LIPSS* and dark matter

*LIGHT PSEUDOSCALAR BOSON SEARCH

K. McFarlane
Hampton University
8-Mar-2006
for the LIPSS collaboration

Supported by the National Science Foundation
Participants

Currently:
O.K. Baker, K.W. McFarlane, A. Afanasev (Hampton University)
J. Boyce, G. Biallas, and M. Shinn (Jefferson Lab)
Still developing.

Thanks to Mike Kelley, George Neil, Joe Gubeli, Gwyn Williams, Fred Dylla, and many others for useful discussions and help. The mistakes are my own.
Outline

• An experiment (PVLAS collaboration) has observed an unexpected effect
• Interpretation in terms of a new particle – a light pseudoscalar boson, axion-like.
• A candidate for dark matter
• Conflict (or not) with other experiments
• Testing this with the JLab FEL: the LIPSS collaboration’s ideas.
The PVLAS experiment

- This experiment (E. Zavattini et al., arXiv:hep-ex/0507107, 26-Oct-2005 and 0512022) measures, with a beam of linearly polarized laser light in a magnetic field in a vacuum:
 - Rotation of the plane of polarization, and
 - Production of ellipticity
- A positive effect is observed, greater by four orders of magnitude than expected from QED
- Other experiments bear on this question.
The PVLAS experiment

Magnet: 5T, 1m dipole
Crossed polarizers
FP cavity, finesse: ~ 60,000
Ellipticity modulator
1/4 – wave plate
Laser: 1064nm 0.1W Nd:YAG CW

The magnet is rotated at 0.3 rev/s, ellipticity modulated at 506 Hz.

The photodiode detects the polarization rotation signal which is Fourier analyzed for components at appropriate frequencies.
A polarization rotation signal at twice the magnet rotation frequency is observed. The phase of the polarization rotation is correct for it being produced by absorption of the component parallel to the magnetic field.
PVLAS interpretation

- The rotation of the plane of polarization is due to absorption of the component parallel to the magnetic field.

\[
\varepsilon = -\sin 2\theta \left(\frac{BL}{4M_b} \right)^2 N \left[\sin \left(\frac{m_b^2 L}{4\omega} \right) \right]^2
\]

\[
\alpha = \frac{\varepsilon_0}{N} = (3.9 \pm 0.5) \times 10^{-12} \text{ rad/pass}
\]

- The absorption is attributed to the production of a light pseudoscalar boson (PSB) with a specific relation between the boson mass \(m_b\) and its coupling \(g = 1/M_b\) to two photons. Pseudoscalar because effect is proportional to \(E \cdot B\).
PVLAS interpretation (2)

• The diagram for the absorption process is:
 \[\text{photon} \rightarrow \text{real PSB} \]

• For the production of ellipticity:
 \[\text{virtual PSB} \]
 \[\text{photon} \rightarrow \text{photon} \]

• For regeneration:
 \[\text{real PSB} \]
PVLAS result for boson properties

This result comes from the measured rotation of the polarization

Figure 1 – Raw PVLAS result for M_b vs m_b.

$PVLAS$ coupling scale M_b vs m_b

M_b (GeV)

1.0×10^4

1.0×10^5

1.0×10^6

m_b (meV)

0.1

1

10

lower

upper
The BFRT experiment

- The Brookhaven-Fermilab-Rochester-Trieste collaboration carried out all three searches:
 - Rotation of polarization AND ellipticity (Cameron et al., Phys.Rev.D 47, 3707 (1993))
 - Regeneration of photons (G. Ruoso et al., Z. Phys. C56, 505 (1992))
BFRT regeneration

CBA magnets, ~200 reflections of 1.5W, 514nm laser.

Lower limit of M_b is plotted vs. m_b
Coupling scale M_b vs particle mass m_b

- PVLAS_lower3s
- PVLAS_upper3s
- BFRT_rotat3s
- BFRT_ellipticity3s
- BFRT_regen3s
Result is a PSB with $1 < m_b < 1.5$ meV, and 2×10^5 GeV $< M_b < 6 \times 10^5$

This is a new and unexpected combination not in the Standard Model and not predicted.
Why the interest?

- A particle with similar properties, the axion, was proposed by Weinberg and Wilczek from violation of PQ symmetry (R.D. Peccei and H.R. Quinn, Phys.Rev.Lett 38, 1440 (1977)) to solve the ‘strong CP’ problem.

