LABORATORY
... for a brighter future

The EMC Effect

 and
The Quest to High \boldsymbol{x} Quark Distributions

Patricia Solvignon

Argonne National Laboratory
U.S. Department
of Energy
UChicago Argonne $_{\text {uс }}$

Hall C seminar Jefferson Lab April 92009

Outline

- The EMC effect
- JLab Hall C E03-103
- Coulomb Distortion
\square Effect on E03-103 heavy target data
- Effect on World data
\square A-independence of $\mathrm{R}\left(\mathrm{x}, \mathrm{Q}^{2}\right)$
- What's next?

$\square \mathrm{F}_{2}\left({ }^{3} \mathrm{H}\right) / \mathrm{F}_{2}\left({ }^{(} \mathrm{He}\right)$: EMC effect on lightest nuclei
\square F2n/F2p and d/u at high x
$-\mathrm{A}_{1}$ proton and neutron: $\Delta \mathrm{u} / \mathrm{u}$ and $\Delta \mathrm{d} / \mathrm{d}$ at high x
- Summary and Outlook

The structure of the nucleon from inclusive

4-momentum transfer squared

$$
Q^{2}=-q^{2}=4 E E^{\prime} \sin ^{2} \frac{\theta}{2}
$$

Invariant mass squared

$$
W^{2}=M^{2}+2 M v-Q^{2}
$$

Bjorken variable

$$
x=\frac{Q^{2}}{2 M v}
$$

$\frac{d^{2} \sigma}{d \Omega d E^{\prime}}=\sigma_{M o t t}\left[\frac{1}{v} F_{2}\left(x, Q^{2}\right)+\frac{2}{M} F_{1}\left(x, Q^{2}\right) \tan ^{2} \frac{\theta}{2}\right]$

In the parton model: $\quad F_{1}(x)=\frac{1}{2} \sum_{i} e_{i}^{2}\left[q_{i}^{\uparrow}(x)+q_{i}^{\downarrow}(x)\right]=\frac{1}{2 x} F_{2}(x)$

The quest for higher precision data

To increase the luminosity, physicists decided to use heavy nuclei to study the structure of the proton instead of a hydrogen target.

The EMC effect

Nucleus at rest
(\mathbf{A} nucleons $=\mathbf{Z}$ protons +N neutrons)

The EMC effect

Existing EMC Data

SLAC E139:

- Most complete data set: $\mathrm{A}=4$ to 197
- Most precise at large x :
- Q^{2}-independent
- universal shape
- magnitude dependent on A

Nucleon only model

Assumptions on the nucleon structure function:

- not modified in medium
- the same on and off the energy shell

Smith \& Miller,
PRC 65, 015211 and 055206 (2002)

$$
\frac{F_{2}^{A}\left(x_{A}\right)}{A}=\int_{x_{A}}^{A} d y \cdot f_{N}(y) F_{2}^{N}\left(x_{A} / y\right)
$$

Fermi momentum $\ll \mathbf{M}_{\text {nucleon }}$
$\rightarrow f_{N}(y)$ is narrowly peaked and $y \approx 1$
$\frac{F_{2}^{A}}{A} \approx F_{2}^{N} \quad \rightarrow \quad$ no EMC effect

R

"... some effect not contained within the conventional framework is responsible for the EMC effect."

Nucleons and pions model

Pion cloud is enhanced and pions carry an access of plus momentum:

$$
P^{+}=P_{N}^{+}+P_{\pi}^{+}=M_{A}
$$

and using $P_{\pi}^{+} / M_{A}=0.04$ is enough to reproduce the EMC effect
But excess of nuclear pions \rightarrow enhancement of the nuclear sea

But this enhancement was not seen in nuclear Drell-Yan reaction

Fig from P. Reimer, Eur.Phys. J A31, 593 (2007)

Another class of models

\Rightarrow Interaction between nucleons

Model assumption:
nucleon wavefunction is changed by the strong external fields created by the other nucleons

Smith \& Miller, PRL 91, 212301 (2003)

Model requirements:

- Momentum sum rule
- Baryon number conservation
- Vanishing of the structure function at $x<0$ and $x>A$
- Should describe the DIS and DY data

JLab Experiment E03-103

Spokespersons: D. Gaskell and J. Arrington Post-doc: P. Solvignon
 Graduate students: J. Seely, A. Daniel, N. Fomin

