Argonne nATIONAL LABORATORY

.. for a brighter future

E01-012: Spin Duality Status report

Patricia Solvignon

Argonne National Laboratory
For E01-012 collaboration

Hall A collaboration meeting December 12-14, 2007

Inclusive electron scattering

4-momentum transfer squared

$$
Q^{2}=-q^{2}=4 E E^{\prime} \sin ^{2} \frac{\theta}{2}
$$

Invariant mass squared

$$
W^{2}=M^{2}+2 M v-Q^{2}
$$

Bjorken variable

$$
x=\frac{Q^{2}}{2 M v}
$$

Unpolarized case

$$
\left\{\frac{d^{2} \sigma}{d \Omega d E^{\prime}}=\sigma_{M o t t}\left[\frac{1}{v} F_{2}\left(x, Q^{2}\right)+\frac{2}{M} F_{1}\left(x, Q^{2}\right) \tan ^{2} \frac{\theta}{2}\right]\right.
$$

Polarized $\left\{\frac{d^{2} \sigma^{\uparrow \Uparrow}}{d \Omega d E^{\prime}}-\frac{d^{2} \sigma^{\downarrow \Uparrow}}{d \Omega d E^{\prime}}=\frac{4 \alpha^{2} E^{\prime}}{v E Q^{2}}\left[\left(E+E^{\prime} \cos \theta g_{1}\left(x, Q^{2}\right)-2 M 1 g_{2}\left(x, Q^{2}\right.\right.\right.\right.$ case

$$
\frac{d^{2} \sigma^{\uparrow \Rightarrow}}{d \Omega d E^{\prime}}-\frac{d^{2} \sigma^{\downarrow \Rightarrow}}{d \Omega d E^{\prime}}=\frac{4 \alpha^{2} E^{\prime}}{v E Q^{2}} \sin \theta\left[g_{1}\left(x, Q^{2}\right)+\frac{2 M E}{v} g_{2}\left(x, Q^{2}\right)\right]
$$

Quark-hadron duality

$>$ First observed by Bloom and Gilman in the 1970's on F_{2}
$>$ Scaling curve seen at high Q^{2} is an accurate average over the resonance region at lower Q^{2}
>Global and Local duality are observed for F_{2}

I. Niculescu et al., PRL 85 (2000) 1182

World data

Jlab Hall B for $g_{1}{ }^{p}$
From DIS 2005 proceedings

World data

Indication of duality from Jlab Hall A for $g_{1}{ }^{3 H e}$

The experiment E01-012

- Ran in Jan.-Feb. 2003
- Inclusive experiment: ${ }^{3} \vec{H} e\left(\vec{e}, e^{\prime}\right) X$
>Polarized electron beam:

$$
70<\mathrm{P}_{\text {beam }}<85 \%
$$

> Hall A in standard equipment:
\rightarrow HRS in symmetric configuration
\rightarrow PID performance $\pi / e<10^{-4}$
\rightarrow Pol. ${ }^{3} \mathrm{He}$ target (para and perp):

$$
\left\langle P_{\text {targ }}\right\rangle=37 \%
$$

- Measured polarized cross section differences
- Form g_{1} and g_{2} for ${ }^{3} \mathrm{He}$

Test of spin duality on the neutron $\left({ }^{3} \mathrm{He}\right)$

The E01-012 Collaboration

K. Aniol, T. Averett, W. Boeglin, A. Camsonne, G.D. Cates,
G. Chang, J.-P. Chen, Seonho Choi, E. Chudakov, B. Craver, F. Cusanno, A. Deur, D. Dutta, R. Ent, R. Feuerbach,
S. Frullani, H. Gao, F. Garibaldi, R. Gilman, C. Glashausser,
O. Hansen, D. Higinbotham, H. Ibrahim, X. Jiang, M. Jones, A. Kelleher, J. Kelly, C. Keppel, W. Kim, W. Korsch, K. Kramer, G. Kumbartzki, J. LeRose, R. Lindgren, N. Liyanage, B. Ma,
D. Margaziotis, P. Markowitz, K. McCormick, Z.-E. Meziani,
R. Michaels, B. Moffit, P. Monaghan, C. Munoz Camacho,
K. Paschke, B. Reitz, A. Saha, R. Sheyor, J. Singh, K. Slifer, P. Solvignon, V. Sulkosky, A. Tobias, G. Urciuoli, K. Wang, K. Wijesooriya, B. Wojtsekhowski, S. Woo, J.-C. Yang, X. Zheng, L. Zhu

