Unraveling the Excitation Spectrum of the Nucleon
- the N* Program at Jefferson Lab

A.M. Sandorfi
Thomas Jefferson National Accelerator Facility, Virginia USA

- current quarks, constituent quarks & real world “dressings”
- the problem with the N* spectrum
 ... and the hyperon solution – measurements of everything
- the CLAS g9/FROST and g14/HDice experiments
- eg. $\Upsilon p \rightarrow K^+\Lambda$ from what we know now,
 and what we can expect ...
Excitation spectrum for $A = 1$

\[\gamma + p \rightarrow \pi N \]

\[\mathcal{L}_{\pi N}^{(2I, 2J)} \]

\[F_{35}, F_{37}, D/F_{15}, S_{11}, D_{13}, P_{11}, \Delta_{33}, N \]

\[\gamma + p \rightarrow \sigma_{\text{tot}} (\mu b) \]

Spectrum & decay widths reflect the underlying nature of quark confinement and Chiral-Symmetry breaking in QCD
Connecting constituent quarks and current quarks in QCD
- viewed with Lattice-QCD and the Dyson-Schwinger eqn (ANL)

- quark propagators of DSE dressed with gluons (manifestation of dynamic Chiral-symmetry breaking)

- "constituent mass" appears at low p from a cloud of gluons that are dragged along as the quark propagates

- Connects the constituent mass of "QCD inspired" models \Leftrightarrow to the current quarks of the QCD Lagrangian

Craig Roberts
Excitation spectrum of the Nucleon

\[\gamma + p \rightarrow \pi N \]

\[L_{\pi N} \quad (2*\text{isospin, 2*spin}) \]

- \(F_{15} \)
- \(D_{13} \)
- \(P_{11} \)
- \(\Delta_{33} \)
- \(N \)

\(E_\gamma \) (GeV)
electron scattering
- one photon exchange
- vary Q^2 and W independently

$$e + p \Rightarrow \Delta_{33} + e'$$

"dressed" interactions

meson-cloud "dressing" of the electromagnetic vertex

Harry Lee
“dressings” of the N^* vertices

- “dressings” of the electromagnetic vertex affect the dynamical properties and determine the Q^2 evolution of N^* production, but do not affect spectral properties of the resonances.

- coupled-channel “dressings” of the strong vertex determine the spectral properties of the resonances, mass-pole positions, widths.

Caveat: the detailed divisions between “dressings”, “coupled-channel” effects and “core excitations” is model dependent, but on a course scale the divisions in physics remain fairly defined.
- baryon excited states coupled to meson-baryon channels

- a multi-channel, multi-resonance problem

- two particle channels: γN, πN, ηN, $K\Lambda$, $K\Sigma$, ωN

- three particle channels: $\pi\pi N$, with resonant components from $\pi\Delta$, ρN, σN

- must satisfy the Unitarity conditions connecting channels

eg. $\gamma p \rightarrow \pi N \rightarrow K\Lambda$
$\gamma p \rightarrow \pi\pi N \rightarrow K\Lambda$

- large \textit{coupled-channel} effects!
Excitation spectrum of the Nucleon

$$\gamma + p \rightarrow \pi N$$

$L_{\pi N}$ (2*isospin, 2*spin)

F_{15}
D_{13}
P_{11}
Δ_{33}
N

σ_{tot} (μb)
The puzzling $P_{11}(W=1440)$ “Roper” resonance

- L.D. Roper, PRL 12, 340 (1964)
- PDG’08 \Rightarrow $W = 1420 \text{ to } 1470$ MeV
- recent PWA analysis suggests 2 poles – PRC 74, 045205 (06)
- decays into $N\pi$, $N\pi\pi$, $N\Delta$
- models of N^* structure predict lowest P_{11} at much higher energy
 - qqq-g 3-quark-gluon hybrid ?
 - qqq 3-quark radial excitation ?
electron scattering
- one photon exchange
- vary Q^2 and W independently

