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Outline
Carbon Nanotube Growth for Composites

• Nanotube-based composites - A brief introduction

• In situ diagnostics of growth -
− Loose nanotubes - grown by laser vaporization
− Aligned nanotube arrays on substrates - grown by 

chemical vapor deposition
− growth rates measured, lengths controlled, growth 

mechanisms elucidated
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✦ The best field emitters known 
✦ Already developed for field 

emission displays, lighting.
✦ Molecular wires
✦ Semiconducting or metallic
✦ Single-electron transistors 

demonstrated
✦ Ballistic transport (109 A/cm2) - up 

to 1 mA per tube! 
✦ Sharp optical transitions -

fluorescence/electroluminescence 
demonstrated

1 nm

Electronic Properties - Devices Structural Properties - Composites

Needs:  Small quantities, controlled 
structure, for predictable properties

✦ Strongest material known to man
✦ > 1 TPa axial Young’s modulus
✦ 130 GPa predicted bundled strength 
✦ 100 times stronger than steel, only one-

sixth the weight.
✦ Stiffness-to-weight ratio 40X higher than 

that of aluminum
✦ Electrical conductivity better than copper
✦ Thermal conductivity greater than diamond
✦ Hollow - Gas Storage, Drug delivery
✦ Actuation demonstrated

Needs:  Large quantities, efficient 
fabrication into tough composite

Carbon Nanotubes - PropertiesCarbon Nanotubes - Properties
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Aligned SWNT - Multifunctional Supermaterials

Alignment - The key to directional transport properties

Mechanical

1 TPa Young’s Modulus

Electrical Wires

Power transmission cables

Nanoscale wires

Ballistic Transport

Space elevator

Heat Pipes

Leading edge
cooling system

Microelectronics

cooling

3000 W/mK

Actuators
Nanobots

Low voltage
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Grand Challenges in SWNT Synthesis

• Atomic scale control over synthesis
− Must understand nucleation step

• Control over chirality
• For predesigned electronic properties

• Economic, large-scale production
− Optimize growth process 
− high rate growth
− to long lengths for fibers, composites

• Ultimately, the growth of a perfect SWNT 

• And controllable lengths

crystal
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Two Approaches for Nanotube 
Composites

• Loose Nanotubes
− Spun, cast, blended into 

fibers, sheets, monoliths
− Synthesis Methods:  

Arc, laser, floating 
catalyst CVD Fibers

Films, sheets, coatings

•As-Grown Nanotubes
−Directly aligned on 
substrates

−Synthesis Methods:  
Chemical Vapor 

Deposition of Aligned 
Arrays

As-grown, vertical arrays
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Loose SWNT 
Grown by Laser 

Vaporization
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GOAL

Understand SWNT Synthesis Mechanism in order 
to Control and Scale Growth

APPROACH
• Time-Resolved,  In Situ Measurements

− Laser-Induced Luminescence
− Gated ICCD Imaging
− Optical Emission/Absorption 

Spectroscopy
− Laser-induced incandescence
− Rayleigh scattering

ADVANTAGES

• Pulsed LV especially suitable for time-
resolved measurements

• Vaporizing pulse lasts only ~ 10 ns
• SWNTs then grow undisturbed
• Measurements can extend to many 

seconds, and single laser shotsDiagnostics

Nanoparticles
Laser ablation source

Crystalline Nanorods

Clusters

Atoms, 
molecules

Nanotubes



OAK RIDGE NATIONAL LABORATORY
U.S. DEPARTMENT OF ENERGY

Synthesis of Single-Walled Carbon Nanotubes (SWNT)
by Laser Vaporization
Synthesis of Single-Walled Carbon Nanotubes (SWNT)
by Laser Vaporization

✦ High purity
✦ Exclusively 

SWNT

plume
target

nanotubes

growth rate?  where?  when?  how?
structure & chirality?

plume

ARSTM image of SWNT

HRTEM image of SWNTField Emission SEM of raw material

image by M. Guillorn

ovenoven

laserlaser

gas gas

metal catalyst cluster
M = Ni, Co, Fe...
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Mechanisms and general picture of SWNT growthMechanisms and general picture of SWNT growth

Iijima et al, J. Phys. Chem. 103, 6224 (1999)

