The science motivating the UK’s Fourth Generation Light Source Project
The world’s first 2nd generation Synchrotron Radiation Source, near Warrington, approx 40 km from Manchester and Liverpool
Storage rings

In all sources up to 3rd generation, the electrons are stored in a storage ring where they circulate up to 10^{11} times.

The ESRF, Grenoble
Sometimes also in attractive locations!

The ALS, Berkeley, CA
Fundamental requirement to understand the dynamic behaviour of matter, often in very small (nm) units, on very fast (fs) timescales

Need not just to determine structure with high precision, but to understand how these structures work

The need is for an ultra-high brightness low energy facility that allows the use of fast pulsed sources in combination
an energy recovery linac (ERL), not a storage ring
4GLS: ultra-high brightness

![Graph showing brightness vs photon energy for various sources, including 4GLS, ERL 4GLS U28, ERL 4GLS U48, U48 Diffraction Limit, ALS U10, Elettra U125, NSLS VUV U13U, and 4GLS.](image)
Bending magnet sources: high power THz

- JLab THz
- JLab FEL
- Table-top sub-ps lasers
- Synchrotrons
- Globar

Flux (Watts/cm²)

Energy (meV)

Wavenumbers (cm⁻¹)

Free electron lasers

Stimulated emission:
- **Power** \(\propto n^2 \)
- smaller beam diameter
- less beam divergence
- longitudinal & transverse coherence

![Diagram of Free Electron Laser](image)

From Undulator radiation towards FEL radiation

shotnoise:
- Power \(\propto n \)

stimulated emission:
- Power \(\propto n^2 \)

Gain \(\propto N^3 \)

BESSY FEL project science case
4GLS: a suite of light sources

VUV FEL
Range: 3-10 eV
Photons per pulse: 10^{13}
Pulse energy: ~15 µJ
Pulse length 100s fs
Repetition rate: 6.25 MHz

XUV FEL
Range: fundamental 10-100 eV
harmonic output to 300eV
Photons per pulse: 10^{14}
Pulse energy: ~2 mJ
Pulse length 100s fs
Repetition rate:
- microbunch 65 MHz
- macrobunch tens of Hz

FIR FEL
Range: 5-75 µm
Micropulse energy: ~75 µJ
Pulse lengths 100s fs - few ps
Variable polarisation
Repetition rate: 10 MHz

IR-FEL

Bending Magnet

Undulators
Cavity-based FELs (oscillators)

- relativistic electron beam passes through periodic magnetic field generated by an undulator
- mirror feeds spontaneous emission back onto the beam
- spontaneous emission enhanced by stimulated emission
- limited by mirror material to short wavelengths
SASE FELs (amplifiers)

- single pass through a very long undulator
- longitudinal charge density modulation (micro bunching) develops
- XUV FEL will be a ‘seeded’ version

BESSY FEL project science case
Seeding schemes
Two-undulator seeding (DESY)

Spectrum before - after seeding

funded by the Hermann von Helmholtz-Gemeinschaft of German Research Centers (HGF), in collaboration with GKSS, Geesthacht, and ISA, Arhus
4GLS coverage

Wavelength coverage of 4GLS, table top lasers and facilities

4GLS is designed to complement table-top laser sources
4GLS: pulse combinations

- Pulse tailoring - selectable characteristics
- Combinations of SR and FEL radiation
- Sources covering IR-XUV
- Pump-probe experiments

UNIQUE EXPERIMENTAL FLEXIBILITY
Dynamics and kinetics

- pulse lengths down to sub-100 fs
- real time monitoring of chemical reactions, bond breaking and making
- access to fast biological timescales
Biological timescales

4GLS

TESLA technical design report, March 2001
Dynamics: an arsenal of novel techniques!

