

... for a brighter future

Patricia Solvignon Argonne National Laboratory

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC For the E03-103 Collaboration <u>spokespersons</u>: J. Arrington and D. Gaskell <u>graduate students</u>: A. Daniel and J. Seely

New Results on the EMC Effect at

Large x in Light to Heavy Nuclei

Hall C Summer Workshop August 9-10, 2007

Nuclear structure functions and the EMC effect

* Nuclear structure: $\sigma_A \neq Z.\sigma_p + N.\sigma_n$

• Effects found in several experiments at CERN, SLAC, DESY

Mapping the EMC Effect

Models should include conventional effects:

- Fermi motion and binding dominate at high x
- Binding also affects quark distribution at all x

Then more "exotic" explanations may be added if these effects are not

- Nuclear pions
 Multiquark clusters
- > Dynamical rescaling

Many of these models can reproduce the large x region but failed in other x-regions or for other data (Drell-Yan) or didn't include conventional effects.

EMC effect in few-body nuclei

* Calculations predict different x-dependence for ³He and ⁴He

- Different models predict different x-dependence
- Some models predict different shapes for ³He and ⁴He
- Spectral functions are easier to calculate for light nuclei

Existing EMC Data

SLAC E139 most extensive and precise data set for x>0.2

σ_A / σ_D for A=4 to 197

- ⁴He, ⁹Be, ¹²C, ²⁷Al, ⁴⁰Ca, ⁵⁶Fe, ¹⁰⁸Ag, and ¹⁹⁷Au
- Size at fixed x varies with A, but shape is nearly constant

E03-103 will improve with

- Higher precision data for ⁴He
- Addition of ³He data
- Precision data at large x and on heavy nuclei

\Rightarrow Lowering Q² to reach high x region

х_{ві}

Quark-hadron duality

First observed by Bloom and Gilman in the 1970's on F_2 :

Scaling curve seen at high Q^2 is an accurate average over the resonance region at lower Q^2

I. Niculescu et al., PRL85:1182 (2000)

Quark-hadron duality

First observed by Bloom and Gilman in the 1970's on F_2 :

Scaling curve seen at high Q^2 is an accurate average over the resonance region at lower Q^2

In nuclei, the averaging is in part done by the Fermi motion.

J. Arrington, et al., PRC73:035205 (2006)

EMC effect: Scaling at lower Q², W²

JLab Experiment E03-103

- ♦ Ran in Hall C at Jlab Summer and Fall 2004 (w/E02-019 \rightarrow x>1)
- ✤ A(e,e') at 5.77 GeV
 - Targets: H, ²H, ³He, ⁴He, Be, C, Al, Cu, Au
 - 10 angles to measure
 Q²-dependence

JLab Experiment E03-103

- ♦ Ran in Hall C at Jlab Summer and Fall 2004 (w/E02-019 \rightarrow x>1)
- ✤ A(e,e') at 5.77 GeV
 - Targets: H, ²H, ³He, ⁴He, Be, C, Al, Cu, Au
 - 10 angles to measure
 Q²-dependence

E03-103: Experimental details

Main improvement over SLAC due to improved ⁴He targets:

Source of uncertainty	<u>SLAC E139</u>	<u>JLab E03-103</u>	
Statistics	1.0-1.2%	0.5-0.7%	* - <i>size</i> of correction is
*Density fluctuations	1.4%	0.4%	8% at 4 uA vs.
Absolute density	2.1%	1.0%	4% at 80 uA
		(1.5% for ³ He)	

E03-103: Experimental details

Main improvement over SLAC due to improved ⁴He targets:

- angle to reach same Q^2
- \rightarrow Larger π^- contamination
- Large charge-symmetric background
- Larger Coulomb distortion corrections

E03-103: Analysis status

Analysis is in the final stage

Cross section extraction

- Calibrations, efficiency corrections, background subtraction completed
- Finalizing model-dependence in radiative corrections, bin centering, etc...
- Investigating Coulomb distortion corrections (heavy nuclei)
- * EMC Ratios: Isoscalar EMC correction (requires σ_n/σ_p)

E03-103: Carbon EMC ratio and Q²-dependence

E03-103: Carbon EMC ratio and Q²-dependence

E03-103: Carbon EMC ratio and Q²-dependence

E03-103:Comparison of Carbon and ⁴He

Nuclear dependence of cross sections

E03-103: Preliminary ³He EMC ratio

Large correction for proton excess

E03-103: Preliminary ³He EMC ratio

Large correction for proton excess

Significant EMC effect

Different shape at large
 x than for the heavier
 nuclei

Calculations
 underestimate the effect

Coulomb distortions on heavy nuclei

Initial (scattered) electrons are accelerated (decelerated) in Coulomb field of nucleus with Z protons

- Not accounted for in typical radiative corrections
- Usually, not a large effect at high energy machines not true at JLab (6 GeV!)

E03-103: EMC effect in heavy nuclei

E03-103: EMC effect in heavy nuclei

EMC effect in heavy nuclei

EMC effect in heavy nuclei

A or $\rho(A)$ dependence of the EMC effect ?

 Good agreement between E03-103 and SLAC E139 data after Coulomb corrections.

Preliminary E03-103 results confirm A and density dependence of the EMC effect.

A or $\rho(A)$ dependence of the EMC effect ?

 Good agreement between E03-103 and SLAC E139 data after Coulomb corrections.

Preliminary E03-103 results confirm A and density dependence of the EMC effect.

Summary

- JLab E03-103 provides:
 - Precision nuclear structure ratios for light nuclei
 - \checkmark Access to large x EMC region for ³He \rightarrow ¹⁹⁷Au
- Preliminary observations:

 \checkmark Scaling of the structure function ratios for W<2GeV down to low Q²

- ✓ Carbon and ⁴He have the same EMC effect
- ✓ Large EMC effect in ³He
- \checkmark Similar large x shape of the structure function ratios for A>3

More to come:

✓ Absolute cross sections for ¹H, ²H, ³He and ⁴He: test models of σ_n/σ_p and nuclear effects in few-body nuclei ✓ Quantitative studies of the Q²-dependence in structure functions and their ratios

Extra slides

Isoscalar Corrections

E03-103: Charge-symmetry background

E03-103: Charge-symmetry background

Scaling of the nuclear structure functions

- Low Q² JLab data (from E89-008, 4 GeV) are consistent with extrapolated structure function from high Q² SLAC data [fixed dln(F₂)/dln(Q²)]
- * Above ξ =0.65, there is a large gap between JLab, SLAC data, but there are indications of scaling up to ξ =0.75

Scaling of the nuclear structure functions

- Low Q² JLab data (from E89-008, 4 GeV) are consistent with extrapolated structure function from high Q² SLAC data [fixed dln(F₂)/dln(Q²)]
- * Above ξ =0.65, there is a large gap between JLab, SLAC data, but there are indications of scaling up to ξ =0.75