Amplitudes for P_{11}:
- transverse $A(h=\frac{1}{2})$

CLAS data
- $\gamma p \rightarrow \pi N$
- $\gamma p \rightarrow \pi \pi N$

PRC86 (12) 35203

\Leftrightarrow large π-cloud "dressing"

\Leftrightarrow hybrid model (Li^2-Burkert, PRD46) excluded
JLab-EBAC, PRL 104 (10) 042302

- Dynamical coupled-channel model ($\pi N, \pi\pi N, \pi\Delta, \eta N, \rho N, \ldots$)
- Resonance poles located numerically by analytic continuation
- 1 channel \leftrightarrow 1 pole; n channels \leftrightarrow 2^n poles on 2^n Riemann sheets

Evolution of a bare N^* into 3 P_{11} poles in EBAC-DCC model

\[
T^R \propto \frac{1}{E - M_0^* - x\Sigma(E)}
\]
The puzzling $P_{11}(W=1440)$ “Roper” resonance

- L.D. Roper, PRL 12, 340 (1964)
- PDG’08 $\Rightarrow W = 1420\text{ to } 1470$ MeV
- recent PWA analysis suggests 2 poles - PRC 74, 045205 (06)
- decays into $N\pi$, $N\pi\pi$, $N\Delta$
- models of N^* structure predict lowest P_{11} at much higher energy
 - $qqq-g$ 3-quark gluon hybrid $\Leftrightarrow (e,e')$
 - qqq 3-quark radial excitation

- 2 poles on each of the $N\pi$ and $N\pi\pi$ sheets
- through analytic continuation in DCC, P_{11} is seen as a quark core excitation that has to lie higher in energy in order to give the channel couplings (the “dressings” of the strong vertex) the space needed to bring the poles down to the observed energies
Unfolding and interpreting the N* spectrum

- LQCD and DSE → Chiral symmetry breaking of the QCD Lagrangian generates Constituent Q with effective masses & essential features captured in the CQM

CQM

- only lowest few in each band seen (in πN) with 4★ or 3★ status

Hyperons to the rescue?

- higher levels predicted to have larger couplings to KΔ, KΣ, ππN,...
Comment regarding di-Quark excitations:

- 2 quarks quasibound in a color isotriplet; diquark+quark → color isosinglet

 Vintage diQuark models: [-eg. Anselmino et al, Rev. Mod. Phys. 65 (93)1199]
 - internal diquark excitations assumed frozen out
 (spin 0, isospin 0; no 20-plet configurations)

 ⇔ predicts approximately the same number of N* states seen in πN

DSE & LQCD:

- axial-vector color-triplet quark-quark correlations: ⇔ “di-Quarks”
 - attractive:
 \[m[ud]_1 = m[uu]_1 = m[dd]_1 = 0.99 \pm 0.03 \text{ GeV}; \quad m[ud]_0 = 0.78 \pm 0.04 \text{ GeV} \]
 - non-point-like: eg. \[r[ud]_1 = 0.8 \text{ fm} \sim \text{pion radius} \] [Few Body Sys 35(04); PRL97(06)]

Reality:

- diQuark configurations in the nucleon very likely (energetically favored)
- but they are not point-like ⇒ internal excitations highly likely
- diQuark correlations are already contained within the LQCD calculations

⇒ diQuarks are not a solution to missing N* states
Comment2 regarding di-Quark excitations:

In fact, we probably have our 1st example:

- DSE: P_{11} Roper
 \[\Leftrightarrow \text{a radial excitation of a diQuark coupled to the third quark} \]
The problem:

N^* structure lies encoded in the spectrum of the nucleon

⇔ our challenge is to unravel the spectrum

⇔ search for resonance structure in the amplitudes
- ideal single isolated resonance

Argand plots:
- counter-clockwise rotating amplitude
 - characteristic resonance behavior
The problem:

N* structure lies encoded in the spectrum of the nucleon
⇔ our challenge is to unravel the spectrum

Conventional approach:

- starting point: cross sections and a few polarization asymmetries
- parameterize the amplitude within a model;
 ⇒ fit model parameters to the data

A new plan:

- starting point: measure everything! (possible in hyperon channels)
 ⇒ experimental determination of meson production amplitudes
 ⇒ analytically continue the amplitude within a model to search for poles
- since electromagnetic interactions do not conserve isospin,
 this requires data on both the proton and the neutron

↑
JLab-g9 (FROST)
↑
JLab-g14 (HDice)
“Everything” in \(J^\pi = 0^- \) meson photo-production

\[d\sigma_{(B, T, R)} \equiv \sum |\text{matrix elements}|^2 \times [\text{polarization factors}] \]

\[d\sigma_{(B, T, R)} = \frac{1}{2} \left\{ d\sigma_0 \cdot \left[1 - P^y_L \cdot P^T_y \cdot P^R_y \cos(2\phi_y) \right] \right. \]

\[+ \hat{\Sigma} \cdot \left[-P^y_L \cos(2\phi_y) + P^T_y \cdot P^R_y \right] \]

\[+ \hat{T} \cdot \left[P^T_y - P^y_L \cdot P^R_y \cos(2\phi_y) \right] \]

\[+ \hat{P} \cdot \left[P^R_y - P^y_L \cdot P^T_y \cos(2\phi_y) \right] \]

\[+ \hat{E} \cdot \left[-P^y_L \cdot P^T_z + P^y_L \cdot P^T_x \cdot P^R_y \sin(2\phi_y) \right] \]

\[+ \hat{G} \cdot \left[P^y_L \cdot P^T_z \sin(2\phi_y) + P^y_L \cdot P^T_x \cdot P^R_y \right] \]

\[+ \hat{F} \cdot \left[P^y_L \cdot P^T_x + P^y_L \cdot P^T_y \cdot P^R_y \sin(2\phi_y) \right] \]

\[+ \hat{H} \cdot \left[P^y_L \cdot P^T_x \sin(2\phi_y) - P^y_L \cdot P^T_y \cdot P^R_y \right] \]

\[+ \hat{C}_x \cdot \left[P^y_L \cdot P^R_x - P^y_L \cdot P^T_y \cdot P^R_x \sin(2\phi_y) \right] \]

\[+ \hat{C}_z \cdot \left[P^y_L \cdot P^R_z + P^y_L \cdot P^T_y \cdot P^R_z \sin(2\phi_y) \right] \]

\[+ \hat{O}_x \cdot \left[P^y_L \cdot P^R_x \sin(2\phi_y) + P^y_L \cdot P^T_y \cdot P^R_x \right] \]

\[+ \hat{O}_z \cdot \left[P^y_L \cdot P^R_z \sin(2\phi_y) - P^y_L \cdot P^T_y \cdot P^R_z \right] \]

\[+ \hat{L}_x \cdot \left[P^T_z \cdot P^R_x + P^y_L \cdot P^T_y \cdot P^R_x \cos(2\phi_y) \right] \]

\[+ \hat{L}_z \cdot \left[P^T_z \cdot P^R_z - P^y_L \cdot P^T_y \cdot P^R_z \cos(2\phi_y) \right] \]

\[+ \hat{T}_x \cdot \left[P^T_x \cdot P^R_x - P^y_L \cdot P^T_y \cdot P^R_x \cos(2\phi_y) \right] \]

\[+ \hat{T}_z \cdot \left[P^T_x \cdot P^R_z + P^y_L \cdot P^T_y \cdot P^R_x \cos(2\phi_y) \right] \]
Polarization observables in $J^\pi = 0^-$ meson photo-production:

(SHKL, J Phys G38 (11) 053001)

<table>
<thead>
<tr>
<th>Photon beam</th>
<th>Target</th>
<th>Recoil</th>
<th>Target - Recoil</th>
</tr>
</thead>
<tbody>
<tr>
<td>unpolarized</td>
<td>σ_0</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>$P_L^\gamma \sin(2\phi_\gamma)$</td>
<td>H</td>
<td>G</td>
<td>$O_{x'}$</td>
</tr>
<tr>
<td>$P_L^\gamma \cos(2\phi_\gamma)$</td>
<td>$-\Sigma$</td>
<td>$-P$</td>
<td>$-T$</td>
</tr>
<tr>
<td>circular P_c^γ</td>
<td>F</td>
<td>$-E$</td>
<td>$C_{x'}$</td>
</tr>
</tbody>
</table>