Determining time dependent structural changes, relaxation/torsion etc, is crucial for understanding:

- all forms of catalysis
- mechanisms behind enzyme action
- protein/drug interactions - impact on understanding diseases and therapies

Range of techniques: multi-wavelength pump-probe, time resolved CD, TR3, IR, ROA, RAS, SFS

Range of sources: IR-FEL, VUV-FEL, spontaneous radiation and table-top lasers/4GLS
Intramolecular vibrational relaxation of surface complexes

- surface dynamics of large adsorbed molecules
- essential to improving understanding of adsorption, reaction and desorption at any catalyst surface
- low frequency surface-adsorbate modes
- Spatial and temporal overlap of FEL and BM beams in RAIRS geometry

The enormous power gains achievable in the far-IR using an ERL source
Demonstrator IR FEL pump-probe experiments

Applied to the study of biological molecules:

- Amide I and II modes (1500 - 1700 cm\(^{-1}\) = 6.6 - 5.8 µm)
 - sensitive to secondary and tertiary structure of molecule

The effect of laser tuning within the amide I band on the pump-probe signal, indicative of anharmonicity in the vibration

UV CD

- UV -CD: chirality of protein secondary and tertiary structure

- UK has international profile (through work at SRS)

- Work possible on few ng quantities of proteins (10mg currently)
- Time-resolved work into ps regime - one-shot expts. close?
Double resonance Sum Frequency Spectroscopy and imaging: New Horizons

- Conformation of large admolecules
- Adsorbate dynamics
- Membrane rafts & proteins, lipid bilayers, oxide catalysts……….
- Exploits tuneability of BOTH FELS
- Enormously widens range of surfaces and vibrations
- Imaging applications using near-field SFG signal (SNOM probe): below diffraction limit
Imaging: Sub-cellular IR Spectromicroscopy

Cell changes during apoptosis (P Dumas, SR IR, LURE)

- Overcome diffraction limit using near-field imaging/IR FEL:
 - 30-50 nm resolution
Imaging: High power broadband THz

JLab ERL @ 5mA current ⇒ 10s of watts average power

Table top THz sources typically μwatts

- Security applications, concealed weapons, hidden explosives
- Medical imaging, state of wounds beneath dressings
- Semiconductor characterisation
- Wireless communication

THz: metal and water opaque

THz image of a hand taken through 15mm of paper. StarTiger, ESA

Far field resolution ~300µm
Nanoscale dynamic imaging

- intercellular signalling, receptor systems on membrane rafts
- functional imaging in live cells, effects of biomolecules/pollutants, *in vivo* study of radiation damage
- material-biological matrix interface, surface nanostructuring

e.g. *near field IR, THz, UV RR spectroscopy, scanning near field SFS* - localised imaging of sub cellular structures with resolutions approaching 30 nm

SPATIAL AND DYNAMICAL ANALYSIS
Exploitation of nanocomposites

- Need to know:
 - well depth for e^- and h^+
 - variation of band gap with size
 - energy level line-up
 - influence of defects/adsorbates on e.g. luminescence
 - lifetime of excited state (exciton)
 - nature of charge transport between layers in microdevices

- But for particles with band gaps \geq UV (phosphors, sun screens, photovoltaics), and down to fs timescales

CdSe nanoparticle and variation of band gap with size (P O’Brien group website, University of Manchester)
nanoparticles and microdevices:
fast transients in nanocomposites

Need tunable deep-UV FEL and very high brightness SR

Because

- **band gaps typically > 3 eV**
- **large band offsets at interfaces with other materials**
- **quantum confinement: band gap rises as size decreases typically in range 30 - 5 nm (e.g. Cd\textsubscript{3}P\textsubscript{2} 0.5 eV - 4 eV)**

Transient charge carrier distributions measured by FEL-SR pump-probe

Sub nanosecond charge density evolution (electron/hole pair dynamics) probed with SR by monitoring the surface photovoltage effect induced by illumination of Si(111) 2x1 with FEL photons.

Oscillation due to influence of surface states

Photocarrier relaxation as per bulk

THz Pump-probe measurements of internal exciton transitions

Evolution of conductivity and dielectric constant as insulating excitons form in GaAs MQWs on ps timescales

Semiconductor spintronics

- the next generation of electronic devices?
- study of individual nanoclusters of only a few atoms
- modifications resulting from deposition
- spin dependent transport, excitons
Pulsed CP radiation is one of the most effective means of generating and controlling oriented spin states (including ‘spin qubits’)

Research prototypes for future devices: MRAM, spin FETs etc.

Pools of spin polarised electrons in GaAs probed using 100 fs pulses of 1.5 eV CP light - showing only gradual loss of quantum coherence.