Analysis scheme

$$
\sigma_{0}=\frac{N_{\text {cuts }}}{N_{\text {inc. }} \rho \varepsilon_{\text {det }} L T} * A c c .
$$

Detector efficiencies, Corrections for acceptance,
Target density and DAQ deadtime
N_{2} dilution
corrections

$$
A_{\|, \perp \perp}=\frac{\frac{N^{+}}{Q^{+} L T^{+}}-\frac{N^{-}}{Q^{-} L T^{-}}}{\frac{N^{+}}{Q^{+} L T^{+}}+\frac{N^{-}}{Q^{-} L T^{-}}}
$$

Analysis scheme

$$
\sigma_{0}=\sigma_{r a w}-\frac{\rho_{N}}{\rho+\rho_{N}} \sigma_{N}
$$

Detector efficiencies, Corrections for acceptance,
Target density and DAQ deadtime
Data

$$
A_{\mathrm{ll}, \perp}=\frac{A_{\text {raw }}}{f_{N_{2}} P_{t g} P_{\text {beam }}}
$$

Analysis scheme

Detector efficiencies, Corrections for acceptance,
Target density and DAQ deadtime

Unpolarized cross sections

Agreement between both HRS better than 2\%

Asymmetries

Asymmetries

Argonne

From constant E to constant Q^{2}

$g_{1}{ }^{3}{ }^{\text {He }}$ at constant Q^{2}

Argonne

Test of duality on the neutron and ${ }^{3} \mathrm{He}$

Used method defined by N. Bianchi, A. Fantoni and S. Liuti on $g_{1}{ }^{p}$

1. Get g_{1} at constant Q^{2}
2. Define integration range in the resonance region in function of W
3. Integrate $g_{1}{ }^{\text {res }}$ and g_{1} dis over the same x-range and at the same Q^{2}

$$
\tilde{\Gamma}_{1}^{\text {res }}=\int_{x_{\min }}^{x_{\max }} g_{1}^{\text {res }}\left(x, Q^{2}\right) d x \quad \tilde{\Gamma}_{1}^{\text {dis }}=\int_{x_{\min }}^{x_{\max }} g_{1}^{\text {dis }}\left(x, Q^{2}\right) d x
$$

$$
\text { If } \tilde{\Gamma}_{1}^{\text {res }}=\tilde{\Gamma}_{1}^{d i s} \Rightarrow \text { duality is verified }
$$

g_{1} in the resonance region

Extract the neutron from effective polarization equation:

$$
\tilde{\Gamma}_{1}^{3} H e=P_{n} \tilde{\Gamma}_{1}^{n}+2 P_{p} \tilde{\Gamma}_{1}^{p} \quad \begin{array}{ll}
P_{n}=86 \% \\
P_{p}=-2.8 \%
\end{array}
$$

- $1^{\text {st }}$ paper in preparation Global duality on g_{1} for ${ }^{3} \mathrm{He}$ and neutron, $A_{1}{ }^{3 \mathrm{He}}$