16 different observables, each appearing twice:

- single-pol observables can be measured from double-pol asymmetry
- double-pol observables can be measured from triple-pol asymmetry
Amplitudes and ambiguities:

- \(\gamma + N \rightarrow (J^\pi=0^-) + N/\Lambda/\Sigma \)

 spin states: 2 + 2 \(\rightarrow \) 0 + 2 \(\Rightarrow \) 8 spin combinations

 \(\Rightarrow \) 4 unique (parity)

 \(\Rightarrow \) 4 complex amplitudes describe photo-production

 \(\Rightarrow \) 8 quantities to be determined

 \(\Rightarrow \) the 16 possible observables (matrix elements) are not independent

- uniqueness studies: Barker, Donnachie, Storrow, NP B95 (75) 347;
 Chiang, Tabakin, PR C55 (97) 2054

 \(\Rightarrow \) “mathematical solution” requires a set of 8 carefully chosen observables

 \(\Rightarrow \) avoiding ambiguities require asymmetries involving recoil polarization
\[d\sigma(P^{\gamma}, P^{T}, P^{R}) : \]

• Beam and Target polarizations are under experimental control

• Recoil polarization - byproduct of entrance channel angular momentum \((P^{\gamma}, P^{T})\) and reaction physics \(\iff\) combinations of matrix elements

\(\Rightarrow\) measurements of the recoil baryon polarization access combinations of spin-observables

\(\iff\) a wealth of information!
\[d\sigma(P^\gamma, P^T, P^R) : \]

- Beam and Target polarizations are under experimental control

- Recoil polarization - byproduct of entrance channel angular momentum \((P^\gamma, P^T)\) and reaction physics \(\Leftrightarrow\) combinations of matrix elements

eg. 1 unpolarized beam and target:

\[\vec{P}^R = (0, P, 0) \]

- weak decay \(\Lambda \rightarrow \pi^- p\)

- angular distribution in \(\Lambda\) rest frame

\[W(\theta_p) = \frac{1}{2} \left(1 + \alpha |\vec{P}_\Lambda| \cos(\theta_p) \right) \]

\[\Rightarrow P^R_\Lambda = \frac{2}{\alpha} \frac{N_{up} - N_{down}}{N_{up} + N_{down}} \]

\[\alpha = 0.642 \pm 0.013 \]
eg. circularly polarized beam and longitudinally polarized target:

\[
\vec{P}^R = \left(\frac{P_c^\gamma C'_{x'} + P_z^T L_{x'}}{1 - P_c^\gamma P_z^T E}, \frac{P - P_c^\gamma P_z^T H}{1 - P_c^\gamma P_z^T E}, \frac{P_c^\gamma C'_{z'} + P_z^T L_{z'}}{1 - P_c^\gamma P_z^T E} \right)
\]
eg. circularly polarized beam and longitudinally polarized target:

\[
\vec{P}^R = \left(\frac{P'_c C_{x'} + P'_z L_{x'}}{1 - P'_c P'_z E}, \quad \frac{P - P'_c P'_z H}{1 - P'_c P'_z E}, \quad \frac{P'_c C_{z'} + P'_z L_{z'}}{1 - P'_c P'_z E} \right)
\]

- sum final states (ignore recoil): \(\Rightarrow d\sigma_0 \) and \(E \leftrightarrow P^R \) denominator
eg. circularly polarized beam and longitudinally polarized target:

$$\vec{P}^R = \left(\frac{P_c^\gamma C_{x'} + P_z^T L_{x'}}{1 - P_c^\gamma P_z^T E}, \frac{P - P_c^\gamma P_z^T H}{1 - P_c^\gamma P_z^T E}, \frac{P_c^\gamma C_{z'} + P_z^T L_{z'}}{1 - P_c^\gamma P_z^T E} \right)$$

