Vibrational Lifetimes and Isotope Effects of Interstitial Oxygen in Silicon and Germanium

LPC Workshop, Jefferson Lab. March 10, 2004

luepke@as.wm.edu http://as.wm.edu

The College Of ______ WILLIAM & MARY

Interstitial Oxygen in Si and Ge

- Oxygen in Si and Ge is one of the very early examples of an impurity studied by vibrational spectroscopy. It has been well characterized experimentally and theoretically.
- However, the dynamics and relaxation channels of oxygen vibration is unknown, which can affect the reactivity of impurity, their diffusion and desorption rates.

Our Goals:

- To determine the Vibrational Lifetime of the Local Mode.
- To identify the Energy Relaxation Channels.

Interstitial Oxygen Defect

Vibrational Modes of Interstitial Oxygen

Transverse
ModeSymmetric Stretch
ModeAsymmetric Stretch
Mode29 cm⁻¹518 cm⁻¹1136 cm⁻¹

Experimental Setup

Isotope Effect of Interstitial Oxygen in Si

Vibrational Lifetime of ¹⁶O and ¹⁷O in Si

B. Sun et al, Phys. Rev. Lett., accepted

Decay Mechanism

Decay of LVM into "phonon" bath:

$$\frac{1}{T_1} = 2\pi \sum_{\{\nu\}} |G_{\{\nu\}}|^2 n_{\{\nu\}} \rho_{\{\nu\}}$$

Each channel v.

A. Nitzan et al, J. Chem. Phys. 60, 3929 (1974)

Density of Phonon States in Si and Ge

Paolo Giannozzi, et al, Phys. Rev. B, 43, 7231 (1991)

Three-Phonon Density of States in Si

$$\rho^{(3)}(\omega) = \int d\omega_1 \int d\omega_2 \rho^{(1)}(\omega - \omega_1) \rho^{(1)}(\omega_1 - \omega_2) \rho^{(1)}(\omega_2)$$

Vibrational Spectrum of ¹⁶O in Ge

Vibration-rotation scheme: ($\Delta I=0$), $|0,II \rightarrow |1,II$, $I=0,\pm 1,\pm 2,\pm 3$, separated by ~0.07 cm⁻¹

Vibrational Lifetime of ¹⁶O in Ge

Three-Phonon Density of States in Ge

A factor of 2 between the density of accepting states can not explain an order of magnitude difference in lifetimes!!!

Symmetry Selection Rules

Asymmetric stretch mode of O_i: A_{2u} symmetry

Decay channel must contain A_{2u} or $\Gamma_{15'}$.

 $\Gamma_{15'}$ is the representation of the infrared dipole operator in diamond structure, which can be reduced to $A_{2u} \oplus E_{u}$.

The allowed transition into phonons must satisfy: $2TO + TA \supset (M) \Gamma_{15'} (A_{2u} \oplus E_u)$ for Si $3TO \supset (M) \Gamma_{15'} (A_{2u} \oplus E_u)$ for Ge

M (coefficient of $\Gamma_{15'}$) must be nonzero.

Decay Channels of Oxygen in Si and Ge

Activity (M)	Phonon Combinations	Frequency (cm ⁻¹)	
	<u>Silicon</u>		
3	$TO(X)+O(\Gamma)+TA(X)$	1129	
6	$TO(L)+O(\Gamma)+TA(L)$	1122	
3	2TO(L)+TA(X)	1134	
6	TO(L)+TO(X)+TA(L)	1071	
2	2TO(X)+TA(X)	1078	
	<u>Germanium</u>		
1	2TO(X)+O(Γ)	856	
3	2TO(L)+O(Γ)	888	

J. L. Birman, Phys. Rev. 131, 1489 (1963)

Summary

- ✓ First measurements of vibrational lifetimes of interstitial oxygen in silicon and germanium.
- ✓ In silicon, the ¹⁷O_i mode lies in the highest density of threephonon states (2TO+TA phonons).
- ✓ This gives rise to a shorter lifetime (T_1 = 4.5 ps) than for the ¹⁶O_i and ¹⁸O_i modes (T_1 ~10 ps).
- ✓ ¹⁶O_i modes in Ge show much longer lifetime, T₁=125 ps, than in Si.
- ✓ Ge₂O modes decay into 3TO phonons, which have different infrared activities.
- This results in different coupling strengths and very different lifetimes.

