

... for a brighter future

Patricia Solvignon Argonne National Laboratory

New Results on the

³He and Deuteron

Resonance Spin Structure of

Argonne_{llic}

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

ECT 2008 Workshop Nuclear Medium Effects on the Quark and Gluon Structure of Hadrons June 3-7, 2008

Outline

- Srief introduction and motivations
- Experimental setups
- Results
 - > Sum rules
 - > Spin Duality
 - > Structure function g_2
 - > Virtual photon asymmetry A₁

Motivations

✦ Access to neutron spin structure functions

✦ Sum rules work for nuclei even when extra disintegration channels and nuclear excitation are added

- ✦ Test of sum rules without worrying of nuclear corrections
- ✦ Light nuclei measurements important to test EFT

True understanding of QCD means being able to describe nucleon and nuclei in terms of fundamental degrees of freedom

Implementations of QCD

Due to complexity of QCD we often employ approximations or effective theories

Inclusive electron scattering

 $e' = (E', \overline{k}')$

 $q = (v, \vec{q})$

<u>4-momentum transfer squared</u> $Q^2 = -q^2 = 4 EE' \sin^2 \frac{\theta}{2}$

Invariant mass squared

 $W^2 = M^2 + 2M\nu - Q^2$

 $\frac{\text{Bjorken variable}}{x = \frac{Q^2}{2M\nu}}$

e = (E, k)

 $p = (M, \vec{0})$

 $\frac{d^{2}\sigma^{\uparrow\uparrow}}{d\Omega dE'} - \frac{d^{2}\sigma^{\downarrow\uparrow}}{d\Omega dE'} = \frac{4\alpha^{2}E'}{vEQ^{2}} \Big[\Big(E + E'\cos\theta\Big)g_{1}(x,Q^{2}\Big) - 2Mxg_{2}g_{2}(x,Q^{2}) - 2Mxg_{2}(x,Q^{2}) - 2Mxg_{2}(x,Q^{2$ $-2Mxg_2(x,Q^2)$

W

GDH Sum Rule and extention to finite Q²

GDH Sum Rule and extention to finite Q²

Real Photon Scattering

$$\int_{\nu_0}^{\infty} \left(\sigma_{1/2} - \sigma_{3/2} \right) \frac{d\nu}{\nu} = -\frac{2\alpha\pi^2}{M^2} \kappa^2$$

Extension to finite Q²

$$S_1(0,Q^2) = \frac{8}{Q^2} \int_0^1 g_1(x,Q^2) dx$$

Ji and Osborne, J. Phys. <u>G27</u> (2001) 127

S₁ calculable (in principal)

Reduces to GDH sum rule as $Q^2 \rightarrow 0$

The g₂ structure function

Wandzura-Wilczek relation

PLB <u>72</u> (1977) 195

$$g_2^{WW}(x,Q^2) = -g_1(x,Q^2) + \int_x^1 \frac{g_1(y,Q^2)}{y} dy$$

Leading twist determined entirely by g₁

$$g_2 = g_2^{WW} + \overline{g_2}$$
 Higher twist

Burkhardt-Cottingham Sum rule

 $\int_{0}^{1} g_2(x, Q^2) dx = 0$

H.Burkhardt, and W.N. Cottingham Annals Phys. 56 (1970) 453.

Relies on the virtual Compton scattering amplitude S₂ falling to zero faster than 1/v as $v \rightarrow \infty$

Overview of available kinematic range at Jlab

Deuteron: Hall B Eg1b 6 CLAS Hall C RSS RSS E97-110 • Hall B Eg4 E94-010 5 E01-012 E99-117 E97-103 $Q^{2} (GeV^{2})$ **↔** ³He • Hall A E94-010 2 • Hall A E01-012 • Hall A E97-110 1 0.2 0.6 0.8 0.4 x

Uniquely positioned to provide data in transition region of QCD

Jlab Hall A: E94-010

g₁ and g₂ <u>Primary goal:</u> spin duality

³He: low Q² Structure functions and sum rules Hall A

Deuterium: Structure function g_1^d (per nucleon) Hall B

Deuterium: first moment

Hall B

Y. Prok et al., arXiv:0802.2232 (submitted to PRL)

Observation of turn over at low Q² as expected from GDH slope

Quark-hadron duality

First observed by Bloom and Gilman in the 1970's on F_2 :