A(e, e') at 5.0 and 5.8 GeV in Hall C

10 angles to measure Q^{2}-dependence

Targets:
$\mathrm{H},{ }^{2} \mathrm{H}$, ${ }^{3} \mathrm{He},{ }^{4} \mathrm{He}$, ${ }^{9} \mathrm{Be},{ }^{12} \mathrm{C}$, ${ }^{63} \mathrm{Cu},{ }^{197} \mathrm{Au}$

JLab Experiment E03-103

Spokespersons: D. Gaskell and J. Arrington Post-doc: P. Solvignon
 Graduate students: J. Seely, A. Daniel, N. Fomin

A(e, e') at 5.0 and 5.8 GeV in Hall C

10 angles to measure Q^{2}-dependence

Targets:

JLab Experiment E03-103

Spokespersons: D. Gaskell and J. Arrington Post-doc: P. Solvignon
 Graduate students: J. Seely, A. Daniel, N. Fomin

$\mathrm{A}\left(\mathrm{e}, \mathrm{e}^{\prime}\right)$ at 5.0 and 5.8 GeV in Hall C

10 angles to measure Q^{2}-dependence

More detailed look at scaling

C / D ratios at fixed x are Q^{2} independent for:

limits E03-103 coverage

$$
\text { to } x=0.85
$$

Note: Ratios at larger x will be shown, but could have small HT, scaling violation

E03-103: ${ }^{12} \mathrm{C}$ and ${ }^{4} \mathrm{He}$ EMC ratios

JLab results consistent with SLAC E139
\rightarrow Improved statistics and systematic errors

E03-103: ${ }^{12} \mathrm{C}$ and ${ }^{4} \mathrm{He}$ EMC ratios

JLab results consistent with SLAC E139
\rightarrow Improved statistics and systematic errors

Models shown do a reasonable job describing the data.

But very few real few-body calculations (most neglect structure, scale NM)

\boldsymbol{x}

Isoscalar correction

$$
R_{E M C}=\frac{\sigma_{2}^{A} / A}{\sigma_{2}^{D} / 2} \underbrace{\substack{\text { Isoscalar correction }}}_{\substack{ \\\frac{(p+n) / 2}{(Z p+N n) / A}}}
$$

E03-103: ${ }^{3} \mathrm{He}$ EMC ratio

A or ρ-dependence?

Figs from J. Gomez et al, PRC49, 4348 (1994))

Density calculated assuming a uniform sphere of radius:

$$
R_{e}\left(r=3 A / 4 p R_{e}{ }^{3}\right)
$$

A or ρ-dependence?

Magnitude of the EMC effect for C and ${ }^{4} \mathrm{He}$ very similar, and

$$
\rho\left({ }^{4} \mathrm{He}\right) \sim \rho\left({ }^{12} \mathrm{C}\right)
$$

EMC effect: ρ-dependent

Magnitude of the EMC effect for C and ${ }^{9}$ Be very similar, but

$$
\rho\left({ }^{9} \mathrm{Be}\right) \ll \rho\left({ }^{12} \mathrm{C}\right)
$$

EMC effect: A-dependent

A or $\rho-$-dependence?

Fit of the EMC ratio for $0.3<x<0.7$ and look at A-dependence of the slope

A or $\rho-$-dependence?

Fit of the EMC ratio for $0.3<x<0.7$ and look at A-dependence of the slope

A or $\rho-$-dependence?

Fit of the EMC ratio for $0.3<x<0.7$ and look at A-dependence of the slope

A or ρ-dependence?

${ }^{9} \mathrm{Be} \sim 2 \alpha$-cluster + n
 < $\rho>$ small \downarrow

but

$$
\rho_{\text {local }}\left({ }^{9} \mathrm{Be}\right) \sim \rho\left({ }^{4} \mathrm{He}\right)
$$

\rightarrow hint of local density dependence
\rightarrow overlap with nearest neighbors?
\Rightarrow link to SRC

A or ρ-dependence?

Improved density calculation (calculated with density distributions from R. Wiringa and S. Pieper).

- Apply coulomb distortion correction.

In progress: review of n / p corrections in world data
\square Target mass correction to be looked at.

Note: n / p correction is also A-dependent!

