SoLID-SIDIS Projection and Comparison with SBS+CLAS12

Zhihong Ye 06/05/2015

- Generate SIDIS events:
- Uniformly generate SIDIS events within a pre-defined phase-space which is slightly larger than the SoLID-SIDIS acceptance:

```
Electron: \Theta_{min} = 7 degrees, \Theta_{max} = 30 degrees,
\Phi_{min} = 0 degrees, \Phi_{max} = 360 degrees
P_{min} = 0.0 \text{ GeV/c}, P_{max} = E0 (8.8 or 11 GeV)
```

- Hadron: $\Theta_{min} = 7 \text{ degrees}, \Theta_{max} = 30 \text{ degrees}, \\ \Phi_{min} = 0 \text{ degrees}, \Phi_{max} = 360 \text{ degrees} \\ P_{min} = 0.0 \text{ GeV/c}, P_{max} = 6.0 \text{ GeV/c} \end{cases}$
- ✓ SIDIS cuts are applied to select the valid SIDIS events: 0.3 < z < 0.7, 1.0 < Q2 < 10 GeV², W >= 2.3 GeV, Wp>=1.6 GeV Hence two numbers are needed to know: total generated events and total accepted events.
 ✓ Cross section values and dilution are calculated for each events.
- \checkmark Cross section values and dilution are calculated for each event.

Calculate weight-factor for each event:

weight = XS * PSF / Nsim

Apply the SoLID acceptance:

The SoLID-SIDIS acceptance is given as a 2D-histogram (P vs. Theta) for electrons or hadrons, separately.

Apply more weighting factors:

The final weight-factor that applies on each generated event to get the "projected" events that we can obtain from the experiment is:

```
weight_final = weight * Luminosity * Beam_Time * Acceptance
```

* Polarization² * Eff_neutron² * Dilution² * Eff_Det

Where:

- weight = XS * PSF / Nsim. (make sure the unit of XS is "cm2" not "nbar")
- > Luminosity = $1e36 \text{ cm}^{-2} \text{ s}^{-1}$
- Beam_Time = 48 days * 24 * 60 *60 s (for E0 = 11 GeV)

21 days * 24 * 60 *60 s (for E0 = 8.8 GeV)

- > Acceptance = (Accpt_forward_e + Accpt_large_e) * (Accpt_forward_h + Accpt_large_h)
- Polarization = 60% / sqrt(2), where the last factor accounts for diff Asym.
- Eff_neutron = 86.5%, effective neutrons in He3 target
- > Dilution ~ 20% but is calculated for each bin.

2015-6-1Eff_Det = 85% is the overal detector efficiency for electrons and hadrons

Binning:

1, Data is binned on (Q2, z) first by defining the ranges of cuts for each bin:

Q2[8] = {1., 2., 3., 4., 5., 6., 8., 10.};

 $z[9] = \{0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7\};$

Data wittin each (Q2, z) is saved into a smaller ROOT file for futhre binning.

2, In each (Q2, z), furthre bin the data into (pt, x) bins:

pt[9] = {0., 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6};

 \rightarrow Two or more bins will be combined untill $N_{raw} > 5 \times 10^{6}$, where N_{raw} is the event counts in the bin before corrected by polarization and dilution.

x-bins are determined by making #event in each bin $N_{raw} > 2 \times 10^6$, but not more than 8 x-bins in each pt bin;

3, The number of events in each (Q2, z, pt, x) then is given as:

N = Σ (Nraw * Acceptance XS) * Dilution² → vary event-by-event → vary bin-by-bin

* (PSF/Nsim*Luminosity *Beam_Time Polarization²*Eff_neutron² * Eff_Det)

 \rightarrow fixed constants

 Obtain the Statistical errors in each (Q2, z, pt, x) bin: With the known #events in each bin, the statistical error is given as: δ = 1./sqrt(N) * Coeff,

where Coeff \rightarrow corrections for Azmuthal coverages of Sivers, Collins and Pretzelocity