Scaling curve seen at high Q^2 is an accurate average over the resonance region at lower Q^2

In nuclei, the averaging is in part done by the Fermi motion. J. Arrington, et al., PRC73:035205 (2006)

Spin Duality

Bianchi, Fantoni and Liuti, PRD 69 014505 (2004)

- 1) Determine g_1^{res} at constant Q^2
- 2) Integrate over region of interest (local or global)
- 3) Compare to DIS result evolved to same Q²

$$\Gamma_1^{res}(Q^2) \equiv \int_{x\min}^{x\max} g_1^{res} dx \qquad \Gamma_1^{dis}(Q^2) \equiv \int_{x\min}^{x\max} g_1^{dis} dx$$

$$\Gamma_1^{res}(Q^2) = \Gamma_1^{dis}(Q^2) \Rightarrow Duality$$

Hall A

P. Solvignon et al., arXiv:0803.3845 (submitted to PRL)

Target mass corrections were applied on PDFs

Hall A P. Solvignon et al., arXiv:0803.3845

Target mass corrections were applied on PDFs

Spin duality on ³He

Hall A

Hall B

Spin Duality on deuterium

P. Bosted et al., PRC75 (2007) 035203

Hall C

Spin Duality on deuterium

Structure function g_2^{3He} at moderate Q^2

Early observation: above Q²≈ 1.8 GeV², qualitative good agreement in average with models

Comparison with g_2^{WW} will give an estimate of the size of the HT effects

Structure function g₂^d at moderate Q²

Early observation: qualitative good agreement in average with models

Virtual photon-nucleon asymmetry

$$A_{1}(x,Q^{2}) = \frac{g_{1}(x,Q^{2}) - \gamma^{2}g_{2}(x,Q^{2})}{F_{1}(x,Q^{2})} \quad \text{with} \quad \gamma^{2} = \frac{4M^{2}x^{2}}{Q^{2}}$$

In the parton model:

$$A_1 = \frac{g_1}{F_1}$$

If Q^2 dependence similar for g_1 and for $F_1 \Rightarrow$ weak Q^2 dependence of A_1

Hall A

A_1 for ³He

Hall A

P. Solvignon et al., arXiv:0803.3845 (submitted to PRL)

Large negative value in the $\Delta(1232)$ region

A_1 for ³He

Hall A

P. Solvignon et al., arXiv:0803.3845 (submitted to PRL)

Large negative value in the $\Delta(1232)$ region

Still large negative value in the $\Delta(1232)$ region

A_1 for ³He

Hall A

P. Solvignon et al., arXiv:0803.3845 (submitted to PRL)

Large negative value in the $\Delta(1232)$ region

Still large negative value in the $\Delta(1232)$ region

A₁ becomes positive in the Δ (1232) region due to the drop in the Δ FF and the rising of the DIS background

A₁ for ³He

Hall A

P. Solvignon et al., arXiv:0803.3845 (submitted to PRL)

Large negative value in the $\Delta(1232)$ region

Still large negative value in the $\Delta(1232)$ region

A₁ becomes positive in the Δ (1232) region due to the drop in the Δ FF and the rising of the DIS background

No strong Q²-dependence is now observed

A₁ for deuteron

Hall B

High W resonance data are in good agreement with the DIS data

A₁ for deuteron

Hall C

Good agreement between resonance and DIS data for W above the $\Delta(1232)$ region

Argonr

NALLABORATOR

Hall A

JLab Hall B: EG4

 $E_0 = 1.3, 2.0 \text{ GeV}$

JLab Hall B: EG4

Summary

Rich study of ³He spin structure in the resonance region for 0.04<Q²<4.0 GeV²

- Precision test of the extended GDH and BC sum rules
- \checkmark Observation of spin duality for Q² down to at least 1.8GeV²
- \checkmark A₁ shows no strong Q²-dependence above Q² \approx 2.0GeV²

Same coverage for the study of deuterium spin structure in the resonance region, except for the lack of coverage for the perpendicular data:

- \checkmark First moment of g_1 shows the turn over required by the GDH slope
- \checkmark Observation of spin duality for Q² down to at least 1.5GeV²
- \checkmark A₁ shows same trend as DIS data for W above the Δ (1232) region

All these results have the advantage to be free from nuclear corrections