Coulomb distortion

Exchange of one or more (soft) photons with the nucleus, in addition to the one hard photon exchanged with a nucleon

Incident (scattered) electrons are accelerated (decelerated) in the Coulomb well of the nucleus.

Opposite effect with positrons

$$
\sigma_{\text {tot }}^{P W B A}=\sigma_{\text {Mott }} S_{\text {tot }}^{P W B A}(|\vec{q}|, \omega, \theta) \Longrightarrow
$$

$$
\sigma_{t o t}^{D W B A}
$$

- Focusing of the electron wave function
- Change of the electron momentum

Coulomb distortion

Exchange of one or more (soft) photons with the nucleus, in addition to the one hard photon exchanged with a nucleon

Incident (scattered) electrons are accelerated (decelerated) in the Coulomb well of the nucleus.

Opposite effect with positrons

$$
\sigma_{\text {tot }}^{P W B A}=\sigma_{\text {Mott }} S_{\text {tot }}^{P W B A}(|\vec{q}|, \omega, \theta)
$$

$$
\sigma_{t o t}^{D W B A}
$$

- Focusing of the electron wave function
- Change of the electron momentum

Effective Momentum Approximation (EMA)
Aste and Trautmann, Eur, Phys. J. A26, 167-178(2005)

$$
\left.\begin{array}{l}
\mathrm{E} \rightarrow \mathrm{E}+\overline{\mathrm{V}} \\
\mathrm{E}_{\mathrm{p}} \rightarrow \mathrm{E}_{\mathrm{p}}+\overline{\mathrm{V}}
\end{array}\right\} Q_{\text {eff }}^{2}=4(E+\bar{V})\left(E_{p}+\bar{V}\right) \sin ^{2}\left(\frac{\theta}{2}\right)
$$

$$
\begin{aligned}
& S_{\text {tot }}^{P W B A}(|\vec{q}|, \omega, \theta) \longrightarrow S_{t o t}^{P W B A}\left(\left|\vec{q}_{e f f}\right|, \omega, \theta\right) \\
& \sigma_{\text {Mott }}^{e f f}=4 \alpha^{2} \cos ^{2}(\theta / 2)\left(E_{p}+\bar{V}\right)^{2} / Q_{e f f}^{4} \\
& F_{\text {foc }}^{i}=\frac{E+\bar{V}}{E} \\
& \sigma_{\text {tot }}^{C C}=\left(F_{\text {foc }}^{i}\right)^{2} \cdot \sigma_{\text {Mott }}^{\text {eff }} \cdot S_{\text {tot }}^{P W B A}\left(\left|\vec{q}_{e f f}\right|, \omega, \theta\right)
\end{aligned}
$$

Coulomb distortion

Exchange of one or more (soft) photons with the nucleus, in addition to the one hard photon exchanged with a nucleon

Incident (scattered) electrons are accelerated (decelerated) in the Coulomb well of the nucleus.

Opposite effect with positrons

$$
\sigma_{t o t}^{P W B A}=\sigma_{\text {Mott }} S_{t o t}^{P W B A}(|\vec{q}|, \omega, \theta)
$$

$$
\sigma_{t o t}^{D W B A}
$$

- Focusing of the electron wave function
- Change of the electron momentum

Extrapolation to nuclear matter

Exact calculations of the EMC effect exist for light nuclei and for nuclear matter.

Extrapolation to nuclear matter

Exact calculations of the EMC effect exist for light nuclei and for nuclear matter.

Extrapolation to nuclear matter

Exact calculations of the EMC effect exist for light nuclei and for nuclear matter.

$R\left(x, Q^{2}\right)$

$$
\frac{d \sigma}{d \Omega d \mathrm{E}^{\prime}}=\Gamma\left[\sigma_{T}\left(x, Q^{2}\right)+\varepsilon \sigma_{L}\left(x, Q^{2}\right)\right]
$$

$$
R\left(x, Q^{2}\right)=\frac{\sigma_{L}\left(x, Q^{2}\right)}{\sigma_{T}\left(x, Q^{2}\right)}
$$

In a model with:
a) spin- $1 / 2$ partons: R should be small and decreasing rapidly with Q^{2}
b) spin-0 partons: R should be large and increasing with Q^{2}

Dasu et al., PRD49, 5641(1994)

