SOMMARY

S,

) 10 ] .
cold Py Be (s cncowsistewt weZd Afﬁe

, é
new'  afe  => WSCI7  apodel; s M hued?

NSC? model => .s*f-ray 4/09?04-/;900{0* fJotees

— ‘ A Y 6 -
onsef of = smucdear .rfa!)-‘(/ cs Ai‘ﬁe (4:-6"()

.cf-mage /MAM ‘c Ma ffc-t : ,u(ase traver€iom /roow

VA= phase £ NEEZ phase

Moee exfe-rchvem‘a(r'ow ’s meeck/_, extewsicw

A Aoth E223 (approved T AEs for 2004fc)

and E906 ( also approved uceuf/y),
Will Yere Ae any mew data ge/ne JHF 2




Particle fraction

Binding energy per A (MeV)

,/’7nodel1
o0 L T T~ .
XA:‘XEZXE.
~40 | |
model N
equil .-
SU(3) extensiom a{
—60 1 NSc(97) N
i S‘cé%qef - @q/ (PRC.' 42000)
TM1
10 = | :
\\ /
| ~ N model NS¢ 97 '
0.8 }F . — -
\\\\ ://
RS /
. /
0.6 | N / -
\\\ /
\‘ /
//\‘. 7
0.4t S \ /,/’ - :
/ -~
/ N
/ \
02} ,A_ Ve 2\
,/ / ™ e \\
:/ // \‘“-.‘ X
0.0 /, 1 L "".1 N g
0.0 0.5 1.0 1.5

strangeness fraction f

2.0



1.0

I a_f/ v | ) )
~
|~
| > S
| /// .
R ~ - 4 %
| | N S
IIIII “ // —
ke \ q_um
_ N i 1 ©
| -~ o ) S =
| N / a
| \ / >
_ N / =
R N | 1 \\ i 4 dp)
I (-] -
| \\\_\\ %
e
4 gV
— 1 1o
{ i M 1 1 I 1 [ O
o
o o o o o O =) o o o o o
oY — — 9__ Q_u <Q\ — i 9__ ow

(AOWN) V 1od ABisus Buipuig A>m_>_v v 4ad Abiaus Buipulg




Phve 59 (’I‘?‘?‘?) 2/
P%}’S' Re\/ C ,,{ faf 41‘-!0[0 d am/ -9?!:'9 Jefe«a’ﬂﬁn

G x| ﬁ £ . F
\EARTEENL e ¢ ADP 98-37-T310

L Az et g

Soft-core hyperon—nucleon potentials (’Moﬁ&!ﬁ )

Th.A. Rijken
Institute for Theoretical Physics, University of Nijmegen, Nijmegen, The Netherlands

V.G.J. Stoks
Physics Division, Argonne National Laboratory, Argonne, Illinois 60439
and Centre for the Subatomic Structure of Matter, University of Adelaide, SA 5005, Australia

Y. Yamamoto
Physics Section, Tsurvu University, Tsuru, Yamanashi {02-0054, Japan

0

Abstract

model NSca7

A new Nijmegen soft-core OBE potential model is presented for the low-
energy ;Z! interactions. Besides the results for the fit to the scattering data,
which largely defines the model, we also present some applications to hyper-
nuclear systems using the G-matrix method. The potentials are generated by
the exchange of nonets of pseudoscalar, vector, and scalar mesons. As stan-
dard in the Nijmegen soft-core models, we also include the J = 0 contributions
from the tensor f;, f;,a2 and pomeron Regge trajectories, and use Gaussian
form factors to guarantee that the potentials have a soft behavior near the ori-
gin. An important innovation with respect to the original soft-core potential
is the assignment of the cut-off masses for the baryon-baryon-meson (BBM)
vertices in accordance with broken SU(3)F, which serves to connect the NN
and the YN channels. As a novel feature, we allow for medium strong break-
ing of the coupling constants, using the Py model with a Gell-Mann-Qkubo
hypercharge breaking for the BBM coupling. Charge-symmetry breaking in
the Ap and An channels is included as well. We present six hyperon-nucleon
potentials which describe the available YV cross section data equally well,
but which exhibit some differences on a more detailed level. The differences
are constructed such that the models encompass a range of scattering lengths
in the ZN and AN channels. In all cases, we obtained XQZNdata 0.55 for or 35
YN data. In particular, we were able to fit the precise experimental datum
rR "0.468+0.010 for the inelastic capture ratio at rest. For the scalar-meson
mixing angle we obtained values fg = 37°-40°, which points to almost ideal
mixing angles for the scalar ¢ states. The G-matrix results indicate that the
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Figure 1: The binding energy of several SHM species vs. the strangeness fraction f,:lg!/ A
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“igure 2: The binding energy of several SHM species vs. the charge fraction fo=Z/A.
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FIGURE 4. Calculated level scheme of £Hand $.He hypernuclei.