Reactions and processes in the biosphere

- Studies of dilute and/or short-lived species

- Free radicals and ions in earth’s atmosphere, e.g. O_3, ClO => pollutant creation & removal

- Environmental effects of toxins (atmospheric, inorganic, fungal) on photosynthetic systems

- High brilliance for high resolution soft X-ray imaging in ‘water window’ - bioremediation
Fundamental measurements in astrophysics & astrochemistry

- key fundamental measurements on multiply charged species - remove reliance on computed parameters
- chemistry of the interstellar medium - ion-surface and gas phase interactions, formation of complex ions and molecules
- Improving our understanding of the origins of the universe
Molecular chirality and the homochirality of life

- CP light from star-forming regions is thought to have played a key role in biological evolution
- Require high quality, high intensity CP light in VUV - pulsed and CW
- Studies of enantiomer-selective chemistry

CD in the angular distribution of photoelectrons (CDAD) from chiral molecules predicted to be ca. 10%!

Calculated CDAD for D-glyceraldehyde
Molecular dynamics in intense XUV fields

- XUV field intensity $\sim 10^{15}$ W/cm2 => nonlinear processes
- High intensity, high field => tunnelling, multiphoton processes
- Vary inner shell:outer shell coupling
- Coherent control of chemical reactions

Multiphoton excitations of atoms, molecules, clusters……

- Coulomb explosions
- Tests of theory

Recent first results from DESY TTF show Xe atoms undergo a Coulomb explosion in the VUV at field intensities 10x lower than predicted by existing models
(H Wabnitz et al., Nature, 420, 467, (2002))
Coulomb explosion of Xe clusters

10^{13} photons in \sim50 fsec in a 20 µm spot

$I_{p_{Xe}} = 12.1$ eV

$E_{phot} = 12.8$ eV

H. Wabnitz et al., Nature 420, 482 (2002)
One-shot experiments!

Coulomb explosion of a T4 lysozyme molecule caused by a 3×10^{12} photon per (0.1 µm)2 pulse of X-rays (Hajdu et al., *Nature*, **406**, 752, (2000))
4GLS: flagship science

Criteria:

- Internationally outstanding science
- Focus on important easily recognised problems
- Science possible ONLY using 4GLS
- Science champion and research team
4GLS – current flagship areas

Origins: a laboratory for astrophysics/chemistry

Nanoparticles and microdevices: fast transients in nanocomposites

Quantum systems in high fields

Ultrafast sub-cycle physics

Sustainability

Spintronics

Bio-signalling and transport
4GLS: timescales

- **April 02**: Scientific case approved (Gateway 0)
- **November 02**: Business case approved (Gateway 1)
- **April 03**: £11.5 M funding for prototype accelerator and R&D
 - **Autumn 05**: Prototype complete
 - **Spring 06**: Report on 4GLS phase I
 - **Summer 06 ??**: Approval for 4GLS procure and build
 - **January 10 ??**: Facility starts to be available to researchers
ERL Prototype
The JLab Wiggler

- Wiggler (undulator) and auxiliary equipment has been loaned to CCLRC by JLab
- Was used successfully by JLab in 1 kW FEL

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>27 mm</td>
</tr>
<tr>
<td>Fixed Gap</td>
<td>12 mm</td>
</tr>
<tr>
<td>K</td>
<td>1.0</td>
</tr>
<tr>
<td>Length</td>
<td>1.08 m</td>
</tr>
<tr>
<td>Number of Periods</td>
<td>40</td>
</tr>
</tbody>
</table>

Wavelength range 2 to 6 µm with energy 50 to 30 MeV
ERL Prototype Layout
4GLS: the bottom line

- £113 M to build and commission (including vat)
- £9.1 M *per annum* to run
 (split approximately equally between staff and non-staff costs)

NWDA

- Contribution to capital (ca. £4.5 M)
- Provision of 4GLS building thro’ leaseback (ca. £24 M + vat)
Summary

- internationally leading science
 - with great potential for dynamics and imaging of nanoscale objects

- great national and international support
 - 220 scientists wrote the 4GLS proposal

- complementary to Diamond
 - the long awaited UK ‘Low Energy Source’

- the right technology at the right time
 - Multi-user, multi-source facility using ERL and FEL
Acknowledgments