Access to nuclear dependence of R

FIG. 13. The fits to the differential cross section ratio σ_{A} / σ_{D} versus $\epsilon^{\prime}=\epsilon /\left(1+R^{D}\right)$ are shown for each $\left(x, Q^{2}\right)$ point. The errors on the cross section include statistical and point-to-point systematic contributions added in quadrature.

slopes $\Rightarrow R_{A}-R_{D}$

Nuclear higher twist effects and spin-0 constituents in nuclei: same
as in free nucleons

Access to nuclear dependence of \boldsymbol{R}

A non-trivial effect in $R_{A}-R_{D}$ arises after applying Coulomb corrections

Access to nuclear dependence of R

New data from JLab E03-103: access to lower ε

Iron-Copper

Access to nuclear dependence of \boldsymbol{R}

The ε-dependence of the Coulomb distortion has effect on the extraction

Hint of an A-dependence in R

After taking into account the normalization uncertainties from each experiment

What's next?

The EMC effect in ${ }^{3} \mathrm{H}$ and ${ }^{3} \mathrm{He}$

$$
R\left({ }^{3} \mathrm{He}\right)=\frac{F_{2}^{3} \mathrm{He}}{2 F_{2}^{\rho}+F_{2}^{n}}
$$

$$
R\left({ }^{3} H\right)=\frac{F_{2}^{3} H}{F_{2}^{p}+2 F_{2}^{n}}
$$

Ratio of ${ }^{3} \mathrm{He},{ }^{3} \mathrm{H}:$ JLab E12-06-118

A way to get access to $\mathrm{F}_{2}{ }^{\mathrm{n}}$
I. Afnan et al, PRC 68 (2003)

- Measure F_{2} 's and form ratios:

$$
R\left({ }^{3} H e\right)=\frac{F_{2}^{3} H e}{2 F_{2}^{\prime}+F_{2}^{n}}, R\left({ }^{3} H\right)=\frac{F_{2}^{3} H}{F_{2}^{F_{2}^{\prime}}+2 F_{2}^{n}}
$$

- Form "super-ratio", r, then

$$
\frac{F_{2}^{n}}{F_{2}^{p}}=\frac{2 r-F_{2}^{3} \mathrm{He} / F_{2}^{3} \mathrm{H}}{2 F_{2}^{3} \mathrm{He} / F_{2}^{3^{3} H}-r}
$$

where $\quad r \equiv \frac{R\left({ }^{3} \mathrm{He}\right)}{R\left({ }^{3} \mathrm{H}\right)}$

Why is the $F_{2}{ }^{n} / F_{2}{ }^{p}$ ratio so interesting?

$\mathrm{SU}(6)$-symmetric wave function of the proton in the quark model (spin up):
$|p \uparrow\rangle=\frac{1}{\sqrt{18}}\left(3 u \uparrow[u d]_{S=0}+u \uparrow[u d]_{S=1}-\sqrt{2} u \downarrow[u d]_{S=1}-\sqrt{2} d \uparrow[u u]_{S=1}-2 d \downarrow[u u]_{S=1}\right)$$u$ and d quarks identical, \mathcal{N} and Δ would be degenerate in mass.
\square In this model: $d / u=1 / 2, F_{2}{ }^{n} / F_{2}{ }^{p}=2 / 3$.
pQCiD: helicity conservation ($q \uparrow \uparrow p$)
$=>d / u=2 /(9+1)=1 / 5, F_{2}{ }^{n} / F_{2}{ }^{p}=3 / 7$ for $x \rightarrow 1$
$\mathrm{SU}(6)$ symmetry is broken: $\mathrm{N}-\Delta$ Mass Splitting
\square Mass splitting between $S=1$ and $S=0$ diquark spectator.

- symmetric states are raised, antisymmetric states are lowered
($\sim 300 \mathrm{MeV}$).
$S=1$ suppressed
$=>d / u=0, F_{2}^{n} / F_{2}{ }^{p}=1 / 4$, for $x->1$

E12-06-118 Projected Results

- PAC30: "conditionally approved"
- 5000 Ci T target, 31 days
- JLab E12-06-1 18, G. Petratos, J. Gomez, R. J. Holt, R. Ransome et al

The tritium target conceptual design

E. J. Beise (U. of Maryland), R. J. Holt (Argonne), W. Korsch (U. of Kentucky), T. O’Connor (Argonne), G. G. Petratos (Kent State U.), R. Ransome (Rutgers U.), P. Solvignon (Argonne), and B. Wojtsekhowski (Jefferson Lab)

Tritium Target Task Force

What about a measurement at the EIC?

