

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Coulomb distortion in the inelastic regime

Patricia Solvignon Argonne National Laboratory

> Work done in collaboration with Dave Gaskell (JLab) and John Arrington (ANL)

International Workshop on Positrons at Jefferson Lab JPOS09 March 25-27 2009

Coulomb distortion and two-photon exchange

Exchange of 2 (hard) photons with a single nucleon

Coulomb distortion

Exchange of one or more (soft) photons with the nucleus, in addition to the one hard photon exchanged with a nucleon

Incident (scattered) electrons are accelerated (decelerated) in the Coulomb well of the nucleus.

Opposite effect with positrons

How to correct for Coulomb distortion ?

$$\sigma_{tot}^{PWBA} = \sigma_{Mott} \ S_{tot}^{PWBA}(|\vec{q}|, \omega, \theta) \quad \mbox{ (1.1)}$$

Effective Momentum Approximation (EMA) Aste and Trautmann, Eur, Phys. J. A26, 167-178(2005)

$$\begin{array}{c} \mathbf{E} \rightarrow \mathbf{E} + \overline{\mathbf{V}} \\ \mathbf{E}_{\mathrm{p}} \rightarrow \mathbf{E}_{\mathrm{p}} + \overline{\mathbf{V}} \end{array} \right\} Q_{eff}^{2} = 4(E + \overline{V})(E_{p} + \overline{V})\sin^{2}(\frac{\theta}{2})$$

1st method

 σ_{tot}^{DWBA} – Focusing of the electron wave function
– Change of the electron momentum

2nd method

$$\begin{split} S_{tot}^{PWBA}(|\vec{q}|,\omega,\theta) &\longrightarrow S_{tot}^{PWBA}(|\vec{q}_{eff}|,\omega,\theta) \\ \sigma_{Mott}^{eff} &= 4\alpha^2 \cos^2(\theta/2)(E_p + \bar{V})^2/Q_{eff}^4 \\ F_{foc}^i &= \frac{E + \bar{V}}{E} \\ \\ \hline \sigma_{Mott}^{CC} &= \sigma_{Mott} \cdot S_{tot}^{PWBA}(|\vec{q}_{eff}|,\omega,\theta) \\ &\longleftrightarrow \\ \hline \sigma_{tot}^{CC} &= (F_{foc}^i)^2 \cdot \sigma_{Mott}^{eff} \cdot S_{tot}^{PWBA}(|\vec{q}_{eff}|,\omega,\theta) \end{split}$$

How to correct for Coulomb distortion ?

$$\sigma_{tot}^{PWBA} = \sigma_{Mott} \ S_{tot}^{PWBA}(|\vec{q}|, \omega, \theta)$$

Effective Momentum Approximation (EMA) Aste and Trautmann, Eur, Phys. J. A26, 167-178(2005)

$$\begin{array}{c} \mathbf{E} \rightarrow \mathbf{E} + \overline{\mathbf{V}} \\ \mathbf{E}_{p} \rightarrow \mathbf{E}_{p} + \overline{\mathbf{V}} \end{array} \right\} Q_{eff}^{2} = 4(E + \overline{V})(E_{p} + \overline{V})\sin^{2}(\frac{\theta}{2})$$

$$\sigma_{tot}^{\text{DWBA}}$$
 ing of the electron wave function

- Change of the electron momentum

- Focus

Coulomb distortion measurements in quasi-elastic scattering

Coulomb distortion measurements in quasi-elastic scattering

Coulomb potential established in Quasi-elastic scattering regime !

Physics sensitive to Coulomb distortion

Coulomb distortion:

- → Not accounted for in typical radiative corrections
- Usually, not a large effect at high energy machines
- \rightarrow Important for E_p<<E

About every experiments that used nuclei with A>12

Physics sensitive to Coulomb distortion

Coulomb distortion:

- → Not accounted for in typical radiative corrections
- Usually, not a large effect at high energy machines
- \rightarrow Important for E_p<<E

About every experiments that used nuclei with A>12

SLAC E139 results on the EMC effect

SLAC E139:

- Most complete data set: A=4 to 197
- Most precise at large x
 - \rightarrow Q²-independent
 - \rightarrow universal shape
 - \rightarrow magnitude dependent on A

Effect of Coulomb distortion on JLab E03-103 results

JLab is at lower energy than SLAC but the luminosity is much higher.

We obtain similar or larger Q^2 values in many cases by going to larger angles such that E_p is smaller.

So Coulomb distortion effects are 'doubly' amplified: lower beam energy and lower fractional E_p .

E03-103 heavy target results

E03-103 heavy target results

Extrapolation to nuclear matter

Exact calculations of the EMC effect exist for light nuclei and for nuclear matter.

x=0.7

Extrapolation to nuclear matter

Exact calculations of the EMC effect exist for light nuclei and for nuclear matter.

x=0.7

Extrapolation to nuclear matter

Exact calculations of the EMC effect exist for light nuclei and for nuclear matter.

x=0.7

 $R(x,Q^2)$

$$\frac{d\sigma}{d\Omega d\mathrm{E}'} = \Gamma \Big[\sigma_T(x, Q^2) + \varepsilon \sigma_L(x, Q^2) \Big]$$

$$R(x,Q^2) = \frac{\sigma_L(x,Q^2)}{\sigma_T(x,Q^2)}$$

TPE can affect the ε dependence (talk of E. Christy on Thursday)

