

... for a brighter future

The EMC Effect and The Quest to High x Quark Distributions

Patricia Solvignon Argonne National Laboratory

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC Hall C seminar Jefferson Lab April 9 2009

Outline

- **D** The EMC effect
- □ JLab Hall C E03-103
- Coulomb Distortion
 - Effect on E03-103 heavy target data
 - Effect on World data
 - A-independence of $R(x,Q^2)$
- What's next ?
 - \blacksquare F₂(³H)/F₂(³He): EMC effect on lightest nuclei
 - F2n/F2p and d/u at high x
 - $\blacksquare A_1$ proton and neutron: $\Delta u/u$ and $\Delta d/d$ at high x
- **D** Summary and Outlook

The structure of the nucleon from inclusive

4-momentum transfer squared

$$Q^2 = -q^2 = 4EE'\sin^2\frac{\theta}{2}$$

Invariant mass squared

$$W^2 = M^2 + 2M\nu - Q^2$$

Bjorken variable

$$x = \frac{Q^2}{2M\nu}$$

$$\frac{d^2\sigma}{d\Omega dE'} = \sigma_{Mott} \left[\frac{1}{v} F_2(x,Q^2) + \frac{2}{M} F_1(x,Q^2) \tan^2 \frac{\theta}{2} \right]$$

In the parton model:

$$F_1(x) = \frac{1}{2} \sum_{i} e_i^2 [q_i^{\uparrow}(x) + q_i^{\downarrow}(x)] = \frac{1}{2x} F_2(x)$$

The quest for higher precision data

To increase the luminosity, physicists decided to use heavy nuclei to study the structure of the proton instead of a hydrogen target.

Existing EMC Data

SLAC E139:

□ Most complete data set: A=4 to 197

□ Most precise at large *x*:

- Q²-independent
- universal shape
- magnitude dependent on A

Argonne Wednesday, April 15, 2009

Nucleon only model

Assumptions on the nucleon structure function:

- not modified in medium
- the same on and off the energy shell

Smith & Miller, PRC 65, 015211 and 055206 (2002)

"... some effect not contained within the conventional framework is responsible for the EMC effect." Smith & Miller, PRC 65, 015211 (2002)

Nucleons and pions model

Pion cloud is enhanced and pions carry an access of plus momentum:

$$P^{+} = P_{N}^{+} + P_{\pi}^{+} = M_{A}$$

and using $P_{\pi}^{+}/M_{A} = 0.04$ is enough to reproduce the EMC effect

But excess of nuclear pions → enhancement of the nuclear sea

But this enhancement was not seen in nuclear Drell-Yan reaction

Another class of models

→ Interaction between nucleons

Model assumption:

nucleon wavefunction is changed by the strong external fields created by the other nucleons

Model requirements:

- Momentum sum rule
- Baryon number conservation
- Vanishing of the structure function at x<0 and x>A
- Should describe the DIS and DY data

Wednesday, April 15, 2009

JLab Experiment E03-103

Spokespersons: D. Gaskell and J. Arrington Post-doc: P. Solvignon Graduate students: J. Seely, A. Daniel, N. Fomin

JLab Experiment E03-103

Spokespersons: D. Gaskell and J. Arrington Post-doc: P. Solvignon Graduate students: J. Seely, A. Daniel, N. Fomin

JLab Experiment E03-103

Spokespersons: D. Gaskell and J. Arrington Post-doc: P. Solvignon Graduate students: J. Seely, A. Daniel, N. Fomin

More detailed look at scaling

E03-103: ¹²C and ⁴He EMC ratios

JLab results consistent with SLAC E139

→ Improved statistics and systematic errors

E03-103: ¹²C and ⁴He EMC ratios

JLab results consistent with SLAC E139

→ Improved statistics and systematic errors

Models shown do a reasonable job describing the data.