F2n/F2p at EIC:
high W so no need to worry about target mass correction

$$
\mathrm{e}^{-} \rightarrow \Leftarrow \mathbf{d}
$$

calorimeter

Polarized quark distributions

In the parton model:

$$
\begin{gathered}
F_{1}(x)=\frac{1}{2} \Sigma_{i} e_{i}^{2}\left[q_{i}(x)\right] \\
g_{1}(x)=\frac{1}{2} \Sigma_{i} e_{i}^{2}\left[\Delta q_{i}(x)\right]
\end{gathered}
$$

At high $\mathrm{Q}^{2}, \mathrm{~A}_{1}=\mathrm{g}_{1} / \mathrm{F}_{1}$ and:

$$
\begin{aligned}
& \frac{g_{1}^{n}}{F_{1}^{n}}=\frac{\Delta u+4 \Delta d}{u+4 d} \\
& \frac{g_{1}^{p}}{F_{1}^{p}}=\frac{4 \Delta u+\Delta d}{4 u+d}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\Delta u}{u} & =\frac{4}{15} \frac{g_{1}^{p}}{F_{1}^{p}}\left(4+\left(\frac{d}{u}\right)-\frac{1}{15} \frac{g_{1}^{n}}{F_{1}^{n}}\left(1+4\left(\frac{d}{u}\right)\right.\right. \\
\frac{\Delta d}{d} & =\frac{4}{15} \frac{g_{1}^{n}}{F_{1}^{n}}\left(4+1 /\left(\frac{d}{u}\right)-\frac{1}{15} \frac{g_{1}^{p}}{F_{1}^{p}}\left(1+4 /\left(\frac{d}{u}\right)\right.\right.
\end{aligned}
$$

Planned A_{1} measurement at JLab 12 GeV

Summary

JLab experiment E03-103 brings a wealth of new results:

\square Light nuclei:
contain key information on the EMC effect

- hint of local density dependence of the EMC effect
- can be compared to realistic calculations
\square Heavy nuclei and Coulomb distortion:
affects the extrapolation to nuclear matter which is key for comparison with theoretical calculations
- has a real impact on the A-dependence of R : clear ε-dependence
- need a measurement of the amplitude of the effect in the inelastic regime

Outlook

$\square \mathrm{F}_{2}\left({ }^{3} \mathrm{He}\right) / \mathrm{F}_{2}\left({ }^{3} \mathrm{H}\right)$: Hall A E12-06-118
\square EMC effect in light nuclein / p at high x in DISgetting to the d-quark distribution
--> important for extraction of $\Delta u / u$ and $\Delta d / d$ from measurement of $\mathrm{A}_{1}{ }^{\mathrm{n}}$ at high x
\square Coulomb distortion measurement in DIS: require a positron beam

- Polarized EMC
\square EIC: F2n/F2p from e--2H collisions

Extra slides

E03-103: Carbon EMC ratio and Q^{2}-dependence

Small angle, low $Q^{2} \rightarrow$ clear scaling violations for $x>0.6-0.7$

E03-103: Carbon EMC ratio and Q^{2}-dependence

At larger angles \rightarrow indication of scaling to very large x

E03-103: Carbon EMC ratio and Q^{2}-dependence

At larger angles $\boldsymbol{\rightarrow}$ indication of scaling to very large x

World data re-analysis

Experiments	$\mathrm{E}(\mathrm{GeV})$	A	x-range	Pub. 1 ${ }^{\text {st }}$ author
CERN-EMC	280	56	$0.050-0.650$	Aubert
		$12,63,119$	$0.031-0.443$	Ashman
CERN-BCDMS	280	15	$0.20-0.70$	Bari
		56	$0.07-0.65$	Benvenuti
CERN-NMC	200	$4,12,40$	$0.0035-0.65$	Amaudruz
	200	6,12	$0.00014-0.65$	Arneodo
SLAC-E61	$4-20$	$9,27,65,197$	$0.014-0.228$	Stein
SLAC-E87	$4-20$	56	$0.075-0.813$	Bodek
SLAC-E49	$4-20$	27	$0.25-0.90$	Bodek
SLAC-E139	$8-24$	$4,9,12,27,40,56,108,197$	$0.089-0.8$	Gomez
SLAC-E140	$3.7-20$	56,197	$0.2-0.5$	Dasu
DESY-HERMES	27.5	$3,14,84$	$0.013-0.35$	Airapetian