Future Work

- In a variety of group-IV and III-V semiconductors the interaction of hydrogen with dopants can have important technological consequences.
- In GaN, H bonded to Mg acceptors prevents p-type activation in as-grown MOCVD material.
- Large isotope effect on hot-electron-induced debonding rate of dopant-hydrogen complexes.
- Two distinct mechanism have been discussed:
 - Excitation of the bonding electron to an anti-bonding state leading to a repulsive force on the H.
 - Multiple, cumulative excitations of H-local mode vibrations leading to instability of the bond.

Mg⁻ H⁺ complex in GaN

Technological consequences of H:

- H is grown in during MOCVD of Mg-doped, p-type GaN, passivating Mg acceptors.
- **O** This is believed to reduce the formation of compensating donor defects during growth.
- S Acceptor activation by outgassing occurs >700°C where thermal damage becomes significant.
- **Such stable passivation may provide a basis for patterning of conduction paths.**

Some key early developments:

P-type conduction in Mg-doped GaN by LEEBI H. Amano *et al.*, 1989

P-type conduction by annealing and recognition of H passivation. S. Nakamura *et al.*, 1992

Theoretical identification of the Mg⁻ H⁺ complex. J. Neugebauer & C. G. Van de Walle, 1995

Observation of IR absorption by the Mg⁻ H⁺ complex. W. Götz et al., 1996 The wurtzite GaN lattice:

Sam M. Myers: Sandia National Laboratories

The multiple energy minima of H⁺ and their occupancy

Sam M. Myers: Sandia National Laboratories

E-beam dissociation of the Mg⁻ H⁺ complex

How do Mg⁻ H⁺ dissociate and H migrate during electron irradiation at room temperature?

Migration of H

Thermal diffusion too slow per drift experiments.

Hypothesize alternating e⁻ and h⁺ captures by H, bypassing the activation barrier to N-H bond.

Sam M. Myers: Sandia National Laboratories

Fano System

Origin of the interaction between the discrete level and the continuum: *electrostatic interaction* PRL 60, 105 (1988) *Coulomb interaction* PRB 51, 4953 (1995)

 Γ is called coupling constant or coupling strength. It is also called the rate of escape from discrete level to the continuum.

U. Fano, Phys. Rev. 124, 1866 (1961)

Signature of Fano Effect

Fano resonances are characterized by a pronounced *minimum* in the absorption spectrum at an energy where the transition amplitudes of the *discrete state* and the *continuum* interfere *destructively*.

However, even a *symmetric* line shape is also possible from the Fano effect if the transition to the *phase shifted continuum* is large.

----- PRL 90, 233004 (2003)

Acknowledgement

My group:Dr. Qiguang YangBaozhou Sun

Collaborators:

Norman Tolk, Vanderbilt University Leonard Feldman, Vanderbilt University Ron Newman, Imperial College London Bernard Pajot, Universités Pierre et Marie Curie et Denis Diderot, Paris

Technical Support: Jefferson Lab. FEL Team

Supported by: NSF, DoE, ONR, Jeffress Foundation

Character Table of Point Group D_{3d}

D _{3d}	E	2C ₃	3C ₂ ,	i	2S ₆	$3\sigma_d$	Linear function,rotation
A _{1g}	1	1	1	1	1	1	
A _{2g}	1	1	-1	1	1	-1	R _z
Eg	2	-1	0	2	-1	0	(R_x, R_y)
A _{1u}	1	1	1	-1	-1	-1	
A _{2u}	1	1	-1	-1	-1	1	Ζ
E _u	2	-1	0	-2	1	0	(x,y)

Infrared active