Quark-Hadron Duality on the Neutron ($\left.{ }^{3} \mathrm{He}\right)$ Spin Structure DRAFT
P. Solvignon ${ }^{19}$, N. Liyanage ${ }^{20}$, J.-P. Chen ${ }^{19}$, Seonho Choi ${ }^{19}$, K. Aniol ${ }^{3}$, T. Averet ${ }^{24}$, W. Boeglin ${ }^{7}$ A. Camsonne ${ }^{2}$, G.D. Catep ${ }^{20}$, G. Chang ${ }^{13}$, E. Chudakov ${ }^{10}$, B. Craver ${ }^{30}$, F. Cusanne ${ }^{5}$, A. Deur ${ }^{10,20}$, D. Detha ${ }^{4}$, R. Ent ${ }^{20}$,
 D. Higinbotham ${ }^{10}$, H. Mbrahim ${ }^{16}$, X. Jiang ${ }^{17}$, M. Jones ${ }^{10}$, A. Kelleher ${ }^{21}$, J. Kelly ${ }^{13}$, C. Keppel ${ }^{8,10}$, W. Kim ${ }^{12}$, W. Korsch ${ }^{44}$, K. Kramer ${ }^{24}$, G. Kumbarizki ${ }^{17}$, J. LeRose ${ }^{10}$, R. Lindgren ${ }^{20}$, B. Ma ${ }^{45}$, D. Margaziotis ${ }^{3}$,
P. Markowitz ${ }^{7}$, K. MeCormick ${ }^{17}$, Z.E. Meziani ${ }^{20}$, R. Michache ${ }^{11}$, B. Moffit ${ }^{21}$, P. Monaghan ${ }^{15}$, C. Munoz Camacho ${ }^{5}$, K. Pabchke ${ }^{14}$, B. Reitz ${ }^{10}$, A. Saha ${ }^{10}$, R. Sheyor ${ }^{18}$, J. Singh ${ }^{30}$, K. Slifor ${ }^{15}$, V. Sulkobky ${ }^{24}$, A. Toblab ${ }^{20}$, G. Ureivoli ${ }^{4}$, K. Wang ${ }^{2 \theta}$, K. Wijesooriya ${ }^{4}$, B. Wojisekhowski ${ }^{19}$, S. Woo ${ }^{12}$, J.-C. Yang ${ }^{4}$, X. Zheng ${ }^{1}$, L. Zhu ${ }^{15}$
(and The Jefferson Lab Hall A Collaboration)
${ }^{2}$ Argenne National Laboratery. Argasne. IL 604 sg
${ }^{2}$ Usiperaitd Blaich Pascal et CNRS/IN\&P' LPC, 6SIF7 Asbiire Ceder. Franee ${ }^{3}$ Califernis State Unirereity, Loe Angeles, CA goosz ${ }^{4} D_{s} k$ Univeroity. Dsrlam, NC 27\%日g
${ }^{6}$ CEA Saclay. DAPNIA/SPAN, F-9t19i GU ar Yuette. France
${ }^{6}$ Changsam National Univerrity, Taejos sos-764 Kores Fionide Intersationsi University, Mismi, FL 33199

${ }^{10}$ Themse Jeffersen National Aecelerster Fseility, Nowpert Newv, VA 25606 ${ }^{\text {H }}$ University of Kestwaky, Lexington, KY 40500
${ }^{22}$ Kyongpook National Univerrity. Tacge Clity. Sosth Korn ${ }^{4}$ Usirsraity of Maseschasetts, Amberat, MA Oto0s
${ }^{25}$ Museschwotto Inatitste of Techsolegy. Cambridge, MA Qastsg ${ }^{16}$ OVd Deminion Uniperaty. Nerfoil, VA 2s5s9
${ }^{27}$ Ratgere, The State Uniecreity of New Jerecy, Piecstatesy, NJ 08355
${ }^{\circ}$ Univeraity of Tol A wiv. Tel Aviv, 69978 Iersal
Tomple Univercity. Philodolphid. PA 1912 R
${ }^{2}$ College of William and Mary. Willismabirg, VA zs187
(Dated: Juane 14, 2007)

We present restits on a dedicated experiment to study quark-hadron duality in spin structure functions of the neutron and Ho using a polarised He target in the four momentum iransfer range from 1.0 to $\mathbf{3 . 6}(\mathrm{Gov} / \mathrm{c})$. We obverved the oaret of global duality for the structure function $\mathrm{g} . \mathrm{g}$ for $1.2<Q^{2}<1.8(\mathrm{GeV} / e)^{2}$ in both He and the neutron. We have alse formed the photon-nueleus asymmetry A_{1} for ${ }^{3}$ He and found aostrong Q^{2}-dependence abore $2.6(\mathrm{GeV} / \mathrm{e})^{2}$ linting for a DIS-like behavion.
PACS numbere: $13.60 \mathrm{Hb}, 13.88 .+0,14.20 . \mathrm{DL}$