Coulomb distortion and two-photon exchange

OPE

TPE

Exchange of 2 (hard) photons with a single nucleon

Coulomb distortion
Exchange of one or more (soft) photons with the nucleus, in addition to the one hard photon exchanged with a nucleon

Incident (scattered) electrons are accelerated (decelerated) in the Coulomb well of the nucleus.

Opposite effect with positrons

How to correct for Coulomb distortion?

$$
\sigma_{\text {tot }}^{P W B A}=\sigma_{\text {Mott }} S_{\text {tot }}^{P W B A}(|\vec{q}|, \omega, \theta)
$$

$\sigma_{\text {tot }}^{D W B A}$

- Focusing of the electron wave function
- Change of the electron momentum

Effective Momentum Approximation (EMA)
Aste and Trautmann, Eur, Phys. J. A26, 167-178(2005)

$$
\left.\begin{array}{l}
\mathrm{E} \rightarrow \mathrm{E}+\mathrm{V}^{-} \\
\mathrm{E}_{\mathrm{p}} \rightarrow \mathrm{E}_{\mathrm{p}}+\mathrm{V}^{-}
\end{array}\right\} \quad Q_{e f f}^{2}=4(E+\bar{V})\left(E_{p}+\bar{V}\right) \sin ^{2}\left(\frac{\theta}{2}\right)
$$

1 st method
$S_{t o t}^{P W B A}(|\vec{q}|, \omega, \theta) \longrightarrow S_{t o t}^{P W B A}\left(\left|\vec{q}_{e f f}\right|, \omega, \theta\right)$

$$
\sigma_{t o t}^{C C}=\sigma_{M o t t} \cdot S_{t o t}^{P W B A}\left(\left|\vec{q}_{e f f}\right|, \omega, \theta\right)
$$

$\underline{2}^{\text {nd }}$ method

$$
\begin{aligned}
S_{t o t}^{P W B A} & (|\vec{q}|, \omega, \theta) \longrightarrow S_{t o t}^{P W B A}\left(\left|\vec{q}_{e f f}\right|, \omega, \theta\right) \\
\sigma_{\text {Mott }}^{e f f} & =4 \alpha^{2} \cos ^{2}(\theta / 2)\left(E_{p}+\bar{V}\right)^{2} / Q_{e f f}^{4} \\
F_{f o c}^{i} & =\frac{E+\bar{V}}{E}
\end{aligned}
$$

$$
\Longleftrightarrow \sigma_{t o t}^{C C}=\left(F_{\text {foc }}^{i}\right)^{2} \cdot \sigma_{M o t t}^{e f f} \cdot S_{t o t}^{P W B A}\left(\left|\vec{q}_{e f f}\right|, \omega, \theta\right)
$$

How to correct for Coulomb distortion?

$$
\sigma_{\text {tot }}^{P W B A}=\sigma_{\text {Mott }} S_{\text {tot }}^{P W B A}(|\vec{q}|, \omega, \theta)
$$

$\sigma_{\text {tot }}^{D W B A}$

- Focusing of the electron wave function
- Change of the electron momentum

Effective Momentum Approximation (EMA)
Aste and Trautmann, Eur, Phys. J. A26, 167-178(2005)

$$
\left.\begin{array}{l}
\mathrm{E} \rightarrow \mathrm{E}+\mathrm{V}^{-} \\
\mathrm{E}_{\mathrm{p}} \rightarrow \mathrm{E}_{\mathrm{p}}+\mathrm{V}^{-}
\end{array}\right\} \quad Q_{e f f}^{2}=4(E+\bar{V})\left(E_{p}+\bar{V}\right) \sin ^{2}\left(\frac{\theta}{2}\right)
$$

One-parameter model depending only on the

$s_{\text {tot }}^{\text {PWB }}$ effective potential seen by the electron on average.