But very few real few-body calculations (most neglect structure, scale NM)

Isoscalar correction

Wednesday, April 15, 2009

E03-103: ³He EMC ratio

Figs from J. Gomez et al, PRC49, 4348 (1994))

1.1 (a) x = 0.2201.0 (b) 0.6001.0 (b) 0.6001.0 (b) 0.6001.0 (c) 0.6001.0 (c) 0.6001.0 (c) 0.6000.9 (c) 0.15Nuclear Density

Density calculated assuming a uniform sphere of radius: $R_e(r=3A/4pR_e^3)$

Magnitude of the EMC effect for C and ⁴He very similar, and

 $\rho(^{4}\text{He}) \sim \rho(^{12}\text{C})$

EMC effect: ρ -dependent

Magnitude of the EMC effect for C and ⁹Be very similar, but

 $\rho(^{9}Be) << \rho(^{12}C)$

EMC effect: A-dependent

Fit of the EMC ratio for 0.3<x<0.7 and look at A-dependence of the slope

Fit of the EMC ratio for 0.3<x<0.7 and look at A-dependence of the slope

Fit of the EMC ratio for 0.3<x<0.7 and look at A-dependence of the slope

- Improved density calculation (calculated with density distributions from R. Wiringa and S. Pieper).
- □ Apply coulomb distortion correction.
- □ In progress: review of n/p corrections in world data
- **□** Target mass correction to be looked at.

Note: n/p correction is also A-dependent !

Coulomb distortion

Exchange of one or more (soft) photons with the nucleus, in addition to the one hard photon exchanged with a nucleon

Incident (scattered) electrons are accelerated (decelerated) in the Coulomb well of the nucleus.

Opposite effect with positrons

 σ_{tot}^{PWBA} $^{BA}(|\vec{q}|,\omega, heta)$ 0 Mott

σ_{tot}^{DWBA}

Focusing of the electron wave functionChange of the electron momentum

Coulomb distortion

Exchange of one or more (soft) photons with the nucleus, in addition to the one hard photon exchanged with a nucleon

Incident (scattered) electrons are accelerated (decelerated) in the Coulomb well of the nucleus.

Opposite effect with positrons

$$\sigma_{tot}^{PWBA} = \sigma_{Mott} \ S_{tot}^{PWBA}(|\vec{q}|, \omega, \theta)$$

Effective Momentum Approximation (EMA) Aste and Trautmann, Eur, Phys. J. A26, 167-178(2005)

$$\left. \begin{array}{c} \mathbf{E} \rightarrow \mathbf{E} + \overline{\mathbf{V}} \\ \mathbf{E}_{p} \rightarrow \mathbf{E}_{p} + \overline{\mathbf{V}} \end{array} \right\} Q_{eff}^{2} = 4(E + \overline{V})(E_{p} + \overline{V})\sin^{2}(\frac{\theta}{2})$$

 σ_{tot}^{DWBA} - Focusing of the electron wave function

- Change of the electron momentum

$$S_{tot}^{PWBA}(|\vec{q}|,\omega,\theta) \longrightarrow S_{tot}^{PWBA}(|\vec{q}_{eff}|,\omega,\theta)$$

$$\sigma_{Mott}^{eff} = 4\alpha^2 \cos^2(\theta/2)(E_p + \bar{V})^2/Q_{eff}^4$$

$$F_{foc}^i = \frac{E + \bar{V}}{E}$$

$$\overline{F_{tot}^{CC}} = (F_{foc}^i)^2 \cdot \sigma_{Mott}^{eff} \cdot S_{tot}^{PWBA}(|\vec{q}_{eff}|,\omega,\theta)$$

Wednesday, April 15, 2009

Coulomb distortion

Coulomb potential established in Quasi-elastic scattering regime

Extrapolation to nuclear matter

Exact calculations of the EMC effect exist for light nuclei and for nuclear matter.

x=0.7

Extrapolation to nuclear matter

Exact calculations of the EMC effect exist for light nuclei and for nuclear matter.

x = 0.7

Extrapolation to nuclear matter

Exact calculations of the EMC effect exist for light nuclei and for nuclear matter.

x = 0.7

 $R(x,Q^2)$

$$\frac{d\sigma}{d\Omega d\mathrm{E}'} = \Gamma \Big[\sigma_T(x, Q^2) + \varepsilon \sigma_L(x, Q^2) \Big]$$

$$R(x,Q^2) = \frac{\sigma_L(x,Q^2)}{\sigma_T(x,Q^2)}$$

In a model with:

a) spin-1/2 partons: R should be small and decreasing rapidly with Q²
b) spin-0 partons: R should be large and increasing with Q²

Dasu et al., PRD49, 5641(1994)

Nuclear higher twist effects and spin-0 constituents in nuclei: same as in free nucleons

Dasu et al., PRD49, 5641(1994)

