

... for a brighter future

Patricia Solvignon Argonne National Laboratory

ECT 2008 Workshop Nuclear Medium Effects on the Quark and Gluon Structure of Hadrons June 3-7, 2008

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Outline

JLab E03-103 preliminary results:

- $> Q^2$ -dependence study with Carbon
- > ³He and ⁴He
- > Heavy nuclei and Coulomb distortion
- Nuclear dependence of the EMC effect
 - > World data re-analysis
 - > New extrapolation to nuclear matter
- Resonance data and target mass corrections

The EMC ratio

Ratio of cross sections per nucleon:

$$R_{EMC} = \frac{\sigma_2^A / A}{\sigma_2^D / 2} \cdot \left(\frac{1 + F_2^n / F_2^p}{Z + NF_2^n / F_2^p} \right)$$

Isoscalar correction

Existing EMC Data

- **SLAC E139 most complete and precise data set for x>0.2**
- * σ_A / σ_D for A=4 to 197
 - ⁴He, ⁹Be, ¹²C, ²⁷Al, ⁴⁰Ca,
 ⁵⁶Fe, ¹⁰⁸Ag, and ¹⁹⁷Au
 - Size at fixed *x* varies with
 A, but shape is nearly constant

Х_{Вј}

Existing EMC Data

- **SLAC E139 most complete and precise data set for x>0.2**
- * σ_A / σ_D for A=4 to 197
 - ⁴He, ⁹Be, ¹²C, ²⁷Al, ⁴⁰Ca,
 ⁵⁶Fe, ¹⁰⁸Ag, and ¹⁹⁷Au
 - Size at fixed x varies with
 A, but shape is nearly constant

E03-103 will improve with

- Higher precision data for ⁴He
- Addition of ³He data
- Precision data at large x and on heavy nuclei

\Rightarrow Lowering Q² to reach high x region

Argonne

х_{ві}

JLab Experiment E03-103

Spokespersons: D. Gaskell and J. Arrington Post-doc: P. Solvignon Graduate students: J. Seely and A. Daniel

Q² (GeV²) ° ⁰¹ A(e,e') at 5.0 and 5.8 GeV in Hall C E03103/E02019 W=I.IGeW.Z. OGek 1.4GeV × E_=5.77 GeV Targets: 8 × E_=5 GeV H, ²H, ³He, ⁴He, Be, C, Al, 6 Cu, Au 4 10 angles to measure 2 Q^2 -dependence D 0.9 0.2 0.3 0.5 0.6 0.7 0.8 0.4

х_{вј}

E03-103: Carbon EMC ratio and Q²-dependence

Small angle, low $Q^2 \rightarrow$ clear scaling violations for x > 0.7, but surprisingly good agreement at lower x

E03-103: Carbon EMC ratio and Q²-dependence

At larger angles \rightarrow indication of scaling to very large x

More detailed look at scaling

E03-103: Carbon EMC ratio and Q²-dependence

At larger angles \rightarrow indication of scaling to very large x

E03-103: Carbon EMC ratio

E03-103: ⁴He

JLab results consistent with SLAC E139 →Improved statistics and systematic errors

E03-103: ⁴He

JLab results consistent with SLAC E139 →Improved statistics and systematic errors

Large *x* shape more clearly consistent with heavier nuclei

E03-103: ⁴He

JLab results consistent with SLAC E139 →Improved statistics and systematic errors

Large *x* shape more clearly consistent with heavier nuclei

Models shown do a reasonable job describing the data

E03-103: comparison carbon and ⁴He

than A=4

E03-103: comparison carbon and ⁴He

\rightarrow ⁴He acts like a "real nucleus"

 \rightarrow Some hint of difference in shape, but hard to tell with existing errors

Coulomb distortions on heavy nuclei

Initial (scattered) electrons are accelerated (decelerated) in Coulomb field of nucleus with Z protons

- Not accounted for in typical radiative corrections
- Usually, not a large effect at high energy machines *not true at JLab (6 GeV!)*

Coulomb distortions on heavy nuclei

Initial (scattered) electrons are accelerated (decelerated) in Coulomb field of nucleus with Z protons

- Not accounted for in typical radiative corrections
- Usually, not a large effect at high energy machines *not true at JLab (6 GeV!)*

Effect of the coulomb distortion on E03-103 data

Before coulomb corrections

Effect of the coulomb distortion on E03-103 data

After coulomb corrections

E03-013 heavy target results and world data

E03-013 heavy target results and world data

After coulomb corrections on all data

E03-103: EMC effect in heavy nuclei

E03-103: EMC effect in heavy nuclei

Nuclear dependence of the EMC effect

Main difference due to E139 data sets used:

- Sick & Day used E139 Q²-avg tables
- we used E139 constant Q^2 to be able to apply CC

Nuclear dependence of the EMC effect

Nuclear dependence of the EMC effect

➢ Good agreement between E03-103 and SLAC E139 data after Coulomb corrections.

Preliminary E03-103 results confirm A-dependence of the EMC effect. Note: n/p correction is also A -dependent !

Nuclear matter

Argonne

X

Nuclear matter

Argonne

Χ

Target Mass Correction on the EMC ratio

$$F_{2}(x,Q^{2}) = F_{2}(x,Q^{2};M=0) + \frac{M^{2}}{Q^{2}}F_{2}^{(1)TMC}(x,Q^{2}) + \frac{h(x,Q^{2})}{Q^{2}} + O(1/Q^{4})$$
from pQCD
from pQCD

- > Purely kinematic effects: finite value of $4M^2x^2/Q^2$
- Need to be applied before calculating higher twist effects
- > TMCs are expressed by higher moments of $F_2(x,Q^2;M=0)$

Target Mass Correction on the EMC ratio

$$\begin{split} F_2 \quad & (x,Q^2) = \frac{x^2}{r^3} F(\xi) \ + \ 6 \frac{M^2}{Q^2} \frac{x^3}{r^4} \int_{\xi}^1 d\xi' \ F(\xi') \\ & + 12 \frac{M^4}{Q^4} \frac{x^4}{r^5} \int_{\xi}^1 d\xi' \ \int_{\xi'}^1 d\xi'' \ F(\xi'') \end{split}$$

$$\xi = \frac{2x}{1+r}$$
 $r = \sqrt{1+4x^2M^2/Q^2}$

Target Mass Correction on the EMC ratio

A-independent → mostly cancel in the ratio

At first order, the TM correction on the EMC ratio is equivalent to express them versus ξ and plot versus x

E03-103 data on Carbon

E03-103 data on Carbon with TMC

A-dependence

A-dependence with TMC

Nuclear matter

Argonne

X

Nuclear matter and TMC

Argonne

Χ

Summary

✤ JLab E03-103 provides:

- Precision nuclear structure ratios for light nuclei
- Access to large *x* EMC region for ${}^{3}\text{He} \rightarrow {}^{197}\text{Au}$
- Preliminary observations:
 - Scaling of the structure function ratios for W<2GeV down to low Q²
 - Carbon and ⁴He have the same EMC effect
 - Large EMC effect in ³He
 - Similar large x shape of the structure function ratios for A>3

In progress:

• Absolute cross sections for ¹H, ²H, ³He and ⁴He: test models of σ_n/σ_p and nuclear effects in few-body nuclei

- Quantitative studies of the Q²-dependence in structure functions and their ratios
- Coulomb distortion
- Nuclear density calculations
- Target mass correction