$$
F_{f o c}^{i}=\frac{E+\bar{V}}{E}
$$

$$
\sigma_{t o t}^{C C}=\sigma_{M o t t} \cdot S_{t o t}^{P W B A}\left(\left|\vec{q}_{\text {eff }}\right|, \omega, \theta\right) \Leftrightarrow \sigma_{\text {tot }}^{C C}=\left(F_{\text {foc }}^{i}\right)^{2} \cdot \sigma_{\text {Mott }}^{\text {eff }} \cdot S_{\text {tot }}^{P W B A}\left(\left|\vec{q}_{\text {eff }}\right|, \omega, \theta\right)
$$

Coulomb distortion measurements in quasi-elastic scattering

Gueye et al., PRC60, 044308 (1999)

$$
\begin{gathered}
\tilde{k}=k-V(z) \\
V(r)=-\frac{3 \alpha(Z-1)}{2 R}+\frac{\alpha(Z-1)}{2 R}\left(\frac{r}{R}\right)^{2} \\
R=1.1 A^{1 / 3}+0.86 A^{-1 / 3}
\end{gathered}
$$

Aste and Trautmann, Eur, Phys. J. A26, 167-178(2005)

Coulomb distortion measurements in quasi-elastic scattering

Gueye et al., PRC60, 044308 (1999)

$$
\begin{gathered}
\tilde{k}=k-V(z) \\
V(r)=-\frac{3 \alpha(Z-1)}{2 R}+\frac{\alpha(Z-1)}{2 R}\left(\frac{r}{R}\right)^{2} \\
R=1.1 A^{1 / 3}+0.86 A^{-1 / 3}
\end{gathered}
$$

Aste and Trautmann, Eur, Phys. J. A26, 167-178(2005)

Coulomb potential established in Quasi-elastic scattering regime!

E03-103 heavy target results

E03-103 heavy target results

Calculation from S. Pieper

Density calculations

$$
\begin{gathered}
\text { Average density: } \\
\left\langle\rho_{n, p}\right\rangle=\frac{\int \rho_{n, p}^{2} d^{3} r}{\int \rho_{n, p} d^{3} r} \\
\left\langle\rho_{p}\right\rangle+\left\langle\rho_{n}\right\rangle=\left\langle\rho_{A}\right\rangle \xrightarrow[\begin{array}{l}
\text { finite } \\
\text { proton }
\end{array}]{\begin{array}{l}
\text { size } \\
\text { correction }
\end{array}}\left\langle\rho_{A}\right\rangle \cdot\left(\frac{\langle r\rangle}{r_{e f f}}\right)^{3} \\
\text { with } \quad r_{e f f}=\sqrt{\langle r\rangle^{2}+0.9^{2}}
\end{gathered}
$$

$R\left(x, Q^{2}\right)$

Dasu et al., PRD49, 5641(1994)

$$
\begin{gathered}
\frac{d \sigma}{d \Omega d \mathrm{E}^{\prime}}=\Gamma\left[\sigma_{T}\left(x, Q^{2}\right)+\varepsilon \sigma_{L}\left(x, Q^{2}\right)\right] \\
R\left(x, Q^{2}\right)=\frac{\sigma_{L}\left(x, Q^{2}\right)}{\sigma_{T}\left(x, Q^{2}\right)}
\end{gathered}
$$

TPE can affect the ε dependence (talk of E . Christy on Thursday)

Coulomb Distortion could have the same kind of impact as TPE, but gives also a correction that is A-dependent.

Access to nuclear dependence of R

New data from JLab E03-103: access to lower ε

Gold

No Coulomb corrections applied

$$
x=0.5
$$

Coulomb corrections applied

Why don't we know the ratio at high x ?

The deuteron is used as "poor person's" neutron target.

$$
F_{2}^{D}=\frac{1}{2} \sum_{N} \int_{x}^{M_{D} / M} d y \rho(y) F_{2}^{N}\left(\frac{x}{y}, Q^{2}\right)+\delta^{o f f} F_{2}^{D}
$$

Probability of N of momentum y
(Fermi smearing + binding)

- Subtract off-shell corr from deuteron data
- Smear the proton data and subtract
- Remainder is smeared neutron struc fn.
- Unsmear the neutron structure function

$$
F_{2}^{n}=S_{n}\left(F_{2}^{D(c o n v)}-\tilde{F}_{2}^{p}\right)
$$

- Iterate
A. W. Thomas and W. Melnitchouk, NP A 631 (1998) 296

Large x is essential for particle physics

\square Parton distributions at large \mathbf{x} are important input into simulations of hadronic background at colliders, eg the LHG.