Laser beam

C/Co/Ni target

Molten particles of C/Co/Ni

Nanotubes

Growth from ejected molten
particles

Liquid
metal 
cluster

Atomic 
carbon 
vapor

Nanotube

Vapor Liquid Solid 
mechanism

Carbon/metal vapor 

Carbon vapor
Metal clusters

Laser beam

Ni atom

Smalley et al, Science 273, 473 (1996)

Scooter mechanism

Fullerene nucleus growth model

Kataura et al, Carbon. 38, 1691 (2000)Geohegan et al, Fall MRS’99. APL 76, 182 (2000)

Laser 
beam

Carbon clustersCarbon/metal vapor 
Condensed phase conversion

Metal vapor

Nanotube 
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Laser Induced Fluorescence Imaging of Nanotube 
Growth Environment
Laser Induced Fluorescence Imaging of Nanotube 
Growth Environment
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Video camera imaging of C/Co/Ni plume during SWNTs growthVideo camera imaging of C/Co/Ni plume during SWNTs growth

target

2”-OD 
quartz tube
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Video camera imaging of C/Co/Ni plume during SWNTs growth

QuickTime™ and a DV/DVCPRO - NTSC decompressor are needed to see this picture.
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Shock wave and vortices confine and trap the ejected material in a small volume

Laser beam

Shock front Vortex
traps

ta
rg

et

Confinement Trapping
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Laser-Induced Emission Spectra of C/Co/Ni 
Plume at 1000° C During Nanotube Growth
Laser-Induced Emission Spectra of C/Co/Ni 
Plume at 1000° C During Nanotube Growth

Using 308 nm-laser-induced emission we can monitor ground state species of C3
and Co and probe carbon nanoparticles in the C/Co/Ni plume.
Using 308 nm-laser-induced emission we can monitor ground state species of C3
and Co and probe carbon nanoparticles in the C/Co/Ni plume.
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∆T is the temperature increase
due to the 308 nm-laser heating
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❐ First imaging of plume dynamics 
during SWNT growth by laser 
vaporization 
✦ Utilizes LIF-excitation
✦ Permits first estimates of growth 

rates. (with ex situ TEM).
❐ Spectroscopy gives plume 

composition, nucleation times.
✦ Reveals when/where nanotubes grow
✦ Spectroscopic imaging spatially 

locates different plume species

❐ First imaging of plume dynamics 
during SWNT growth by laser 
vaporization 
✦ Utilizes LIF-excitation
✦ Permits first estimates of growth 

rates. (with ex situ TEM).
❐ Spectroscopy gives plume 

composition, nucleation times.
✦ Reveals when/where nanotubes grow
✦ Spectroscopic imaging spatially 

locates different plume species

.

Imaging and Spectroscopy 
Diagnostics of SWNT Growth

Appl. Phys. Lett. 76, 182 (2000). Appl. Phys. A 70, 153 (2000).
Appl. Phys. Lett. 78, 3307-3309 (2001).  Phys. Rev. B 65, 245525  (2002).
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Spatially Locating Carbon Clusters and Cobalt Atoms in 
the Ablation Plume with Spectroscopic Imaging
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1ms, 9000 1ms,103392
2ms, 10461 2 ms, 16000

012 cm012 cm

200 µs, 9399

Carbon clusters
(blackbody continuum)

Cobalt Atoms
(350 nm)

• Integrated images give kinetic 
lifetimes

• Carbon converts to clusters very 
early (~0.2 ms at 1000 C) 

• Cobalt converts to clusters much 
later (~1.5 ms at 1000 C)
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After ∆t ~ 2 ms, nearly all species are condensed into clusters/nanoparticles

Condensed phase growth at extended times
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5 µs
C2*, C3*

1 ms
Co,

clustersPlasma and Laser 
Induced 
Luminescence 
Spectra of Different 
Species During 
SWNT Growth by 
Laser Ablation

2 ms
clusters

nanotubes

20 µs
C2*, C3*

50 µs
C2*, C3*,
clusters 20 ms

clusters
nanotubes

100 µs
C2*, C3*,Co,

clusters
1 s

clusters
nanotubes•Carbon converts to    

clusters very early (~ 
0.2 ms) 
•Co converts to 
clusters much later  (2 
ms)