Coulomb Distortion could have the same kind of impact as TPE, but gives also a correction that is A-dependent. Dasu et al., PRD49, 5641(1994)

Meaning of R

$$\frac{d\sigma}{d\Omega d\mathrm{E}'} = \Gamma \Big[\sigma_T(x, Q^2) + \varepsilon \sigma_L(x, Q^2) \Big]$$

$$R(x,Q^2) = \frac{\sigma_L(x,Q^2)}{\sigma_T(x,Q^2)}$$

In a model with:

a) spin-1/2 partons: R should be small and decreasing rapidly with Q²
b) spin-0 partons: R should be large and increasing with Q²

Dasu et al., PRD49, 5641(1994)

Access to nuclear dependence of R

Nuclear higher twist effects and spin-0 constituents in nuclei: same as in free nucleons

Access to nuclear dependence of R

After taking into account the normalization uncertainties from each experiment

Hint of an A-dependence in R in Copper-Iron

$\varepsilon\,$ dependence of the Coulomb distortion

The ε -dependence of the Coulomb distortion has effect on the extraction of R in nuclei

Summary

* At present, corrections for Coulomb distortion in inelastic regime are done using a prescription for quasi-elastic scattering regime

- → need a measurement of the amplitude of the effect in the inelastic regime
- → need a prescription in the inelastic regime

Coulomb distortion affects the extrapolation to nuclear matter which is key for comparison with theoretical calculations

* Coulomb distortion has a real impact on the A-dependence of R: clear ε -dependence

 \clubsuit hint of an A-dependence of R: could impact many experiments which used R_p or R_D for R_A

could change our conclusion on the spin-0 constituent contents and higher twist effect in nuclei versus free nucleons.

Back-ups

Nucleon only model

Assumptions on the nucleon structure function:

- not modified in medium
- the same on and off the energy shell

$$\frac{F_2^A(x_A)}{A} = \int_{x_A}^A dy \cdot f_N(y) F_2^N(x_A/y)$$
Fermi momentum << M_{nucleon}

$$f_N(y) \text{ is narrowly peaked and } y \approx 1$$

$$\frac{F_2^A}{A} \approx F_2^N \Rightarrow \text{ no EMC effect}$$
Smith Miller '02
$$f_N(y) = \int_{x_A}^A dy \cdot f_N(y) F_2^N(x_A/y)$$

"... some effect not contained within the conventional framework is responsible for the EMC effect." Smith & Miller, PRC 65, 015211 (2002)

 \rightarrow

Smith & Miller, PRC 65, 015211 and 055206 (2002)

Nucleons and pions model

Pion cloud is enhanced and pions carry an access of plus momentum:

$$P^+ = P_N^+ + P_\pi^+ = M_A$$

and using $P_{\pi}^{+}/M_{A} = 0.04$ is enough to reproduce the EMC effect

But excess of nuclear pions \rightarrow enhancement of the nuclear sea

But this enhancement was not seen in nuclear Drell-Yan reaction

Another class of models

Interaction between nucleons

Model assumption:

nucleon wavefunction is changed by the strong external fields created by the other nucleons

Model requirements:

- Momentum sum rule
- Baryon number conservation
- Vanishing of the structure function at x<0 and x>A
- Should describe the DIS and DY data

EMC effect in nuclear matter

No Coulomb corrections applied

EMC effect in nuclear matter

Coulomb corrections applied

EMC effect in nuclear matter

Coulomb corrections applied

World data re-analysis

Experiments	E (GeV)	Α	x-range	Pub. 1 st author
CERN-EMC	280	56	0.050-0.650	Aubert
		12,63,119	0.031-0.443	Ashman
CERN-BCDMS	280	15	0.20-0.70	Bari
		56	0.07-0.65	Benvenuti
CERN-NMC	200	<mark>4</mark> ,12, <mark>40</mark>	0.0035-0.65	Amaudruz
	200	6,12	0.00014-0.65	Arneodo
SLAC-E61	4-20	9,27,65,197	0.014-0.228	Stein
SLAC-E87	4-20	56	0.075-0.813	Bodek
SLAC-E49	4-20	27	0.25-0.90	Bodek
SLAC-E139	8-24	4,9,12,27,40,56,108,197	0.089-0.8	Gomez
SLAC-E140	3.7-20	56,197	0.2-0.5	Dasu
DESY-HERMES	27.5	3,14,84	0.013-0.35	Airapetian

A or density dependence ?

Figs from J. Gomez, PRC49, 4348 (1994))

Density calculated assuming a uniform sphere of radius: $R_e (r=3A/4pR_e^3)$

The structure of the nucleon

Deep inelastic scattering: probe the constituents of the nucleon, i.e. the quarks and the gluons

<u>4-momentum transfer squared</u> $Q^{2} = -q^{2} = 4 EE' \sin^{2} \frac{\theta}{2}$

Invariant mass squared $W^{2} = M^{2} + 2M\nu - Q^{2}$

> Bjorken variable $x = \frac{Q^2}{2M\nu}$

$$\frac{d^2\sigma}{d\Omega dE'} = \sigma_{Mott} \left[\frac{1}{\nu} F_2(x,Q^2) + \frac{2}{M} F_1(x,Q^2) \tan^2 \frac{\theta}{2} \right]$$