[18], does not resolve this incompatibility. Adding_}a\B [9] as input does not alleviate
it either, since the possibility of unobserved y deexcitation camnot be dismissed also for
this species, while on the theoretical side the analysis of B\B in terms of a few-body
cluster is more dubious than for the lighter AA species.

- Discarding past history of this emulsion experimentation for AA hypernuclear events
identified as heavier than AGAHe, because of the ambiguities mentioned here, one remains
with the very recent report from the KEK E373 experiment [14] which claims to have
identified uniquely AGAHe, with ABaa ~ 1 MeV. No particle-stable excited states are
possible for this species or for its A hypernuclear core %He, s0 this event - if confirmed
- should be taken as the most directly relevant constraint on the AA interaction.

Moreover, ,fAHe is also ideally suited for three-body cluster calculations such as the
Faddeev equations here solved for the aAA system. Using s-wave soft-core AA poten-
tials that simulate several of the Nijmegen AA interaction models, we have shown that
model NSC97 is the only one capable of coming close to the observed binding, short by
about 0.5 MeV of the new value [14]. In fact, we estimate the theoretical uncertainty of
our Faddeev calculation for AGAHe as bounded by 0.5 MeV, and such that the precisely
calculated binding energy is larger by a fraction of this bound than the ABpA values
shown in Table 4. Taking into account such possible corrections would bring our cal-
culated ABA, values to within the error bars of the reported ABpp value. There are two
possible origins for this theoretical uncertainty, one is the restriction to s-waves in the
partial-wave expansion of the Faddeev equations, excluding higher ¢ values; the other
one is ignoring the off-diagonal AA — =N interaction which admixes = components
into the AGAHe wavefunction. Both effects have been tested in several previous calcula-
tions and found small. For example, a recent work by Yamada and Nakamoto [37] using
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*H C18.74 —20.99 - 225  3&=
AH* 18.09 —21.20 - 2..2 3.
*H 2070 —22.30 -1.59  5.54

arH(aaa =—0.77fm) 22.28 —23.17 ~0.8% 3.34
anH(aan=—28fm) 24.73 -24.55 0.18 .08

TABLE I: Energy. expectation values of kize si- (1
tential (Van) terms, and the sum of these .persies (
the pn subsystem, in units of MeV. The tms 4; -ance
a proton and a neutron, or between a nucleva and a A
listed, in units of fm. The spin-triplet prn and NS
AN potentials, taken from Ref. [1], were used.

BARGH) Ba(AH) Ba(iH")
NSCO7H(FG) 0.24 2.69 1.99
Set A 0.18 2.24 L4
Experiment _0.13 +0.05 2.04 +0.0a 1.00 4 0.

TABLE II: A separation energies, given in units of I
A = 3,4 single-A hypernuclei. The Minnesota NN p
was used.
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What Does Free Space AA Interaction Predict for AA Hypernuclei?

C. Albertus,’ J.E. Amaro,! and J. Nieves!
! Departamento de Fisica Moderna, Universidad de Granada, E-18071 Granada, Spain

Data on AA hypernuclei provide a unique method to learn details on the strangeness § = —2
sector of the baryon-baryen interaction. From the free space Bonn-Jiilich potentials, determined
from data on baryon-baryon scattering in the $ = 0, —1 channels, we construct an interaction in the
S = —2 sector to describe the experimentally known AA hypernuclei. After including short-range
(Jastrow) and RPA correlations, we find masses for these AA hypernuclei in a reasonable agreement
with data, taking into account theoretical and experimental uncertainties. Thus, we provide a
natural extension, at low energies, of the Bonn-Jiilich OBE potentials to the § = —2 channel.