200 µs
Co,

clusters Co
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Plume Temperature Measurements Inside the Propagating 
Microreactor
Plume Temperature Measurements Inside the Propagating 
Microreactor

0

2 104

4 104

6 104

8 104

1 105

1.2 105

450 500 550 600 650 700

Wavelength (nm)

C
ou

nt
s

t=1 ms
T=1488 oC

Toven=750oC

• Temperature vs. time
– From blackbody emission spectra
– At different positions and times

•The plume emission spectra were fitted  
with the Planck blackbody function

–Small particles: emissivity, ε~1/λ
–Large particles: ε~const.

Measured  blackbody emission spectra give particle temperatures
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How does the plume cool?How does the plume cool?
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• For Tamb.=1100oC a plateau is 
observed at T~2500oC in the 
time interval 0.3-0.7 ms

• The temperature of the plume  
approaches the ambient temperature
~ 4 ms after ablation

An exothermic process, probably formation of fullerene-like structures, keeps the 
plume temperature constant from 0.3 to 0.7 ms.

Similar plateau (in plume emission intensity) was observed by Y. Achiba et al.
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In situ absorption spectroscopy of carbon nanoparticles
Estimating Particle Size
In situ absorption spectroscopy of carbon nanoparticles
Estimating Particle Size

• Measuring extinction spectra, Qabs(λ,t)
– scattering
– absorption

• Estimate particle size from shape of 
extinction spectrum

– small particles: 2πa<0.3λ (λ=300 
nm)

for a<14 nm, Qabs(λ) ~1/λ
no size information

– larger particles
for a>14 nm, Mie theory for

spherical particles
Qabs(λ) sensitive to particle size

E.A. Rohlfing, J.Chem.Phys. 89, 6103 
(1988)
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The shape of the extinction spectrum gives an estimate of the particle size
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Extinction Spectra at Two Oven TemperaturesExtinction Spectra at Two Oven Temperatures
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• In the 1100°C oven aggregates remain 
< 20 nm in size up to 4 ms after ablation

• At 750°C oven temperature            
aggregates   have already reached 
80 nm in size by t=1 ms

Carbon nanoparticles aggregate much slower at higher temperatures
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General picture of SWNT growth by laser vaporization
based on spectroscopic diagnostics of ejected material
General picture of SWNT growth by laser vaporization
based on spectroscopic diagnostics of ejected material

SWNT grow over extended periods 
of time from a feedstock of aggregated 

clusters and nanoparticles -
condensed phase conversion

Growth rates 1-5 µm/s

Atomic/molecular vapor:
C, C2, C3, Ni, Co

Temperature oC

La
se

r 5x1016 carbon
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Carbon clust.,
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metal
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A. A. Puretzky et al, Phys. Rev. B 65, 245525  (2002).
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in situ Diagnostics
of Carbon Nanotube Growth by 

Chemical Vapor Deposition

- Growth of vertically-oriented
nanotube arrays
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Vertically-Aligned Carbon Nanotube Polymer Composites

• Vertically-aligned multiwall carbon nanotubes 
(VA-MWNT) grown by CVD over large areas 
– or selectively grown on lithographically-patterned catalyst 
films 

− Rapid growth to millimeters lengths
− Or controlled growth to precise lengths with in 

situ diagnostics (in the nanometers to microns 
regime)

− Alignment achieved for large diameter 
multiwalled nanotubes (MWNT) down to double-
walled nanotubes (DWNT)

• Infiltration of VA-MWNT with polymers for composites
− Methods developed to preserve alignment
− Young’s modulus significantly enhanced
− Increased oxidative thermal stability
− Electrical conductivity in 3D, dissipates static 

charge
− Enhanced thermal conductivity
− Embedded sensor structures
− Optically reflective coatings, optical filters

0.5 mm

10 nm50 nm

In situ reflectivity controlled-growth
HRTEM of DWNT

2 mm VA-MWNT in epoxy
I. N. Ivanov, A. A. Puretzky, D. B. Geohegan, G. Eres, M. A. Guillorn and J. Y. Howe

Macroscopic growth over large areas, or selective patterns

Work funded by NASA, DARPA, ORNL-LDRD
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Thermal Diffusivity of Epoxy-Infiltrated VA-MWNT
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I. N. Ivanov, D. B. Geohegan, A. A. Puretzky, S. Jesse, G. Eres, and J. Y. Howe, (in preparation).