Solid Solid

Factor	SoLID E12-10-006 (A) (neutron)	SBS E12-09-018 (A-) (only neutron approved)	SoLID E12-11-108, A (proton)	CLAS12 C12-11-111 (only proton conditional approved)
Targets	He3("n")	He3("n")	NH3("p")	HDice ("p")
Polarization (P)	65% (60% in beam)	65% (<60% in beam)	70%	60%
Dilution-Factor (f)	0.15~0.3	0.15~0.3	0.13	0.33*80%
Polarized Lumonisity (L)	1.0x10 ³⁶ cm ⁻² s ⁻¹	$2.7 \mathrm{x} 10^{36} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1.0x10 ³⁵ cm ⁻² s ⁻¹	$\frac{1.4 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}}{\text{(quoted: 5.10^{33} \text{ cm}^{-2} \text{s}^{-1})}}$
Solid-Angle $(\Omega_e^{}^*\Omega_h)$	0.067 (e: $\theta \rightarrow 8^{\circ} \sim 25^{\circ}$, $\Phi \rightarrow 0^{\circ} \sim 360^{\circ}$. h: $\theta \rightarrow 8^{\circ} \sim 14.5^{\circ}$, $\Phi \rightarrow 0^{\circ} \sim 360^{\circ}$)	Quoted: 0.0026 (h-SBS: $\theta \rightarrow 26.5^{\circ} \sim 35^{\circ}$, $\Phi \rightarrow -24^{\circ} \sim 24^{\circ}$ e-BB: $\theta \rightarrow 10^{\circ} \sim 19.5^{\circ}$, $\Phi \rightarrow -30^{\circ} \sim 30^{\circ}$)	0.067 (e: θ→8°~25°, Φ→0°~360°. h: θ→8°~14.5°, Φ→0°~360°)	$ \begin{array}{c} 1.32 \text{sr} \\ (e: \theta \rightarrow 6.5^{\circ} \sim 40^{\circ}, \\ \Phi \rightarrow 0^{\circ} \sim 360^{\circ} * 80\%. \\ h: \theta \rightarrow 5^{\circ} \sim 40^{\circ}, \\ \Phi \rightarrow 0^{\circ} \sim 360^{\circ} * 80\%) \end{array} $
FOM in the same kine. (L*P2*f2*Omega)	5.43x10 ³²	5.69x10 ³¹	5.55x10 ³¹	$\begin{array}{c} 4.64 \times 10^{31} \\ \text{(if same acceptance,} \\ 2.35 \times 10^{30} \text{)} \end{array}$
SIDIS π^+ Events * P^2 * f^2	100M	0.21M	5.06M	3.07M

Based on the 1-D Projection results

SBS Coverage

BigBite:

counter, a two-layer electromagnetic calorimeter and a scintillator hodoscope. The value of the solid angle for 60 cm long target was found to be of 45 msr. $\Omega_{e\pi} = 0.0019 (0.0024 \text{ sr})$

SBS:

For the proposed SIDIS experiment, the magnet will be placed at the distance 245 cm from the target to the return yoke, providing a solid angle of 42(53) mer. The magnet inter-

From their kinematic coverage plot:

Table 5.1: DIS events selection, kinematical cuts and mai

	Unit	Proposed Exp.	HERMES	HallA 6 GeV
Q^2	GeV^2	> 1	> 1	> 1.31
W	${\rm GeV}$	2.3	> 3	> 2.33
W'	${\rm GeV}$	> 1.5		> 1.5
y		< 0.9	< 0.95	
			≥ 0.1	
z		> 0.2	> 0.2	
		< 0.7	< 0.7	

2015-6-10

Figure 5.1: 11 GeV kinematics, phase space of the two detected particle momenta and angles, with the SIDIS cuts applied.

SoLID / SBS comparison

SoLID vs. SBS Neutron-SIDIS Comparison

SoLID bins are to match the SBS ones and thus are not optimized for SoLID kinematics

SoLID vs. SBS Neutron-SIDIS Comparison

SBS:

- 3D binning: $0.1 < x < 0.7, 0.2 < z < 0.7, 0 < p_T (GeV) < 1.2$
- Typically 120 bins, dependence on Q2 gives fully-differential analysis

SoLID:

- 4D-MAPPING: 0.05 < x < 0.6, 0.3 < z < 0.7, 0 < p_T (GeV) < 1.0, 1.0<Q^2 <7.0 GeV^2
- 1400 bins

Sivers A_{UT} , $n(e,e'\pi^+)X$ vs. x, 40 days (a) 11 GeV

CLAS Coverage

From their 1D projection stat. error bars: $N(\pi+)=3.07M$, $N(\pi-)=0.87M$; The proposal didn't mention whether they are corrected by Pol&Dilution or not.

SoLID vs. CLAS12 Proton-SIDIS Comparison

SoLID bins are to match the CLAS12 ones and thus are not optimized for SoLID kinematics.

CLAS12 has two differences: 1, different acceptance; 2, difference DIS-cut, W>2 compared with W>2.3 for us

Neutron-SIDIS Projection with the CLAS12 binning (There is no CLAS12neutron proposal)

SoLID vs. CLAS12 Proton-SIDIS Comparison

For CLAS12 binning: Run our own "projection" for CLAS12:

- (1) Use our generator to generate SIDIS events with CLAS12's full acceptance.
- (2) Assuming within the momentum and theta range, the CLAS12 acceptance is uniform.
- (3) Do the 1D binning with their bins, cuts and acceptance ranges.
- (4) Do the same 1D binning with SoLID's cuts and acceptances.
- (5) Look for the scaling factor between (3) and (4) for each bin.
- (6) Apply the factor onto their actual projection, bin-by-bin.

SoLID vs. CLAS12 Proton-SIDIS Comparison