- Non-perturbative effects related to the vacuum structure of QCD lead to a CP-violating term in $L_{QCD} : L_\theta = \frac{\alpha_s}{2\pi} \sqrt{\theta G \tilde{G}}$

- This would give the neutron an observable electric dipole moment unless $\theta < 10^{-10}$.
The PQ & WW solution

- Add a new symmetry, U(1)$_{PQ}$ to the SM, that drives θ to near zero, resulting in a new particle, the axion, and a new mass scale F_{PQ}.
- The mass m_a is $\propto 1/F_{PQ}$
- Cosmological constraints give
 \[10^{10} \text{GeV} < 1/F_{PQ} < 10^{12} \text{GeV} \]
 \[6 \times 10^{-6} \text{eV} < m_a < 6 \times 10^{-3} \text{eV} \]
- $m_a F_{PQ} \sim 0.1 \text{ GeV}^2$
- The mass range encompasses the PVLAS result, but the coupling scale does not: $m_b M_b \sim 10^{-7} \text{ GeV}^2$
- Other couplings are very small – the axion is neutrino-like in that regard.
More on axions

- The theory has developed (see, e.g., the PDG reviews, pdg.bnl.gov) and modifications have been proposed.
- While other models have different couplings to other fields, they all have the two-photon coupling.
- Axions could be produced during early part of the Big Bang – there are cosmological constraints – and could be part of the dark matter.
- Axions affect stellar evolution, can be a significant contribution to stellar energy loss.
What is the impact?

- Axions, or axion-like particles, could solve two important problems:
 - The strong-CP problem
 - The dark-matter problem
- High importance in particle physics and cosmology.
Many searches for axions

- The CAST collaboration (e.g., K. Zioutas et al., PRL 94, 121301 (2005)) looked for axions from the sun and is upgrading.
- The ADMX collaboration (Kinion, IDM2004) is upgrading its microwave experiment to search for relic axions.
- PVLAS is upgrading, and running with new configurations ($\lambda \sim 500$ nm, etc.).
- Lab searches are proposed at HERA and with the under-construction VUV FEL at DESY (A. Ringwald, TAUP 2005).
CAST experiment

Differential Axion Spectrum

Axion Flux at Earth

- Bahcall et al. 2004
- Bahcall et al. 1982

Mean energy: $< E > = 4.2$ keV

Axion Luminosity:

$$L_a = 1.9 \times 10^{-3} L_\odot$$

Axion flux: $\Phi_a = 3.8 \times 10^{11} \text{ cm}^{-2} \text{s}^{-1}$

Uses LHC prototype dipole, looks for axions from the sun regenerating photons in the x-ray region. K. Zioutas et al., PRL 94, 121301 (2005)

Has seen no effect
M. Kuster, 2005. $g = 1/M$ is plotted to compare a wide of results.

The PVLAS result is not even in the range of the plot!
Microwave experiment

Has seen no effect
A summary

From Ringwald (2005)
Why the apparent disagreement?

- Note that only two experiments listed are pure laboratory experiments – BFRT and PVLAS
- The others all look for astrophysical effects
- Maybe axions, or light pseudoscalar bosons, have unexpected properties (remember the ‘solar neutrino problem’)
- Important to confirm or refute the PVLAS result.
Regeneration experiment

1. A photon beam passes into a magnetic field
2. Particle amplitude (orange) builds up
3. A wall stops photons, but the particle ‘beam’ passes into magnet 2
4. The particle amplitude creates increasing photon amplitude in the magnetic field
5. A detector measures the photon flux.
Regeneration coupling mass scale

\[M_b = \sqrt{\left(\frac{1}{2} B_1 l_1 \frac{\sin(y_1)}{y_1}\right)} \sqrt{\left(\frac{1}{2} B_2 l_2 \frac{\sin(y_2)}{y_2}\right)} \sqrt{W \eta / R} \]

- \(B_1 l_1 \) the magnetic field and length of PSB generation region;
- \(\left| \frac{\sin(y_1)}{y_1} \right| \), where \(y_1 = \frac{m_b^2 l_1}{4 \omega} \), is the reinforcement, or diffraction-like, term;
- \(W \) is the photon rate, \(\eta \) the overall efficiency, and \(R \) the measured rate.
The Jefferson Lab FEL has many properties which make it unique as a source to probe this mass range, including:

- High average power, required to give the required signal rate
- Stable operation, allowing data collection over extended periods
- Low-emittance beam, useful to separate signal from background
- Bunched beam, also useful to reduce background
- Coherence between bunches, that may be useful to determine axion parameters
- High polarization, necessary to enhance the polarization-dependent production
- Tuneability, to explore effect of different photon energies
- Infrastructure, to support high-field magnets, and other experimental requirements.
An optical cavity between the mirrors stacks pulses from the FEL. 'Axions' are produced in the generation magnet, travel through the mirror and wall and produce photons, in the regeneration magnet, that are focused on the detection system. Re-arranging the equation in slide 25:

\[R = \frac{1}{16M_b^4} B_1^2 l_1^2 \left[\frac{\sin(y_1)}{y_1} \right]^2 B_2^2 l_2^2 \left[\frac{\sin(y_2)}{y_2} \right]^2 W \eta Q \]
LIPSS tentative layout
Tentative parameters