OAK RIDGE NATIONAL LABORATORY
U.S. DEPARTMENT OF ENERGY

Growth of Aligned Nanotube Arrays –
from self-assembled templates

• Utilize self-alignment of nanotubes due to crowding 
and bundling to produce highly aligned fibers and 
monoliths

• Must produce high-densities of well-aligned catalyst
nanoparticles AND induce high nucleation fractions

• Thin metal catalyst film roughening
• Self-assembled ensembles pre-synthesized

nanoparticles
• Use of block copolymer templates to order pre-

synthesized nanoparticles
Catalyst self-assembly and nanotube growth

100 nm 200 nm

Roughening of thin metal catalyst film
(our work)Self-assembled, chemically-

synthesized nanoparticles - (Jie Liu)
Random and ordered block copolymer domains

(M. Dadmun, S. Fontana)
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Vertically-Aligned MWNT by CVD (+ SWNT)

• Grown using evaporated metal catalyst 
multilayer films - applicable to large areas 
Al(10nm)/Fe(1nm)/Mo(0.2nm)

• Ar/H2/C2H2 ~700C

• Grown to 4 mm lengths
• Wide temp. range for vertical 

alignment
• Multiwalled, 5 to 20 nm diameter
• Mixed with SWNT for T > 700 C

SWNT + MWNT

VA-MWNT

Al (10 nm)
Fe (1 nm)
Mo (0.2 nm)

D. B. Geohegan, A. A. Puretzky, I. N. Ivanov, S. Jesse, G. Eres, J. Howe
Appl. Phys. Lett. 83, 1851 (2003)
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In situ laser-interferometry, irradiation, and imaging during CVD

Detector

HeNe
Laser

B.S.

WaferRemote
Microscope

and Video Camera
Tube Furnace

Photodiode

Reflected Spot

QuickTime™ and a H.263 decompressor are needed to see this picture.

D. B. Geohegan, A. A. Puretzky, I. N. Ivanov, S. Jesse, G. Eres, and J. Y. Howe, Appl. Phys. Lett. 83, 1851 (2003)
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Reflectivity During Catalyst Pretreatment and Nanotube Growth
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The sharp transition in reflectivity during 
heat treatment of smooth catalyst film

D. B. Geohegan, A. A. Puretzky, I. N. Ivanov, S. Jesse, G. Eres, and J. Y. Howe, Appl. Phys. Lett. 83, 1851 (2003)
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Controlling the length of VAA-MWNT

• Reflectivity can be used to monitor 
and control the length of vertically-
aligned nanotube arrays

• Rapid evacuation of growth gas at 
predetermined lengths

• Can see growth stop.

• Can stop and restart growth of CVD 
grown “seeds”, as in LV.

• neffd=mλ/2        (λ=633 nm)575 °C

d ≈ 300±20 nm
neff ≈ 1.075, k=0.047
absorption coefficient, α ≈ 0.9•104 cm-1

D. B. Geohegan,  et al. Appl. Phys. Lett. 83, 1851 (2003)
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Modeling of experimental interference fringes
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Nb = 1.075+0.045i

εeff
1/ 3 = (1− p)ε1/ 3 + pεm

1/ 3,

where ε, εm are the dielectric functions
of carbon nanotubes (ε ~ 4), and the host
material (εm~1), p is the porosity (p~0.92) 

Porosity of VAA-MWNTs

Looyenga formula:

• Theoretical modeling of the measured interference fringes gives the effective 
complex refractive index of VAA-MWNTs.

• The effective media refractive index permits estimate of VAA-MWNT porosity.