PACS numbers: 21.80.4a,13.75.Cs, 13.75.Ev,21.10.Dr,21.45+v,21.60.J2

I. INTRODUCTION

In the past years a considerable amount of work
has been done both in the experimental and the the-
oretical aspects of the physics of single and double A
hypernuclei {1]. Because of the lack of ‘targets, the
data on AA hypernuclei provide a unique method to
learn details on the strangeness $ = -2 sector of
the baryon-baryon interaction. Ground state energies
of three (the production of 4 H has been recently re-
ported [2]) AA hypernuclei, 3 He, 1% Be and 13 B, have
been measured. The experimental binding energies,
Bama=-[M@Y¥z)-M (42) - 2m, ], are reported in
Table I. Note that the ,5 He energy has been updated
very recently [3] in contradiction to the old one, Bop=
10.9£0.8 MeV [7]. The scarce hyperon-nucleon (Y N)
scattering data have been used by the Nijmegen (NJG),
Bonn-Jiilich (BJ) and Tiibingen groups [1] to determine
realistic YV and thus also some pieces of the YY inter-
actions. In Ref. [8] an effective AA interaction, with a
form inspired in the One Boson Exchange (OBE) BJ po-
tentials [9], was fitted to data, and the first attempts to
compare it to the free space one were carried out. Simi-
lar studies using OBE NJG potentials [10] have been also
performed in Ref. [11] and the weak decays of double A
hypernuclei have been studied in Ref. [12]. Short Range
Correlations (SRC) play an important role in these sys-
tems (8], but despite of their inclusion the effective AA
interaction, fitted to the AA—hypernuclei data, signifi-
cantly differs from the free space one deduced in Ref. [9]

+ 20 e

N o ./
A /cm Oa:0x:

FIG. 1: Diagrammatic definition of V{74

from scattering data. In this letter we consider the new
datum for He and, importantly, the effect of the long
range nuclear correlations (RPA) is also incorporated.
Starting from the free space BJ interactions, we find a
good description of the masses of He, Be and B AA hyper-
nuclei. This has never been achieved before despite the
use of different AA free space interactions [13]. The BJ
set of potentials used here and the new NJG (NSC97e,b
(10]) interactions are similar in shape, though the lat-
ter ones are shifted around 0.2 fm to larger distances as
compared to the BJ potentials. Due to the difficulty of
including RPA effects in NJG models and since both sets
of interactions give sitnilar energies in absence of nuclear
effects, in this work we have used BJ-type potentials.

Ii. MODEL FOR AA HYPERNUCLEI

A. Variational Scheme: Jastrow type correlations

Following the work of Ref. [8], we model the AA hy-
pernuclel by an interacting three-body AA+nuclear core
system. Thus, we determine the intrinsic wave~function,
@A A(71,73), and the binding energy Baa, where 1,2 are
the relative coordinates of the hyperons respect to the
nucleus, from the intrinsic Hamiltonian.

H= hsp(l) + hsp(2) + VAA(]., 2) - 61 - 62/MA (1)

where hop(i) = =V?/2u4 + Vas(I7i]), Ma and py are
the nuclear core and the A-core reduced masses respec-
tively. The A-nuclear core potential, Va4, is adjusted to
reproduce the binding energies, Bp (> 0), of the corre-
sponding single-A hypernuclei (8], and Vx, stands for
the AA interaction in the medium. Due to the pres-
ence of the second A a dynamical re-ordering effect in
the nuclear core is produced. Both the AA free interac-
tion and this re-ordering of the nuclear core, contribute
to ABaax = Baa — 2B5. However, the latter effect is
suppressed with respect to the former one by at least
one power of the nuclear density, which is the natural
parameter in all many body quantum theory expansions.
We assume the nuclear core dynamical re-ordering effects
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Abstract

The detailed analysis is presented of an event which is intcrprcted as the mesonic cascade decay of
# Juubie hyperfragment prodaced b+ the - apuure of & 7 by eron on a light emulsion nucleus The
-t likely interpretations . the - oubie ™ verfregmen. ¢ se i terms of enth\,rAABc orA
11
ABC . _
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