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In this document we study the feasibility of measuring the parity violating asymmetry in
deep inelastic scattering using an unpolarized 11 GeV electron beam and polarized targets.
We will focus on the use of a polarized 3He target and a large solenoid device to detect
the scattered electrons. Formula used in this document were taken primiarily from Ref. [1].
In addition to the asymmetry, we will also discuss the extraction of structure function gγZ

3

and the strange parton distribution function ∆s + ∆s̄.

For an unpolarized electron beam, the cross section different between scattering off a
target with spin parallel and that with spin anti-parallel to the beam direction is:
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where for electron scattering, g
V
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+ 2 sin2 θW and ge
A

= −1
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scattering, one only need to replace ge
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in the equation above. Other variables

involved are
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with GF = 1.166 × 10−5 (GeV)−2, MZ = 91.2 GeV,
GF M2

Z

2
√

πα(Q2+M2
Z)
≈ GF

2
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2πα
≈ 180 ppm and

ηγZ = Q2 × 180 ppm/(GeV)2. At medium energies relavant to JLab, one has Q2 a few
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GeV2 hence ηZ � ηγZ . In the naive parton model, the structure functions involved on the
RHS of Eq.(1), as well as other frequently used ones, are
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where qf = u, d, s, c with u stands for the number density of the u quark and so on. The
interference contribution (i = γZ) is:
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and the purely weak interaction (i = Z) leads to:
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The weak neutral couplings for the electron and quarks can be calculated using
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Since gγZ
3 is involved in the polarized cross section of Eq. (1), one can see that the

value of measuring g3 structure functions is to provide information on the polarized valence
quark distributions (∆qf − ∆q̄f ). Compared to semi-inclusive DIS measurements, using
unpolarized beam - polarized target DIS can avoid dealing with hadron fragmentations and
thus can provide a cleaner information on ∆qV . From the target single-spin asymmetry
one can also extract gγZ

1 . Because the (∆q +∆q̄) in gγZ
1 are weighted by different couplings

from that in the “regular” spin structure function gγ
1 (usually called g1), by measuring

three out of the four structure functions: gγ,n
1 , gγ,p

1 , gγZ,n
1 and gγZ,p

1 , and assuming isospin
symmetry between the proton and the neutron, one can separate (∆u + ∆ū), (∆d + ∆d̄)
and (∆s + ∆s̄). If we measure all six structure functions: gγ,n

1 , gγ,p
1 , gγZ,n

1 , gγZ,p
1 , gγZ,n

3 and
gγZ,p
3 , then all six PDFs (∆q, ∆q̄ for u, d and s) can be extracted.

To measure the gγZ
1 or the gγZ

3 structure functions, we can measure the target single-spin
asymmetry. To find out the size of this asymmetry, we devide Eq.(1) by the sum of the
two polarized cross sections, which equals to twice the unpolarized cross section (see p.195
of Ref. [2]): (
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where s = 2k · p = 2ME is used for fixed target scatterings. The asymmetry is thus
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Now, although gγZ
3 and gZ

3 are both sensitive to the polarized valence pdf, gZ
3 is weighted

by ηZ while gγZ
3 is weighted by ηγZ in the numerator of the asymmetry. Since ηZ � ηγZ ,

the asymmetry is much more sensitive to gγZ
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For an 11 GeV electron beam, typical x and Q2 ranges are 0.2 < x < 0.8 and 2 < Q2 <
10 (GeV)2. The size of the asymmetry, the percent-contribution from g3 and ∆s + ∆s̄ are
calculated for both the proton and the neutron, see Fig. 1. The polarized PDF used are
those from Bluemlein and Boettcher [3] and the unpolarized cross sections were calculated
using the classical NMC95 fit [4]. In addition, using a large solenoid device possible for
Hall A in the future, rates for a polarized 3He target have been simulated with a luminosity
of 1036 3He/(cm2sec) [5]. Time needed for a 100% measurement of the neutron asymmetry
(which take into account a 80% beam and a 50% target polarizations as well as nuclear
corrections) has also been estimated. Figure 1 shows these results.

From Fig. 1 one can see that a reasonable measurement of g3 (in the sense that it can
help us to furthur understand the polarized parton distributions and thus the nucleon spin
structure) requires measurement of the asymmetry to at least a couple of % level. But
the current rate and luminosity do not allow us to do so. The situation for the proton is
better for the neutron (the contribution from g3 is relatively large), but the luminosity of
polarized proton targets currently available is much lower than that of the polarzied 3He
target, thus the beam time needed would be not realistic.
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Figure 1: Target spin-flip asymmetry using an unpolarized 11 GeV electron beam for the
proton (left) and the neutron (right). The rate and time needed for a 100% measurement
on the neutron asymmetry were estimated using a large solenoid device and a polarized
3He target with a luminosity of 1036 cm−2s−1.
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