A. A. Puretzky, D. B. Geohegan, I. N. Ivanov, S. Jesse, G. Eres, and J.Y. Howe (in preparation)
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Measuring VAA-MWNT growth rates
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Interference fringes in reflected light intensity permit array growth 
to be measured throughout the run

First direct kinetics information of nanotube growth during CVD

A. A. Puretzky, D. B. Geohegan, I. N. Ivanov, S. Jesse, G. Eres, and J.Y. Howe (in preparation)
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Time resolved reflectivity at different 
growth temperatures
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Interference fringes in the TRR signal provide the method for fast in situ
measurements of growth kinetics at different  temperatures

A. A. Puretzky, D. B. Geohegan, I. N. Ivanov, S. Jesse, G. Eres, and J.Y. Howe (in preparation)
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Temperature Dependence of VAA-MWNT Growth Rate

680780 600 530

SWNT
+

MWNT
MWNT

• Growth conditions: atmospheric pressure, 10 sccm C2H2, 400 sccm H2, 2000 sccm Ar.
• SWNT/DWNTs grow together with MWNT at T> 700 °C.
• The temperature range 750-800 °C corresponds to highly unstable growth conditions as 

growth modes transition to prefer DWNT/SWNT formation over MWNT.

A. A. Puretzky, D. B. Geohegan, I. N. Ivanov, S. Jesse, G. Eres, and J.Y. Howe (in preparation)
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Raman Spectra of Nanotubes vs. Growth Temperature˘
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The breathing and tangential 
modes in the Raman spectra 
show clear onset of SWNT/DWNT 
growth at T> 700 °C

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Nanotubes grown at 775 °C

A. A. Puretzky, D. B. Geohegan, I. N. Ivanov, S. Jesse, G. Eres, and J.Y. Howe in preparation.
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TEM images of carbon nanotubes grown at 
different temperatures
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575 oC 725 oC
• The number of walls in MWNTs decreases at higher temperatures
• Optimizing the growth temperature yields VAA-MWNTs with  a large fraction of DWNTs

D. B. Geohegan, A. A. Puretzky, I. N. Ivanov, S. Jesse, G. Eres, and J. Y. Howe, Appl. Phys. Lett. 83, 1851 (2003)
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Carbon Nanotube Growth Model
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• Simplified rate equation model - 5 rates
• Explains termination of growth 

• when surface of catalyst becomes 
covered with undissolved carbon

• Predicts ultimate lengths of nanotubes

A. A. Puretzky, D. B. Geohegan, I. N. Ivanov, S. Jesse, G. Eres, and J.Y. Howe (in preparation).
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Terminal Nanotube Length
Experiment vs. Model
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Good agreement between both model and experimentally-measured 
growth rate and terminal length over a range of temperatures

A. A. Puretzky, D. B. Geohegan, I. N. Ivanov, S. Jesse, G. Eres, and J.Y. Howe (in preparation).
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VAA-MWNT Arrays grown at 730°C

0.5 mm

D. B. Geohegan, A. A. Puretzky, I. N. Ivanov, S. Jesse, G. Eres, and J. Y. Howe, Appl. Phys. Lett. 83, 1851 (2003)
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Determining CVD Growth Mode 
using Laser Ablation
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Mechanisms of VAA-MWNT Growth

• Growth Mechanism?
− Tip or base?
− Uniform lengths
− Coordinated tip 

growth?

• Laser ablation answers 
the question...
− with in situ 

photography of
nanotube growth

Tip Growth Experiment

Laser Pulses

SEM - uniform lengths HRTEM - particles at tips and bases

Base Growth

D. B. Geohegan, A. A. Puretzky,  (in preparation)
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Time-Lapse Photography of Nanotube Growth - with laser ablation

QuickTime™ and a DV/DVCPRO - NTSC decompressor are needed to see this picture.
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Carbon Nanotube “Monolith”

Si wafer thickness is 380 µm
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Summary

• Laser Synthesis of SWNT
− Growth rates measured – 1-5 µm/s ... for 0.2 g/hour production rates
− Factor of 1000 improvement in both growth rate and production rate possible 

at high laser powers
• Chemical vapor deposition of VAA-MWNT

− First direct in situ measurements - up to 1 µm/s measured
− Sustained at rates of 0.3 µm/s to 4 mm lengths over large areas
− Length monitored and controlled (to 20 nm accuracy) using laser

interferometry
− Time-resolved imaging and laser ablation used to understand growth 

mechanism, kinetics, and termination
− Growth to long lengths sensitive to catalyst composition
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