- sum final states (ignore recoil): $\Rightarrow d\sigma_0$ and $E \leftrightarrow P^R$ denominator
- average initial target pol states ($\pm P_z^T$): $\vec{P}^R \Rightarrow C_{x'}, P, C_{z'}$
eg. circularly polarized beam and longitudinally polarized target:

\[
\vec{P}^R = \left(\frac{P_c^{\gamma} C_{x'} + P_z^{T} L_{x'}}{1 - P_c^{\gamma} P_z^{T} E}, \frac{P - P_c^{\gamma} P_z^{T} H}{1 - P_c^{\gamma} P_z^{T} E}, \frac{P_c^{\gamma} C_{z'} + P_z^{T} L_{z'}}{1 - P_c^{\gamma} P_z^{T} E} \right)
\]

- sum final states (ignore recoil): \(\Rightarrow d\sigma_0 \) and \(E \leftrightarrow P^R \) denominator
- average initial target pol states (\(\pm P_z^{T} \)): \(\vec{P}^R \Rightarrow C_{x'}, P, C_{z'} \)
- average initial beam pol states (\(P_c^{\gamma}(h = \pm 1) \)): \(P_x^{R}, P_z^{R} \Rightarrow L_{x'}, L_{z'} \)
eg. circularly polarized beam and longitudinally polarized target:

\[
\bar{P}^R = \left(\frac{P_c^\gamma C_{x'} + P_T^z L_{x'}}{1 - P_c^\gamma P_T^z E}, \quad \frac{P - P_c^\gamma P_T^H}{1 - P_c^\gamma P_T^z E}, \quad \frac{P_c^\gamma C_{z'} + P_T^z L_{z'}}{1 - P_c^\gamma P_T^z E} \right)
\]

- sum final states (ignore recoil): \(\Rightarrow d\sigma_0 \) and \(E \Leftrightarrow P^R \) denominator
- average initial target pol states (\(\pm P_T^z \)): \(\bar{P}^R \Rightarrow C_{x'}, P, C_{z'} \)
- average initial beam pol states (\(P_c^\gamma(h = \pm 1) \)): \(P_x^R, P_z^R \Rightarrow L_{x'}, L_{z'} \)
- combining initial states \(P_c^\gamma(P_+^T - P_-^T) \): \(P_y^R \Rightarrow H \)

\(\updownarrow \)

nominal “transverse target asy”
eg. circularly polarized beam and longitudinally polarized target:

\[
\bar{P}_R = \left(\frac{P_c^\gamma C_{x'}}{1 - P_c^\gamma P_z^T E}, \frac{P - P_c^\gamma P_z^T H}{1 - P_c^\gamma P_z^T E}, \frac{P_c^\gamma C_{z'}^T + P_z^T L_{z'}}{1 - P_c^\gamma P_z^T E} \right)
\]

- sum final states (ignore recoil): \(d\sigma_0 \) and \(E \leftrightarrow P_R^R \) denominator
- average initial target pol states \((\pm P_z^T)\): \(\bar{P}_R \Rightarrow C_{x'}, P, C_{z'} \)
- average initial beam pol states \((P_c^\gamma(h = \pm 1))\): \(P_x^R, P_z^R \Rightarrow L_{x'}, L_{z'} \)
- combining initial states \(P_c^\gamma(P_{+z}^T - P_{-z}^T) \): \(P_y^R \Rightarrow H \)
 \[\updownarrow\]
 nominal “transverse target asy”
 (in all, 8 different observables)
Experimental options for recoil polarization:

- $\gamma N \to K \Lambda \Rightarrow K (\pi^- p)$, baryon decay peaked along Λ polarization, $\alpha_\Lambda = +0.64$
- $\gamma N \to K \Sigma^+ \Rightarrow K (\pi^0 p)$, baryon decay peaked along Σ polarization, $\alpha_\Sigma = -0.98$
- $\gamma N \to \pi N \Rightarrow \pi N'$, via asymmetry in 2$^\text{nd}$ scattering from ^{12}C, $\varepsilon \sim 0.01$
 quite difficult, although cross sections are larger

The new plan:

- collect data on all possible observables in $\sim 4\pi$ detectors
 - with beam and target polarized, measurements of the recoil polarization allow the extraction of all 16 observables with a single target orientation
 [SHKL, J Phys G38 (11) 053001]
- express the observables in terms of the amplitude
- fit the amplitude!
Unraveling the Excitation Spectrum of the Nucleon
- the N* Program at Jefferson Lab

A.M. Sandorfi
Thomas Jefferson National Accelerator Facility, Virginia USA

- current quarks, constituent quarks & real world “dressings”
- the problem with the N* spectrum
 ... and the hyperon solution – measurements of everything
- the CLAS g9/FROST and g14/HDice experiments
- eg. γp → K+Λ from what we know now,
 and what we can expect ...
The Hall B tool set: **CEBAF Large Acceptance Spectrometer**

Torus magnet
- 6 superconducting coils

Gas Cherenkov counters
- e/π separation, 256 PMTs

Time-of-flight counters
- plastic scintillators, 684 photomultipliers

Electromagnetic calorimeters
- Lead/scintillator, 1296 photomultipliers

Drift chambers
- argon/CO₂ gas, 35,000 cells

polarized target + start counter

DAQ limit ~ 6kHz (~1.5TB/day)
Hall B Photon Tagger

- bremsstrahlung photon tagger
- $E_\gamma = 20$-95% of E_0
- E_γ up to ~ 5.5 GeV

- Circularly polarized photons from longitudinally polarized electrons
- Linearly polarized photons from bremsstrahlung in oriented diamond crystals
Polarization observables in $\gamma p \rightarrow K^+ \Lambda$ photo-production:

<table>
<thead>
<tr>
<th>Photon beam</th>
<th>Target</th>
<th>Recoil</th>
<th>Target - Recoil</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>x'</td>
<td>y'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>unpolarized</td>
<td>σ_0</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>$P^\gamma_L \sin(2\phi_\gamma)$</td>
<td>H</td>
<td>G</td>
<td>$O_{x'}$</td>
</tr>
<tr>
<td>$P^\gamma_L \cos(2\phi_\gamma)$</td>
<td>$-\Sigma$</td>
<td>$-P$</td>
<td>$-T$</td>
</tr>
<tr>
<td>circular P_c^γ</td>
<td>F</td>
<td>$-E$</td>
<td>$C_{x'}$</td>
</tr>
</tbody>
</table>

Full set of 16

<table>
<thead>
<tr>
<th>status</th>
<th>CLAS run period</th>
<th>beam</th>
<th>target</th>
</tr>
</thead>
<tbody>
<tr>
<td>complete</td>
<td>g1c, g11a</td>
<td>$\gamma, \bar{\gamma}_c$</td>
<td>LH$_2$</td>
</tr>
<tr>
<td>complete</td>
<td>g8</td>
<td>$\bar{\gamma}_L$</td>
<td>LH$_2$</td>
</tr>
<tr>
<td>complete</td>
<td>g9a - P^T_z</td>
<td>$\bar{\gamma}_L, \bar{\gamma}_c$</td>
<td>FROST - $C_4\bar{H}_9O\bar{H}$</td>
</tr>
<tr>
<td>complete</td>
<td>g9b - P^T_x</td>
<td>$\bar{\gamma}_L, \bar{\gamma}_c$</td>
<td>FROST - $C_4\bar{H}_9O\bar{H}$</td>
</tr>
</tbody>
</table>

\iff PR C73(06); C75(07); C81(10)
FROST: frozen-spin target

- target: Ø 15mm x 50mm
- material: C₄H₉OH -butanol
- dilution factor: 10/74

- P(H) = 83%
- T_1 (1/e relaxation time)
 - + pol: 115 d
 - - pol: 65 d

- repolarize ~ once/week

Polarization mechanism:
- polarize electrons at 0.4 K and 5 Tesla
- $e \rightarrow H$ transfer w μWaves
- drop temp to 30 mK to increase T_1
$K^+\Lambda$ observables:

Published results:
- **CLAS g1c**: $d\sigma, C_{x'}, C_{z'}$
- **CLAS g11a**: $d\sigma, P$
- **GRAAL**: $\Sigma, T, P, O_{x'}, O_{z'}$

new PRELIMINARY data:
(C. Paterson, thesis – Glasgow'08)
- **CLAS g8**: $\Sigma, T, P, O_{x'}, O_{z'}$

$$\chi^2 = 1.54 \text{ to } 2.16$$

$$E_\gamma = 1421 \text{ (} W = 1883 \text{) MeV}$$
$K^+\Lambda$ observables:

Published results:
- **CLAS g1c**: $d\sigma$, $C_{x'}$, C_z.
- **CLAS g11a**: $d\sigma$, P.
- **GRAAL**: Σ, T, P, $O_{x'}$, O_z.

new PRELIMINARY data: (C. Paterson, thesis – Glasgow’08)
- **CLAS g8**: Σ, T, P, $O_{x'}$, O_z.
 - very small statistical errors

$\chi^2 = 1.54$ – to – 2.16

$E_\gamma = 1421$ (W = 1883) MeV
Polarization observables in $\gamma n (p) \rightarrow K^0 \Lambda$ photo-production:

<table>
<thead>
<tr>
<th>Photon beam</th>
<th>Target</th>
<th>Recoil</th>
<th>Target - Recoil</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x'</td>
<td>y'</td>
<td>z'</td>
</tr>
<tr>
<td>x</td>
<td>y</td>
<td>z</td>
<td></td>
</tr>
</tbody>
</table>

unpolarized

σ_0 T P $T_{x'}$ $L_{x'}$ Σ $T_{z'}$ $L_{z'}$

$P_L^\gamma \sin(2\phi_\gamma)$

H G $O_{x'}$ $O_{z'}$ $C_{z'}$ E F $-C_{x'}$

$P_L^\gamma \cos(2\phi_\gamma)$

$-\Sigma$ $-P$ $-T$ $-L_{z'}$ $T_{z'}$ $-\sigma_0$ $L_{x'}$ $-T_{x'}$

circular P_c^γ

F $-E$ $C_{x'}$ $C_{z'}$ $-O_{z'}$ G $-H$ $O_{x'}$

status | CLAS run period | beam | target |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>complete</td>
<td>g13</td>
<td>$\vec{\gamma}_L$</td>
<td>LD_2</td>
</tr>
<tr>
<td>~ complete</td>
<td>g14</td>
<td>$\vec{\gamma}_L$, $\vec{\gamma}_c$</td>
<td>HD_{ice}</td>
</tr>
</tbody>
</table>

Full set of 16
HDice: Frozen-spin Target

- **target:** $\varnothing 15 \text{ mm} \times 50 \text{ mm}$
- **material:** solid HD
- **dilution factors:** $1/2$ for \vec{p}
 $1/1$ for \vec{n}
- **P(H) = 60%** or **P(D) = 30%**
- **T_1 (1/e relaxation time)**
 \sim years
- **no repolarization needed**

Polarization mechanism:

- polarize impurities (10^{-3}) of H_2 and D_2 at 0.010 K and 15 Tesla
- spin exchange w HD
 $\text{H}_2 \Rightarrow \text{HD} \Leftarrow \text{D}_2$
- wait for H_2 and D_2 to decay to inert ground st (~ 3 months)
**External Magnetic field rapidly aligns **Ortho-H_2 and Para-D_2

then spins exchange with H and D in HD

- Initially 75% $Ortho-H_2$ (χ_S sym) at 172 K
 - $I=1$, $J=1$
- Initially 33% $Para-D_2$ (χ_S anti-sym) at 86 K
 - $I=1$, $J=1$
- Initially 75% $Para-H_2$ (χ_S anti-sym)
 - $I=0$, $J=0$
- 6.3 days spin exchange
 - $B_{J=1} \cdot S_H$
- \sim all $J = 0$
- 18.6 days spin exchange
 - $I=0$, $J=0$

HDice polarize/freeze spins/run exp sequence

HDice Target Lab

- Condense HD gas \rightarrow liquid \rightarrow solid at 16°C
- Calibrate pol-NMR at 2°C and 0.2 Tesla
- Transfer to dilution refrigerator & polarize at 15 Tesla and 10 mK
- Hold at high-field and low-temp for >3 months
- Transfer to 5 Tesla/1.6°C Storage Cryostat

