HDice, the Polarized Solid HD Target in the Frozen Spin Mode for Experiments with CLAS

Xiangdong Wei
Thomas Jefferson National Accelerator Laboratory

The 20th INTERNATIONAL SYMPOSIUM on Spin Physics (SPIN2012)
JINR, Dubna, Russia
September 17 - 22, 2012
Collaborators

- Jefferson Lab

- Universita di Roma “Tor Vergata” and INFN-Sezione di Roma2
 A. D'Angelo

- University of Virginia
 C. Hanretty, P. Peng

- Carnegie-Mellon University
 D. Ho

- Norfolk State University
 M. Khandaker

- Blaise Pascal University
 V. Laine

- University of Connecticut
 T. O'Connell

- Catholic University of America
 N. Walford

- and the CLAS Collaboration
Topics

• How the HDice target works
• Target Production
• Performance of HDice target
• γ+HDice results with CLAS
• e+HDice test results
• Conclusion
Topics

• **How the HDice target works**
 • Target Production
 • Performance of HDice target
 • γ+HDice results with CLAS
 • e+HDice test results
 • Conclusion
Polarizing HD: the rotational levels of the solid hydrogens

At liquid helium temperature and below, only $J=1$ and 0 states are occupied, for H_2 and D_2, and only $J=0$ is populated for HD.

The relative energy spacing of the low-lying nuclear spin, I, and molecular orbital angular momentum, L, levels in H_2, HD and D_2 system. The symmetries of the nuclear spin wavefunction, χ_s, are indicated.
Polarizing HD: cross coupling between H and D, POLARIZING

At J=0 states, protons and deuterons are de-coupled from the lattice.
⇒ long relaxation time or non-polarizable
⇒ help from J=1 H₂ and D₂ through spin-wave is needed for polarizing HD

The relative energy spacing of the low-lying nuclear spin, I, and molecular orbital angular momentum, L, levels in H₂, HD and D₂ system. The symmetries of the nuclear spin wavefunction, χ_s, are indicated.
Polarizing HD: \(L=1 \) molecules decay to \(L=0 \), AGING

The life time for \(J=1 \) \(H_2 \) is 6.3 days whiles for \(J=1 \) \(D_2 \) is 18.6 days.
⇒ polarization mechanism disappears after “aging”
⇒ Highly polarized frozen spin target

The relative energy spacing of the low-lying nuclear spin, \(I \), and molecular orbital angular momentum, \(L \), levels in \(H_2 \), HD and \(D_2 \) system. The symmetries of the nuclear spin wavefunction, \(\chi_S \), are indicated.
Heat generation due to $L=1$ to $L=0$ Conversion

Heat generation ($J=1$ to $J=0$): 2.6mW/mole for H_2 and 0.46mW/mole for D_2.

\Rightarrow For HDice at $c_1 \sim 0.001$, 0.94μW/target from H_2 and 0.17μW/target from D_2.

\Rightarrow Heat has to be removed from HD in order to polarize HD target.

\[
\begin{align*}
\text{Ortho-}H_2 & \quad (\chi_S \text{ sym}) \\
I=1 & \quad L=1 \\
& \quad 172K \\
\tau=6.3 \text{ days} \\
\text{Heat:} & \quad 2.6\text{mW/mole} \\
\text{Para-}H_2 & \quad \text{H}_2 \\
I=0 & \quad L=0 \\
\text{heat} & \quad \text{HD} \\
I=1/2, 3/2 & \quad L=1, L=0 \\
& \quad 86K \\
\tau=18.6 \text{ days} \\
\text{Heat:} & \quad 0.46\text{mW/mole} \\
\text{Para-}D_2 & \quad (\chi_S \text{ anti-sym}) \\
I=1 & \quad L=1 \\
& \quad 128K \\
\text{HDice dilution refrigerator cooling power at 10mK : 10}\mu W
\end{align*}
\]

The relative energy spacing of the low-lying nuclear spin, I, and molecular orbital angular momentum, L, levels in H_2, HD and D_2 system. The symmetries of the nuclear spin wavefunction, χ_S, are indicated.
Polarizing D with RF Transition

D transitions between $m_D = +1$, $m_D = 0$, and $m_D = -1$.