Lepton-nucleon scattering experiments have provided a window inte the partonic sub-structure of the nucleoa and helped establish Quantum Chromodynamies (QCD) as the fundamental theory governing the strong interaction. A very important subset of these experiments have probed the awcleon spin structure using polarised leptoa beams and polarized targets.
In high-energy lepton-nucleon scattering, the lepton interacts with the nucleon by exchanging a virtual ploton with one of the quarks in the nucleon. This process is characterised by two variables, Q^{2} and x. The quantity Q^{2} is the four-momentum squared for the exchanged viriual photon, and $x=Q^{2} /(2 M \nu)(M$ is the mass of the nucleon and y is the energy transfer), is the Bjorken
scaling variable. The invariant masses W of the virtual photon-nucleon system is related to Q^{2} and x through $W^{2}=M^{2}+Q^{2} / x-Q^{2}$. The scatiering cross section is parametrized in termb of two unpolarized structure functions (F_{1} and F_{2}) and two polarized structure functions $\left(g_{1}\right.$ and $\left.g_{2}\right)$. These structure functions are related to the polarized and unpolarised parion distribution functions in the nucleon. Another observable that provides a d. rect insight into the polarized quark distributions in the aucleon is the Virtual Photon Asymmetry, A_{1}, which is approximately equal to the ratio of the polarized and unpolarized structure functions, g_{1} / F_{1}.
In the Deep Inclastic Scattering (DIS) region, at large ralues of Q^{2} aad W, the electron scathors off an asymp-

In progress

- $1^{\text {st }}$ paper in preparation Global duality on g_{1} for ${ }^{3} \mathrm{He}$ and neutron, $A_{1}{ }^{3 H e}$

Checking statistical
fluctuations
Quark-Hadron Duality on the Neutron ($\left.{ }^{3} \mathrm{He}\right)$ Spin Structure DRAFT
P. Solvignon ${ }^{19}$, N. Liyanage ${ }^{20}$, J.-P. Chen ${ }^{10}$, Seonhe Choi ${ }^{19}$, K. Aniol ${ }^{3}$, T. Averets ${ }^{25}$, W. Boeglin ${ }^{7}$ A. Camsonne ${ }^{2}$, G.D. Catop ${ }^{20}$, G. Chang ${ }^{13}$, E. Chudakov ${ }^{10}$, B. Craver ${ }^{20}$, F. Cubanne ${ }^{5}$, A. Deur ${ }^{10,20}$, D. Desta ${ }^{4}$, R. Ent ${ }^{10}$,
 D. Higiabotham ${ }^{10}$ H. Ibrahim ${ }^{16}$, X. Jiang ${ }^{17}$, M. Jones ${ }^{10}$, A. Kelleher ${ }^{21}$, J. Kelly ${ }^{13}$, C. Keppel ${ }^{8,10}$, W. Kim ${ }^{12}$, W. Korsch ${ }^{41}$, K. Kramer ${ }^{24}$, G. Kumbartzki ${ }^{17}$, J. LeRose ${ }^{10}$, R. Lindgren ${ }^{20}$, B. Ma ${ }^{45}$, D. Margaziotis ${ }^{5}$,
P. Markowitz ${ }^{7}$, K. MeCormick ${ }^{17}$, Z.E. Mezian. ${ }^{20}$, R. Michaclb ${ }^{11}$, B. Moffil ${ }^{21}$, P. Monaghan ${ }^{15}$, C. Munoz Camacho ${ }^{5}$, K. Pabchke ${ }^{14}$, B. Reitz ${ }^{10}$, A. Saha ${ }^{10}$, R. Sheyor ${ }^{18}$, J. Singh ${ }^{30}$, K. Slifor ${ }^{15}$, V. Sulkobky ${ }^{24}$, A. Toblab ${ }^{20}$, G. Ureivoli ${ }^{4}$, K. Wang ${ }^{2 \theta}$, K. Wijesooriya ${ }^{4}$, B. Wojisekhowski ${ }^{19}$, S. Woo ${ }^{12}$, J.-C. Yang ${ }^{4}$, X. Zheng ${ }^{1}$, L. Zhu ${ }^{15}$
(and The Jefferson Lab Hall A Collaboration)
${ }^{2}$ Argenne National Laboratery. Argasne. IL 604 sg
${ }^{2}$ Uniperaith Blaice Pascal of CNRS/INAPY LPC, 6SIF7 Avbiere Ceder, Franee ${ }^{3}$ Califernis State Unireresity, Loo Angeles, CA goosz
CEA Saciay, DAPNIA/SPAN F-9119i Gif ar Y
${ }^{\circ}$ CEA Saciay. DAPNIA/SPAN, F-gII91 GU An Ypette. Franen
${ }^{6}$ Changsam National Univerrity, Taejos sos-764 Kores Florida Intorsationsi University. Mismi, FL 38199
${ }^{2}$ Inatifato Narienale di Firict Nveltary. Serienc Sanits, 00161 Rome. Italy
${ }^{20}$ Thomse Jeffersen National Aecelerster Facility, Neuport Newe, VA 23606 ** Univeraity of Kestweky, Lexingten, KY 40506
${ }^{2}$ Kyongpook National Univerrity. Tacge Clity. Sosth Kore ${ }^{4}$ Usirsraity of Maseschasetts, Amberat, MA Oto0s
${ }^{{ }^{5}}$ Musesehwetto Inatitste of Techsolegy. Cambridges, MA ąisg ${ }^{16}$ OVd Deminion Uniperaty. Nerfoil, VA 2s5s9
${ }^{\text {Et }}$ Ratgere, The State Univervity of New Jerecy, Pinestawsy, NJ osss5 ${ }^{14}$ Univeraity of Tel Avive Tol Aviv, 69978 Lersed
${ }^{15}$ Tomple Vnivereity. Philodolphic. PA t9188
${ }^{20}$ University of Virginis, Chariottusillle, VA 28904
(Dated: Juase 14, 2007)