New data from JLab E03-103: access to lower ε

Iron-Copper

uncertainties from each experiment

The EMC effect in ³H and ³He

Ratio of ³He, ³H: JLab E12-06-118

A way to get access to $F_{2}{}^{n} % \left(f_{2}{}^{n} \right) = 0$

□ Measure F₂'s and form ratios:

$$R(^{3}He) = \frac{F_{2}^{^{3}He}}{2F_{2}^{^{p}}+F_{2}^{^{n}}}, \ R(^{3}H) = \frac{F_{2}^{^{3}H}}{F_{2}^{^{p}}+2F_{2}^{^{n}}}$$

□ Form "super-ratio", r, then

$$\frac{F_2^n}{F_2^p} = \frac{2r - F_2^{3He}/F_2^{3H}}{2F_2^{3He}/F_2^{3H} - r}$$

where
$$r \equiv \frac{R(^{3}He)}{R(^{3}H)}$$

x

39

I. Afnan et al, PRC 68 (2003)

Why is the F_2^n/F_2^p ratio so interesting?

 $\begin{aligned} \mathbf{SU}(6) \text{-symmetric wave function of the proton in the quark model (spin up):} \\ |p\uparrow\rangle = \frac{1}{\sqrt{18}} \left(3u\uparrow [ud]_{S=0} + u\uparrow [ud]_{S=1} - \sqrt{2}u\downarrow [ud]_{S=1} - \sqrt{2}d\uparrow [uu]_{S=1} - 2d\downarrow [uu]_{S=1} \right) \end{aligned}$

u and d quarks identical, N and Δ would be degenerate in mass. In this model: d/u = 1/2, $F_2^n/F_2^p = 2/3$.

pQCD: helicity conservation $(q \uparrow \uparrow p)$ => d/u = 2/(9+1) = 1/5, $F_2^n/F_2^p = 3/7$ for $x \rightarrow 1$

SU(6) symmetry is broken: N-Δ Mass Splitting
Mass splitting between S=1 and S=0 diquark spectator.
symmetric states are raised, antisymmetric states are lowered (~300 MeV).
S=1 suppressed => d/u = 0, F₂ⁿ/F₂^p = 1/4, for x -> 1

Wednesday, April 15, 2009

E12-06-118 Projected Results

- PAC30: "conditionally approved"
- 5000 Ci T target, 31 days
- JLab E12-06-118, G. Petratos, J. Gomez, R. J. Holt, R. Ransome et al

The tritium target conceptual design

E. J. Beise (U. of Maryland), R. J. Holt (Argonne), W. Korsch (U. of Kentucky),
T. O'Connor (Argonne), G. G. Petratos (Kent State U.), R. Ransome (Rutgers U.),
P. Solvignon (Argonne), and B. Wojtsekhowski (Jefferson Lab)
Tritium Target Task Force

What about a measurement at the EIC?

F2n/F2p at EIC:

high W so no need to worry about target mass correction

Polarized quark distributions

Wednesday, April 15, 2009

JLab experiment E03-103 brings a wealth of new results:

D Light nuclei:

• contain key information on the EMC effect

- hint of local density dependence of the EMC effect
- can be compared to realistic calculations

□ Heavy nuclei and Coulomb distortion:

• affects the extrapolation to nuclear matter which is key for comparison with theoretical calculations

- has a real impact on the A-dependence of R: clear ε -dependence
- need a measurement of the amplitude of the effect in the inelastic regime

Outlook

\Box F₂(³He)/F₂(³H): Hall A E12-06-118

- EMC effect in light nuclei
- n/p at high x in DIS
- getting to the d-quark distribution

--> important for extraction of $\Delta u/u$ and $\Delta d/d$ from measurement of A_{l^n} at high x

Coulomb distortion measurement in DIS: require a positron beam

Cloet, Bentz, and Thomas, PLB 642, 210 (2006) 1.2Polarized EMC ΊLi 1.1 EMC Ratios ⁶⁰ EMC EIC: F2n/F2p from e⁻-²H collisions Experiment: ⁹Be Unpolarized EMC effect 0.7Polarized EMC effect: $Q^2 = 5 \,\mathrm{GeV}^2$ Polarized EMC effect: 0.6 0 0.20.40.60.8