H transitions between $m_H = -1/2$ and $m_H = +1/2$.

Transition paths are indicated by red and blue arrows.
Polarizing D with RF Transition

All 6 states are equally populated.

\[\text{m}_D=+1 \quad \text{m}_D=0 \quad \text{m}_D=-1 \]

\[\text{m}_H=-1/2 \quad \text{m}_H=+1/2 \]

\[\text{PH}=0, \quad \text{PD}=0 \]
Polarizing H with brute force.

\(m_D = +1 \) \hspace{2cm} \(m_D = 0 \) \hspace{2cm} \(m_D = -1 \)

\[P^H = 1, \quad P^D = 0 \]
Inducing RF transition to polarize D.

\[m_D = +1 \quad m_D = 0 \quad m_D = -1 \]

\[m_H = -1/2 \quad m_H = +1/2 \]

\[P^H = -1/3, \quad P^D = +2/3 \]
Inducing RF transition to reverse P^H.

$m_D=+1$ \hspace{2cm} $m_D=0$ \hspace{2cm} $m_D=-1$ \hspace{2cm} $m_H=-1/2$ \hspace{2cm} $m_H=+1/2$

$P^H=+1/3$, \hspace{1cm} $P^D=+2/3$
Topics

• How the HDice target works
• **Target Production**
 • Performance of HDice target
 • γ+HDice results with CLAS
 • e+HDice test results
 • Conclusion
Instrumentation: Target Cell

- **HDice target cells:**
 - 750 × 50μ Al wires
 - pCTFE cell

- **material in the beam path:**
 - 77% HD + 17% Al + 6% pCTFE (remove with vertex cuts)
Production Dewar (PD)

- sample space temperature
 2K-300K variable

- magnetic field
 2 Tesla

- target injection, transportation and NMR calibration
Transfer Cryostat (TC)

- temperature
 2K
- magnetic field
 0.1 Tesla
- target transfer between dewars
Dilution Fridge (DF)

- sample space temperature \(\geq 8\text{mK} \)
- magnetic field 15 Tesla
- polarization
Instrumentation: Storage Dewar

Storage Dewar (SD)

- sample space temperature
 1.6K-300K variable
- magnetic field
 7 Tesla
- storage and/or transportation
Instrumentation: In-Beam Cryostat

- T: 50mK
- B_{\parallel}: 1.0T
- B_{\perp}: 0.075T
- $B_{\text{auxiliary}}$: $>$0.1T
- B_{backup}: 0.01T

In-Beam Cryostat (IBC)
Operation: Target transfer

PD DF SD TC
Operation: Target transfer

PD: (Injecting target, NMR-TE)
TC: (Moving target)
DF: (Polarizing target)
SD: (Storing/transporting target)

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Magnetic Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6K, 7T</td>
<td></td>
</tr>
<tr>
<td>0.01K, 15T</td>
<td></td>
</tr>
<tr>
<td>2K, 0.1T</td>
<td></td>
</tr>
<tr>
<td>2K, 2T</td>
<td></td>
</tr>
</tbody>
</table>
Operation: Target transfer

Target transfer between PD and DF
Operation: Target transfer

Target transfer between PD and DF
Operation: Target transfer

Target transfer between PD and DF
Operation: Target transfer

Target transfer between DF and SD
Operation: Target transfer

Target transfer between DF and SD
Operation: G-14 Run at Hall-B

Loading target into IBC and moving IBC inside CLAS
Operation: G-14 Run at Hall-B

Moving IBC into CLAS
Topics

- How the HDice target works
- Target Production
- **Performance of HDice target**
- γ+HDice results with CLAS
- e+HDice test results
- Conclusion
Target Polarization Calibration for G-14 Run

HD removed from DF after 3 months Aging at high field and low temp

- Frozen-spin NMR compared to thermal equilibrium (TE) calibration

B field sweep

- HD target 20b:

 \[P(H) = 61.3 \pm 1.8\% \]

 \[P(D) = 15.5 \pm 0.6\% \]