Parameters and rates

<table>
<thead>
<tr>
<th>Wavelength</th>
<th>In-cavity power</th>
<th>Magnet 1 integrated field</th>
<th>Magnet 2 integrated field</th>
<th>Detector</th>
<th>Q.E.</th>
<th>Signal rate for $m_b = 1 \text{ meV}, \quad M_b = 5 \times 10^5 \text{ GeV}^*$</th>
<th>M_b reached in 4-hour run at 5σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1064nm</td>
<td>100kW</td>
<td>2 T·m</td>
<td>2 T·m</td>
<td>CCD</td>
<td>0.1</td>
<td>0.3 s$^{-1}$</td>
<td>$7 \times 10^5 \text{ GeV}$</td>
</tr>
<tr>
<td>532nm</td>
<td>10kW</td>
<td>2 T·m</td>
<td>2 T·m</td>
<td>PMT-MCP</td>
<td>0.12</td>
<td>0.02 s$^{-1}$</td>
<td>$9 \times 10^5 \text{ GeV}$</td>
</tr>
</tbody>
</table>

Detectors

<table>
<thead>
<tr>
<th>Detector</th>
<th>Pixel size or resolution</th>
<th>Timing resolution (FWHM)</th>
<th>Dark rate</th>
<th>Read noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamamatsu CCD</td>
<td>$24 \times 24 \mu\text{m}$</td>
<td>None</td>
<td>0.6 e$^-$/pixel/s</td>
<td><12 e$^-$/pixel/s</td>
</tr>
<tr>
<td>Quantar PMT-MCP</td>
<td>$\sim 55 \times 55 \mu\text{m}$</td>
<td>100ps</td>
<td><0.001 s$^{-1}$</td>
<td>0</td>
</tr>
</tbody>
</table>
The LIPPS_A line is the upper limit for a 4-hour run with 10kW of 532nm light.
Backgrounds

• Intrinsic detector rate
 – Photocathode emission
 – Radioactive components
 – Leakage currents

• Thermal radiation (IR detector)

• Stray light

• Cosmic rays in detector and components

• Radiation from FEL in detector and components (lenses, mirrors, fibers)
Background reduction tools

- Optical characteristics of photons
 - Very small emittance – can be focused to a small spot (few µm)
 - Polarization parallel to magnetic field
 - Precise wavelength
 - Coherent with original and successive bunches
- Precise timing, ~150 fs
- Single photon events
- Signal proportional to magnetic field
Emittance

• This can be exploited in two ways:
 – Small detector or aperture to a larger detector
 – Use of an imaging device (a ‘picture’ of the PSB beam would be very convincing)
• First method does not affect intrinsic noise, only photon noise from outside detector.
• Regenerated light could be collected by a fiber.
• For imaging detector, assume that beam is focused to pixel size so that intrinsic noise from a limited number of pixels (1 or 4) is relevant
Polarization, wavelength

- A polarization filter could reduce external background light by 2, but would also reduce signal.
- A rotating polarization filter could be used to modulate signal.
- A bandpass filter would reduce external light by a large factor; would also reduce signal.
The FEL beam runs at an integer fraction of 75MHz ($t = 13.33$ ns) bunch spacing.

A stacker can also run at 75MHz, or an integer fraction.

A detector with timing and appropriate DAQ can reduce background by a factor of $2.34*\sigma_t/t$ while retaining $\sim 75\%$ of signal.
Types of detectors

- Single photon counters
 - Photocathode+multiplier
 - K+ dynodes
 - K + MCP w/position sensing
 - Avalanche photodiode (APD)
- Integrating devices (also imaging)
 - Si CCD
 - HgCdTe (MCT) array
A figure of merit

\[s = \text{signal rate} \quad n = \text{noise/background rate} \]

\[t = \text{run time} \quad t = \text{run time} \]

\[S = st, \text{signal counts} \quad N = nt, \text{background counts} \]

Want \(S/\sqrt{N} \geq 5. \)

\[s = 5 \sqrt{\frac{n}{t}} \]

With \(\eta_D \eta_A = \text{detector} \times \text{analysis efficiency} \),

\[R = \frac{s}{(\eta_D \eta_A)}, \text{FOM relative to PVLAS is} \]

\[X = 2.5 \times 10^{-6} \sqrt{F_1 F_2} \sqrt{W}^{1/4} \eta^{1/4} \eta_A^{1/4} \eta_D^{1/4} n^{-1/8} t^{1/8} \]

Remembering that the magnet factors \(F_1 \) and \(F_2 \) go as the square root of \(Bl \), they are the most powerful tool.
What can give a null result?

• The PVLAS effect could be a systematic effect, although the collaboration has spent ~5 years understanding their systematics

• The PSBs or axions may have other properties – for example, there may be a family of such objects that oscillate like neutrinos and are undetectable in a regeneration experiment. This would be interesting!
Conclusion

• The JLab FEL and its unique characteristics open a window of opportunity to contribute to important problems in particle physics, astrophysics, and cosmology.

• Even if some calculations are optimistic (usually the case!), the LIPSS approach has the flexibility to succeed.