x

E03-103: Carbon EMC ratio and Q²-dependence

Small angle, low $Q^2 \rightarrow$ clear scaling violations for x > 0.6 - 0.7

E03-103: Carbon EMC ratio and Q²-dependence

At larger angles \rightarrow indication of scaling to very large x

E03-103: Carbon EMC ratio and Q²-dependence

At larger angles \rightarrow indication of scaling to very large x

World data re-analysis

Experiments	E (GeV)	A	x-range	Pub. 1 st author
CERN-EMC	280	56	0.050-0.650	Aubert
		12,63,119	0.031-0.443	Ashman
CERN-BCDMS	280	15	0.20-0.70	Bari
		56	0.07-0.65	Benvenuti
CERN-NMC	200	4 ,12, 4 0	0.0035-0.65	Amaudruz
	200	6,12	0.00014-0.65	Arneodo
SLAC-E61	4-20	9,27,65,197	0.014-0.228	Stein
SLAC-E87	4-20	56	0.075-0.813	Bodek
SLAC-E49	4-20	27	0.25-0.90	Bodek
SLAC-E139	8-24	4,9,12,27,40,56,108,197	0.089-0.8	Gomez
SLAC-E140	3.7-20	56,197	0.2-0.5	Dasu
DESY-HERMES	27.5	3,14,84	0.013-0.35	Airapetian

Coulomb distortion and two-photon exchange

Exchange of 2 (hard) photons with a single nucleon

Coulomb distortion

Exchange of one or more (soft) photons with the nucleus, in addition to the one hard photon exchanged with a nucleon

Incident (scattered) electrons are accelerated (decelerated) in the Coulomb well of the nucleus.

Opposite effect with positrons

How to correct for Coulomb distortion ?

 $S_{tot}^{PWBA}(|\vec{q}|,\omega,\theta)$ $\sigma_{tot}^{PWBA} = \sigma_{Mott}$

Effective Momentum Approximation (EMA) Aste and Trautmann, Eur, Phys. J. A26, 167-178(2005)

$$\left\{ \begin{array}{l} E \rightarrow E + V^{-} \\ E_{p} \rightarrow E_{p} + V^{-} \end{array} \right\} \quad Q_{eff}^{2} = 4(E + \bar{V})(E_{p} + \bar{V})\sin^{2}(\frac{\theta}{2})$$

1st method

2nd method

$$S_{tot}^{PWBA}(|\vec{q}|,\omega,\theta) \longrightarrow S_{tot}^{PWBA}(|\vec{q}_{eff}|,\omega,\theta) \qquad S_{tot}^{PWBA}(|\vec{q}_{eff}|,\omega,\theta) \qquad S_{tot}^{PWBA}(|\vec{q}_{eff}|,\omega,\theta) \\ \sigma_{Mott}^{eff} = 4\alpha^2 \cos^2(\theta/2)(E_p + \bar{V})^2/Q_{eff}^4 \\ F_{foc}^i = \frac{E + \bar{V}}{E} \\ \sigma_{tot}^{CC} = \sigma_{Mott} \cdot S_{tot}^{PWBA}(|\vec{q}_{eff}|,\omega,\theta) \iff \sigma_{tot}^{CC} = (F_{foc}^i)^2 \cdot \sigma_{Mott}^{eff} \cdot S_{tot}^{PWBA}(|\vec{q}_{eff}|,\omega,\theta)$$

Wednesday, April 15, 2009

How to correct for Coulomb distortion ?

 $\sigma_{tot}^{PWBA} = \sigma_{Mott} \ S_{tot}^{PWBA}(|\vec{q}|, \omega, \theta) \quad \Longrightarrow$

Effective Momentum Approximation (EMA)

Aste and Trautmann, Eur, Phys. J. A26, 167-178(2005)

$$\left\{ \begin{array}{l} E \rightarrow E + V^{-} \\ E_{p} \rightarrow E_{p} + V^{-} \end{array} \right\} \quad Q_{eff}^{2} = 4(E + \bar{V})(E_{p} + \bar{V})\sin^{2}(\frac{\theta}{2})$$

$$\begin{split} & One-parameter model depending only on the \\ & \text{effective potential seen by the electron on average.} \\ & F_{foc}^{i} = \frac{E + \bar{V}}{E} \\ & \sigma_{tot}^{CC} = \sigma_{Mott} \cdot S_{tot}^{PWBA}(|\vec{q}_{eff}|, \omega, \theta) & \longleftrightarrow \\ & \sigma_{tot}^{CC} = (F_{foc}^{i})^{2} \cdot \sigma_{Mott}^{eff} \cdot S_{tot}^{PWBA}(|\vec{q}_{eff}|, \omega, \theta) \end{split}$$

Wednesday, April 15, 2009

Coulomb distortion measurements in quasi-elastic scattering

Gueye et al., PRC60, 044308 (1999)

Aste and Trautmann, Eur, Phys. J. A26, 167-178(2005)

Coulomb distortion measurements in quasi-elastic scattering

Gueye et al., PRC60, 044308 (1999)

Aste and Trautmann, Eur, Phys. J. A26, 167-178(2005)

Coulomb potential established in Quasi-elastic scattering regime !