Number of sweeps: 1 for polarized signals and ~250 for TE signals
The HDice targets were in frozen spin mode during G-14 Run. Relaxation times was longer than one year at B=0.9T and T<100mK.
Polarization Manipulation during G-14 Run

Increasing D polarization by spin transfer:

- **Brute force** (high B/low T) \Rightarrow $P_D \sim 15\%$ $(\mu_D / \mu_H \sim 1/3)$

- 1^{st} forbidden adiabatic fast passage (**FAFP**) to invert state populations

Zeeman levels of HD

- polarize H
 - RF transfer $P(H) \rightarrow P(D)$

- requires high RF powers and very uniform fields

- alternative: **saturate the FAFP transition**
 \rightarrow equalize $\{ m_H = +1/2; m_D = -1, 0 \} \leftrightarrow \{ m_H = -1/2; m_D = 0, +1 \}$
Polarization Manipulation with SFP during G-14 Run

\[\text{P(H)}_{\text{init}} \sim 50\% \]

\[\Rightarrow \text{SFP} \Rightarrow \]

\[\text{P(H)}_{\text{final}} = 28 \pm 1\% \]

\[\text{P(D)}_{\text{init}} \sim 16\% \]

\[\Rightarrow \text{SFP} \Rightarrow \]

\[\text{P(D)}_{\text{final}} = 27 \pm 1\% \]
In-Beam Cryostat Performance during G-14 Run
Topics

• How the HDice target works
• Target Production
• Performance of HDice target
• \(\gamma + \text{HDice results with CLAS} \)
• \(e + \text{HDice test results} \)
• Conclusion
Reconstructed Vertex for HDice Target during G-14 Run

Clean empty cell (21a) subtraction from $\gamma n \rightarrow \pi p$

- **Full target cell**
- **Empty cell**
- **HD from full-empty (flux weighted)**

<table>
<thead>
<tr>
<th>zvertex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>RMS</td>
</tr>
</tbody>
</table>

Dao Ho (CMU)
- preliminary
On-going Analysis for G-14 Run

identified analysis projects:

\[\gamma n (p) \rightarrow \Lambda^0 (p) \]
\[\gamma n (p) \rightarrow K^- (p) \]
\[\gamma n (p) \rightarrow K^- \Sigma^+ (p) \]
\[\gamma n (p) \rightarrow \pi^- p (p) \]
\[\gamma n (p) \rightarrow \pi^+ \pi^- n (p) \Leftrightarrow \pi^+ \Delta^- (p), \ \pi^- \Delta^+ (p), \ \rho n (p) \]
\[\gamma n (p) \rightarrow \pi^+ \pi^- \pi^0 n (p) \Leftrightarrow \eta n (p), \ \omega n (p) \]
\[\gamma n (p) \rightarrow \pi^0 \pi^- p (p) \]

1st look at data

Beta vs. Momentum
1st look at neutron data from G-14/HDice (concluded on 05/18/2012)

- $\vec{\gamma} \vec{n} (p) \rightarrow \pi^- p (p)$

- E beam-target helicity asymmetry from a few % of the g14 data:

Preliminary - N. Walford, CUA

SAID extrapolations from proton data
Topics

• **How the HDice target works**
• **Target Production**
• **Performance of HDice target**
• **γ+HDice results with CLAS**
• **e+**HDice test results**
• **Conclusion**
Electron Beam Tests, $e + HD$ to check radiation damage

- H is not harmed, $T_1(H) > 50 \text{ d}$.

- Beam Heating is the main concern for H.
 \(\Rightarrow \) redesign target cell
 build faster beam raster

- D is damaged by radiation, $T_1(D) = 0.2 \text{ d}$.

- $T_1(D) = 0.2 \text{ d}$.

- Beam Heating is the main concern for H.
Conclusion

• **HDice target has been successfully installed at CLAS.**

• **Performance of HDice target demonstrated a huge potential for photon experiments.**

• **Comparing with the conventional target, which polarizes 80% of the 20% usable material, the HDice has 20% polarization of 80% target material.**

 BUT, WE TOOK THE DATA AT 10 TIMES FASTER RATE BECAUSE OF LOW BACKGROUND.

• **Electron beam on HDice test shown the road of improvement.**