- High x at low Q^{2} evolves into low x at high Q^{2}.
- Small uncertainties at high x are amplified.
\square HERA anomaly: (1996): excess of neutral and charged current events at $Q^{2}>10,000 \mathbf{G e V}^{2}$
- Leptoquarks
- $\sim 0.5 \%$ larger $u(x)$ at $x>0.75$
S. Kuhlmann et al, PLB 409 (1997)

LHC era is approaching.

Why do we need high energy electrons?

$$
\begin{gathered}
\mathrm{Q}^{2}>1 \mathrm{GeV}^{2} \\
\mathrm{~W}>2 \mathrm{GeV} \\
W^{2}=(p+q)^{2}=M^{2}+2 M \nu-Q^{2} \\
W^{2}=M^{2}+\frac{1-x}{x} Q^{2}
\end{gathered}
$$

eg. if $x=0.9$, then $Q^{2}=27 \mathrm{GeV}^{2}$
Practical limit at JLab12: $x=0.8$

Ratio: Neutron to Proton Structure Function

- Proton structure function:

$$
F_{2}^{p}=x\left[\frac{4}{9}(u+\bar{u})+\frac{1}{9}(d+\bar{d})+\frac{1}{9}(s+\bar{s})\right]
$$

- Neutron structure function (isospin
symmetry): $u_{p}(x)=d_{n}(x) \equiv u(x)$

$$
F_{2}^{n}=x\left[\frac{4}{9}(d+\bar{d})+\frac{1}{9}(u+\bar{u})+\frac{1}{9}(s+\bar{s})\right]
$$

- Ratio:

$$
\frac{F_{2}^{n}}{F_{2}^{p}}=\frac{u+\bar{u}+4(d+\bar{d})+s+\bar{s}}{4(u+\bar{u})+d+\bar{d}+s+\bar{s}}
$$

- Nachtmann inequality:

$$
\frac{1}{4} \leq \frac{F_{2}^{n}}{F_{2}^{p}} \leq 4
$$

- Focus on high x:

$$
\frac{F_{2}^{n}}{F_{2}^{p}}=\frac{[1+4(d / u)]}{[4+(d / u)]}
$$

Structure Function Ratio Problem

$$
F_{2}^{d}\left(x, Q^{2}\right)=\int d y \rho(y)\left[F_{2}^{p}\left(x / y, Q^{2}\right)+F_{2}^{n}\left(x / y, Q^{2}\right)\right]
$$

Structure Function Ratio Problem

Convolution model$F_{2}^{d}\left(x, Q^{2}\right)=\int d y \rho(y)\left[F_{2}^{p}\left(x / y, Q^{2}\right)+F_{2}^{n}\left(x / y, Q^{2}\right)\right]$

- $\rho(y)$ accounts for Fermi motion and binding, covariant deuteron wave function

Melnitchouk and Thomas (1996)

- Nuclear density model:
- EMC effect for deuteron scales with nuclear density.

$$
\left.\frac{F_{2}^{d}}{F_{2}^{p}+F_{2}^{n}}=1+\frac{\rho_{d}}{\rho_{A}-\rho_{d}}\left[\frac{F_{2}^{A}}{F_{2}^{d}}-1\right] ; 8\right)
$$

- Theoretical efforts haven't clarified the situation. New experiments and theoretical works are necessary.

Structure Function Ratio

Tagged Neutron in the Deuteron - BONUS + CLAS12

- PAC30: "conditionally approved"
- JLab E12-06-113, S. Bueltmann, H. Fenker, M. Christy, C. Keppel et al

F2p and parton distributions

The EMC effect

Nucleus at rest
(\mathbf{A} nucleons $=\mathbf{Z}$ protons +N neutrons)

Theoretical prediction:

$$
F_{2}^{A}=Z F_{2}^{p}+(A-Z) F_{2}^{n}
$$

after corrections due to the motion of the nucleons in the nucleus (slowly moving nucleons weakly bound)

