-103: ⁴He

JLab results consistent with SLAC E139 →Improved statistics and systematic errors

Large *x* shape more clearly consistent with heavier nuclei

Models shown do a reasonable job describing the data

Isoscalar correction

$$R_{EMC} = \frac{\sigma_2^A / A}{\sigma_2^D / 2} \cdot \left(\frac{1 + F_2^n / F_2^p}{Z + NF_2^n / F_2^p} \right)$$

Isoscalar correction

SLAC fit: (1-0.8x)

Isoscalar correction

E03-103: Preliminary ³He EMC ratio

A or density dependence ?

EMC effect: ρ -dependent

A or density dependence ?

Coulomb distortions on heavy nuclei

Initial (scattered) electrons are accelerated (decelerated) in Coulomb field of nucleus with Z protons

- Not accounted for in typical radiative corrections
- Usually, not a large effect at high energy machines *not true at JLab (6 GeV!)*

Coulomb distortions on heavy nuclei

Initial

(scattered)

e

lectrons are accelerated (decelerated) in Coulomb field of nucleus with Z protons

- Not accounted for in typical radiative corrections
- Usually, not a large effect at high energy machines and true at JLab (6 GeV!)

E03-103 EMA tested against DWBA calculation for QE scattering

Aste and Trautmann, Eur, Phys. J. A26, 167-178(2005)

→ application to inelastic scattering ?

 $E \rightarrow E + \Delta$ $E' \rightarrow E' + \Delta$

$$\Delta = -\frac{3}{4} V_0, V_0 = \frac{3\alpha(Z-1)}{2r_c}$$

 $W^2 > 1.5 GeV^2$

E03-013 heavy target results and world data

E03-013 heavy target results and world data

After coulomb corrections on all data

E03-103: EMC effect in heavy nuclei

E03-103: EMC effect in heavy nuclei

Nuclear dependence of the EMC effect

Main difference due to E139 data sets used:

- Sick & Day used E139 Q²-avg tables
- we used E139 constant Q^2 to be able to apply CC

Nuclear dependence of the EMC effect

Nuclear dependence of the EMC effect

➢ Good agreement between E03-103 and SLAC E139 data after Coulomb corrections.

➢ Preliminary E03-103 results confirm A-dependence of the EMC effect.

Note: n/p correction is also A-dependent !

Nuclear matter

Nuclear matter

Nuclear matter

Summary

- ✤ JLab E03-103 provides:
 - Precision nuclear structure ratios for light nuclei
 - Access to large *x* EMC region for ${}^{3}\text{He} \rightarrow {}^{197}\text{Au}$
- Preliminary observations:
 - Scaling of the structure function ratios for W<2GeV down to low Q²
 - Large EMC effect in ³He
 - Similar large x shape of the structure function ratios for A>3
- In progress:
 - Absolute cross sections for ¹H, ²H, ³He and ⁴He: test models of σ_n/σ_p and nuclear effects in few-body nuclei
 - Quantitative studies of the Q²-dependence in structure functions and their ratios
 - Coulomb distortion
 - Nuclear density calculations
 - Target mass correction

Mapping the EMC Effect

Models should include conventional effects:

- Fermi motion and binding dominate at high x
- Binding also affects quark distribution at all x

Then more "exotic" explanations may be added if these effects are not enough to describe the data like:

- > Nuclear pions
- > Multiquark clusters
- > Dynamical rescaling

Many of these models can reproduce the large x region but failed in other x-regions or for other data (Drell-Yan) or didn't include conventional effects.

More detailed look at scaling

 $W^2 > 2 \text{ GeV}^2$ and $Q^2 > 3 \text{ GeV}^2$

Note: Ratios at larger x will be shown, but should be taken cautiously