We present restits on a dedicated experiment to study quark-hadron duality in bpin structure functions of the neutron and Ho using a polarized Ho target in the four momentum transfer range from 1.0 to 3.6 (GeV/e). We obrerved the alete of global dualty for the btructure fuactien g. for $1.2<Q^{2}<1.8(\mathrm{GeV} / \mathrm{e})^{2}$ in both ${ }^{2}$ He and the neutroa. We have alse formed the photen-nucleus asymmetry A_{1} for ${ }^{3}$ He and found aostrong Q^{2}-dependence abore $2.6(\mathrm{GeV} / \mathrm{e})^{2}$ linting for a DIS-like behavies.
PACS numbere: $13.60 \mathrm{Hb}, 13.88 .+0,14.20 . \mathrm{DL}$

Lepton-nucteon scatering experiments have provided a window inte the partonic sub-structure of the nucleoa and helped establish Quantum Chromodynamics (QCD) as the fundamental theory governing the strong interaction. A very important subset of these experiments have probed the aucleon spin structure using polarized leptoa beams and polarized targets.
In high-energy lepton-nucleon scattering, the lepton interacts with the nucleon by exchanging a virtual photoa with one of the quarks in the nucleon. This process is characterised by two variables, Q^{2} and x. The quantity Q^{2} is the four-momentum squared for the exchanged viriual photon, and $x=Q^{2} /(2 M \nu)(M$ is the mass of the nucleon and y is the energy transfer), is the Bjorken
scaling variable. The invariant masses W of the virtual photon-nucleon system is related to Q^{2} and x through $W^{2}=M^{2}+Q^{2} / x-Q^{2}$. The scatiering cross section is parametrized in terms of two unpolarized structure functions (F_{1} and F_{2}) and two polarized structure functions $\left(g_{1}\right.$ and $\left.g_{2}\right)$. These structure functions are related to the polarized and unpolarized parion distribution functions in the nucleon. Another obvervable that provides a d. rect insight into the polarized quark distributions in the aucleon is the Virtual Photon Asymmetry, A_{1}, which is approximately equal to the ratio of the polarized and unpolarized structure functions, g_{1} / F_{1}.
In the Deep Inclastic Scattering (DIS) region, at large ralues of Q^{2} aad W, the electron scatiors off an asymp-

In progress

- $1^{\text {st }}$ paper in preparation

Global duality on g_{1} for ${ }^{3} \mathrm{He}$ and neutron, $\mathrm{A}_{1}{ }^{3 \mathrm{He}}$

- Working with W. Melnitchouk and S. Kulagin on the extraction of $A_{1}{ }^{n}$ and $g_{1}{ }^{n}$.

In progress

- $1^{\text {st }}$ paper in preparation

Global duality on g_{1} for ${ }^{3} \mathrm{He}$ and neutron, $\mathrm{A}_{1}{ }^{3 \mathrm{He}}$

- Working with W. Melnitchouk and S. Kulagin on the extraction of $A_{1}{ }^{n}$ and $g_{1}{ }^{n}$.
- Then extraction of:

$$
\begin{aligned}
& d_{2}{ }^{n} \\
& B C \text { sum rule } \\
& A_{2}{ }^{n}
\end{aligned}
$$