- The 4GLS Team
- The 4GLS International Advisory Committee
- The 4GLS Steering Committee
- The Northwest Development Agency
- All who contributed to the Science Case and the Business Case
- CCLRC and OST/DTI
- JLab
Further Information

http://www.4gls.ac.uk

Elaine Seddon
e.seddon@dl.ac.uk

Wendy Flavell
Wendy.Flavell@umist.ac.uk

Peter Weightman
peterw@liverpool.ac.uk

Mike Poole
m.w.poole@dl.ac.uk
4GLS
LIGHT YEARS AHEAD
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Start-up</th>
<th>Short Pulse</th>
<th>Long Pulse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gun to Booster Energy</td>
<td>≤ 500 keV</td>
<td>≤ 500 keV</td>
<td>≤ 500 keV</td>
</tr>
<tr>
<td>Injector Energy</td>
<td>~ 5 MeV</td>
<td>~ 5 MeV</td>
<td>~ 5 MeV</td>
</tr>
<tr>
<td>Beam Energy</td>
<td>≤ 35 MeV</td>
<td>≤ 35 MeV</td>
<td>≤ 35 MeV</td>
</tr>
<tr>
<td>Linac RF Frequency</td>
<td>1.3 GHz</td>
<td>1.3 GHz</td>
<td>1.3 GHz</td>
</tr>
<tr>
<td>Average Train Current (nA)</td>
<td>1.6</td>
<td>130</td>
<td>650</td>
</tr>
<tr>
<td>Bunch Length (RMS) at FEL</td>
<td>~ 0.6 ps</td>
<td>~ 0.6 ps</td>
<td>~ 0.6 ps</td>
</tr>
<tr>
<td>Relative Energy Spread at FEL</td>
<td>≤ 0.2 %</td>
<td>≤ 0.2 %</td>
<td>≤ 0.2 %</td>
</tr>
<tr>
<td>Bunch Length (FWHM) at U100</td>
<td>≤ 0.5 ps</td>
<td>≤ 0.5 ps</td>
<td>≤ 0.5 ps</td>
</tr>
<tr>
<td>Bunch Spacing (ns)</td>
<td>-</td>
<td>12.308</td>
<td>12.308</td>
</tr>
<tr>
<td>Bunch Repetition Rate (MHz)</td>
<td>-</td>
<td>81.25</td>
<td>81.25</td>
</tr>
<tr>
<td>Bunches per Train</td>
<td>1</td>
<td>1625</td>
<td>8125</td>
</tr>
<tr>
<td>Train Length (µs)</td>
<td>-</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>Train Spacing (ms)</td>
<td>49.99</td>
<td>49.99</td>
<td>49.9</td>
</tr>
<tr>
<td>Train Repetition Rate (Hz)</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Duty Factor</td>
<td>0.0004</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>Max Bunch Charge (pC)</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
</tbody>
</table>
Laser Parameters

- Wavelength: 1.05\(\mu\)m, multiplied to 0.53\(\mu\)m/0.26\(\mu\)m (Nd\(\text{Y}\):VO\(_4\))
- Pulse energy: 80nJ on target
- Pulse duration: 10ps FWHM
- Pulse repetition rate: 81 MHz
- Macropulse duration: 20 ms
- Duty cycle: 0.2%
- Timing jitter: <1ps
- Spatial profile: circular (top hat) on photocathode
ERL Prototype

Diagram: ERL Prototype layout with beam path starting from 350 KeV, through 6.35 MeV, and ending at 35 MeV. Key components include Superconducting Booster Cavity, Dipole Chicane Compressor, Wiggler, Beam Dump, and FEL Optical Cavity (9.224 m).
Site Stability

- Concrete cast in 1974
- Well settled
- Very large mass of concrete on a very stable foundation
4GLS: The Gateway Process

- Project being assessed under UK ‘Gateway’ Process
 First facility project to go through process from inception

- Progress so far
 - Science Case approved:
 Science Case (220 authors) submitted December 2001
 Peer review (17 referees) by EPSRC for OST/OGC; panel meeting February 2002; presented at RCUK April 2002

 - Business Case approved:
 Business Case submitted October 2001
 OGC Gateway 1 review October 2001: Green Light
Ultra-high resolution photoemission

- Measurement of superconducting gap, anisotropy, phase diagram in HTc and conventional superconductors

- Mechanisms of superconductivity

- Related phenomena - m-nm trans., GMR, spin transitions etc.

- Chemical searchlight through resonant photoemission

A world-leading synchrotron radiation facility to enable internationally outstanding science by the 'low-energy' community in the UK.