High-resolution γ-ray spectroscopy of hyperfragments produced by stopped K$^-$ method

aDepartment of Physics, Kyoto University
bRIKEN(The Institute of Physical and Chemical Research)
cDepartment of Physics, Tohoku University
dBrookhaven National Laboratory
eLaboratory of Physics, Osaka Electro-communication University
The purpose of γ-ray spectroscopy of hypernuclei

- Precise measurement of the level structure information of spin-dependent ΛN interaction
- Impurity nuclear physics induced by Λ shrinkage of nuclei
- Medium effect of baryons

But, in these experiments where $(\pi^+, K^+), (K^-, \pi^-)$ reactions were used, a beam time of more than one month is necessary for each target. The systematic study of hypernuclei is difficult within a reasonable beam time.
For the systematic study of hypernuclei

stopped K⁻ method and Hyperball

- hypernuclei are produced abundantly (8%/stopped k)
- various species of hypernuclei are produced
- neutron (proton) rich hypernuclei

There is a chance to observe many γ rays from various hypernuclei in one experiment

Some difficulties

Many background → good energy resolution of germanium detector
Identify of γ ray → γ−γ coincidence method

We want to show this method is suitable for γ-ray spectroscopy, and make great progress to the γ-ray spectroscopy of hypernuclei
E509 Experiment

KEK 12GeV PS
K5 beam line
650MeV/c K^-beam
K^- ・・・ 14k/spill
π/K ・・・ 160

K beam = B1 × B2 × B3 × (LC2 + LC3)
Stop K = K beam × \text{FV}

γ-d detector ・・・ Hyperball
trigger = stop K × Σ(Ge×BGO)
Target

\[^7 \text{Li}, ^9 \text{Be}, ^{10} \text{B}, ^{11} \text{B}, ^{12} \text{C} \]

To see the target dependence of γ–ray yield

Target dependence? \[\rightarrow \] \[\gamma \text{ ray from others} \]

Yes
\[\gamma \text{ ray from target} \]

From normal nuclei \((A \leq 12)\)?

No

Candidate of hypernuclei
Many γ rays were observed

<table>
<thead>
<tr>
<th>$E_γ$ (keV)</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>1302</td>
<td>9Be 10B 11B</td>
</tr>
<tr>
<td>2049</td>
<td>10B 11B 12C</td>
</tr>
</tbody>
</table>

γ-ray spectrum

The γ-ray spectrum shows a variety of peaks corresponding to different energy levels. The table lists the energies of observed γ rays and their corresponding targets, highlighting the specificity of these interactions.
$^7\lambda$Li$(5/2^+ \rightarrow 1/2^+$) E2 transition

We succeeded in clear observation with stopped K- method for the first time!
$^7\text{Li}(5/2^+ \rightarrow 1/2^+)\text{E2 transition}$

$E_\gamma = 2049.4 \pm 0.3 \pm 0.5 \text{ keV}$

Peak Count = $516 \pm 74(^{10}\text{B})$

$E419$ (In-flight reaction)
Peak Count = 197
beam time = 1 month

2.5 times more statistics within 3.5 days beam time

γ-ray intensity of $^7\Lambda\text{Li}$
$\text{E2}(5/2^+ \rightarrow 1/2^+)$ transition

$0.075 \pm 0.016\% / \text{stopped } K^- (^{10}\text{B})$

production mechanism of hyperfragment
Another candidate

We observed an unknown γ ray in 9Be, 10B, 11B target.

$E_\gamma=1302.9 \pm 0.6$ keV

8Li or 9Li ??
Possibility of $\gamma-\gamma$ coincidence

Cascade of $^7\Lambda$Li($7/2^+ \rightarrow 5/2^+ \rightarrow 1/2^+$)

- This experiment
 It was impossible because of low efficiency of germanium detector caused by BGO pile-up trouble.

From the background level measured in this experiment, we conclude that $\gamma-\gamma$ coincidence becomes possible by improving the photo-peak efficiency. This improvement can be realized by adjusting beam condition. Furthermore the upgraded Hyperball having large photo peak efficiency is now under development.
Summary

- We performed an experiment to measure γ ray from hyperfragment produced by stopped K^- method at the KEK K5 beam line. We employed Hyperball as γ-ray detector.
- We clearly observed $^{\Lambda_7}\text{Li} E2(5/2 \rightarrow 1/2^-)$ transition by stopped K^- method for the first time, and obtained that the γ–ray intensity is $0.075 \pm 0.016 \%$ per stopped K^-.
- From the result of this pioneering experiment, we conclude γ–γ coincidence become possible by improving photo-peak efficiency.
- This method is promising for the systematic study of γ-ray spectroscopy of hypernuclei.
ΛN interaction

Effective potential of ΛN interaction

\[V_{ΛN} = V_0 + V_s(r)\vec{s}_Λ \cdot \vec{s}_N \]

- Spin-spin interaction

\[+ V_Λ(r)\vec{L} \cdot \vec{s}_Λ \]

- Spin(Λ) orbit force

\[+ V_N(r)\vec{L} \cdot \vec{s}_N \]

- Spin(N) orbit force

\[+ V_T\left(\frac{3(\vec{s}_Λ \cdot \vec{r})(\vec{s}_N \cdot \vec{r})}{r^2} - \vec{s}_Λ \cdot \vec{s}_N\right) \]

- Tensor force

Our experiment

- E419 (⁷ΛLi)
- E930 (⁹ΛBe)
- E930 (¹⁶ΛO)

But, in these experiments where (π⁺,K⁺),(K⁻,π⁻) reactions were used, a beam time of more than one month is necessary for each target. The systematic study of hypernuclei is difficult within a reasonable beam time.
There is a broad peak in the expected energy Region (~ 1100 keV),
we cannot recognize the target dependence.
Analysis of BGO

BGO occurred pile-up due to high intensity of beam, almost attributed π^-. We can reject such event by offline analysis.

The points to be improved

We can reject such event by offline analysis.
Estimation of stopped K^+ event

About 63% of K^+ stopped in T_1, carbon, and T_2.

Decay after the life time

By detecting the charged particle after the decay of K^+

$\tau = 12.9$ (nsec)
生成されるハイパーオープメントのターゲット依存性を考慮

Target

$^{7}\text{Li}, ^{9}\text{Be}, ^{10}\text{B}, ^{11}\text{B}, ^{12}\text{B}, \text{C}$
Comparison of ^{10}B and ^7Li

Division of ^{10}B and ^7Li

- ^{10}B (414keV)
- ^7Li (477keV)
- ?? (472keV)
- ^{10}B (718keV)
γ-ray spectroscopy of Li_7^Λ

Hyperball初めての実験
基底状態の2重項の間隔
ΛNのスピン・スピンカ
Identification of K^-

used B2 ADC and LC1 ADC

There were many pile-up event of K^- and π^-

We used only K^- event (not pile-up) for analysis
Hyperball

- 14 set of germanium detector
- Large solid angle (15%)
- 3% photopeak efficiency for 1MeV γ ray
- 4.2keV (FWHM) @ 717keV

BGO counter

Suppress of background from Compton scattering and π^0

Figure 4: Schematic drawings of Hyperball.