E03-103 heavy target results

E03-103 heavy target results

Average density:

with $r_{eff} = \sqrt{\langle r \rangle^2 + 0.9^2}$

 $R(x,Q^2)$

Dasu et al., PRD49, 5641(1994)

$$\frac{d\sigma}{d\Omega d\mathrm{E}'} = \Gamma \Big[\sigma_T(x, Q^2) + \varepsilon \sigma_L(x, Q^2) \Big]$$

$$R(x,Q^2) = \frac{\sigma_L(x,Q^2)}{\sigma_T(x,Q^2)}$$

TPE can affect the ε dependence (talk of E. Christy on Thursday)

Coulomb Distortion could have the same kind of impact as TPE, but gives also a correction that is A-dependent.

Access to nuclear dependence of R

New data from JLab E03-103: access to lower ε

Why don't we know the ratio at high x?

The deuteron is used as "poor person's" neutron target.

$$F_2^D = \frac{1}{2} \sum_N \int_x^{M_D/M} dy \rho(y) F_2^N\left(\frac{x}{y}, Q^2\right) + \delta^{off} F_2^D$$

Probability of N of momentum y (Fermi smearing + binding)

- Subtract off-shell corr from deuteron data
- Smear the proton data and subtract
- Remainder is smeared neutron struc fn.
- Unsmear the neutron structure function

$$F_2^n = S_n (F_2^{D(conv)} - \tilde{F}_2^p)$$

• Iterate

Large x is essential for particle physics

- Parton distributions at large x are important input into simulations of hadronic background at colliders, eg the LHC.
 - High x at low Q² evolves into low x at high Q².
 - Small uncertainties at high x are amplified.
- HERA anomaly: (1996): excess of neutral and charged current events at Q² > 10,000 GeV²
 - Leptoquarks
 - ~0.5% larger u(x) at x > 0.75
 - S. Kuhlmann et al, PLB 409 (1997)

LHC era is approaching.

Why do we need high energy electrons?

 $Q^2 > 1 \text{ GeV}^2$ W > 2 GeV

$$W^2 = (p+q)^2 = M^2 + 2M\nu - Q^2$$

 $W^2 = M^2 + \frac{1-x}{x}Q^2$

eg. if x =0.9, then
$$Q^2 = 27 \text{ GeV}^2$$

Practical limit at JLab12: x = 0.8

S. Stein *et al*, PRD 12 (1975)

Ratio: Neutron to Proton Structure Function

D Proton structure function:

$$F_2^p = x \left[\frac{4}{9} (u + \overline{u}) + \frac{1}{9} (d + \overline{d}) + \frac{1}{9} (s + \overline{s}) \right]$$

Neutron structure function (isospin symmetry): $u_p(x) = d_n(x) \equiv u(x)$

$$F_2^n = x \left[\frac{4}{9} (d + \overline{d}) + \frac{1}{9} (u + \overline{u}) + \frac{1}{9} (s + \overline{s}) \right]$$

D Ratio:

$$\frac{F_2^n}{F_2^p} = \frac{u + \bar{u} + 4(d + \bar{d}) + s + \bar{s}}{4(u + \bar{u}) + d + \bar{d} + s + \bar{s}}$$

□ Nachtmann inequality:

$$\frac{1}{4} \le \frac{F_2^n}{F_2^p} \le 4$$

D Focus on high x:

$$\frac{F_2^n}{F_2^p} = \frac{[1+4(d/u)]}{[4+(d/u)]}$$

Structure Function Ratio Problem

Structure Function Ratio Problem

Structure Function Ratio

Tagged Neutron in the Deuteron – BONUS + CLAS12

- PAC30: "conditionally approved"
- JLab E12-06-113, S. Bueltmann, H. Fenker, M. Christy, C. Keppel *et al*

F2p and parton distributions

Wednesday, April 15, 2009

Theoretical prediction:

$$F_2^A = ZF_2^p + (A - Z)F_2^n$$

after corrections due to the motion of the nucleons in the nucleus (slowly moving nucleons weakly bound)