Hall-B

- Move to Hall B (~ 1 Km)
- Transfer to In-Beam Cryostat (IBC)
- Move spins $^3\text{H}\leftrightarrow^3\text{D}$ w/ rf as needed
- Roll IBC into CLAS
- Run the exp

HDice Lab

transfers are the trickiest part
High field/low temperature TE limit:

- $15T/10\text{mK} \Rightarrow P(H) = 90\% ; P(D) = 30\%$

But:

- time to TE = relaxation time $\propto B/T$
 \Rightarrow very long at High B/Low T
 \iff keeps getting longer as $o-H_2$ & $p-D_2$
 $J=1$ impurity states decay
 \iff would need to increase $J=1$ states
 to provide time to reach TE

- heat from $J=1$ $o-H_2$ & $p-D_2$ decays must be carried away in order to reach TE
 - heat conducted through HD via phonons
 - limited by scattering from $J=1$ rotational states in $o-H_2$ & $p-D_2$ impurities
 \iff HD can’t reach low temperature until $J=1$ impurities decay
 \Rightarrow these two effect fight each other and reach a balance that is almost
 independent of initial $o-H_2$ & $p-D_2$ concentrations:

$\Rightarrow P(H) \sim 60 \pm 5\% ; P(D) \sim 15 \pm 7\%$
D polarization during g14/E06-101

- Polarization × HDice dilution ~ similar to FROST polarization × dilution
- HDice experiments able to run at 10 times higher fluxes (due to low Z)
1st look at neutron data from g14/HDice (concluded May 18th/12)

- $\gamma n (p) \rightarrow \pi^- p (p)$
- E beam-target helicity asymmetry from a few % of the g14 data:

SAID extrapolations from proton data
\(\gamma p \rightarrow K^+ \Lambda \) data in the pipe-line

- **published CLAS data:**

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Observable</th>
<th>(E_{\gamma}) range / (W) range</th>
<th>(\Delta E_{\gamma} / \Delta W) binning</th>
<th>Publications</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLAS-g1c</td>
<td>(d\sigma, P, C_x, C_z)</td>
<td>1032 – 2741 (1679 – 2454)</td>
<td>100</td>
<td>PR C73,35202(06) PR C75,35205(07)</td>
</tr>
<tr>
<td>CLAS-g11a</td>
<td>(d\sigma, P)</td>
<td>938 - 3813 (1625 - 2835)</td>
<td>10</td>
<td>PR C81,25201(10)</td>
</tr>
</tbody>
</table>

- **new preliminary (theses) data near final stages of analyses:**

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Observable</th>
<th>(E_{\gamma}) range / (W) range</th>
<th>(\Delta E_{\gamma} / \Delta W) binning</th>
<th>CLAS thesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLAS-g8</td>
<td>(\Sigma, T, P, O_x, O_z)</td>
<td>1025 – 2075 (1675 – 2185)</td>
<td>50</td>
<td>C. Paterson (Glasgow’08)</td>
</tr>
<tr>
<td>CLAS-g9a</td>
<td>(\Sigma, G)</td>
<td>1010 – 2100 (1720 – 2195)</td>
<td>100</td>
<td>S. Fegan (Glasgow’11)</td>
</tr>
<tr>
<td>CLAS-g9a</td>
<td>(E, L_x, L_z)</td>
<td>1050 – 2275 (1690 – 2270)</td>
<td>100</td>
<td>L. Casey (Catholic U A’11)</td>
</tr>
<tr>
<td>CLAS-g9a, g9b, g14</td>
<td>many more in the queue</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unraveling the Excitation Spectrum of the Nucleon – the N* Program at Jefferson Lab

A.M. Sandorfi
Thomas Jefferson National Accelerator Facility, Virginia USA

- current quarks, constituent quarks & real world “dressings”
- the problem with the N* spectrum
 ... and the hyperon solution – measurements of everything
- the CLAS g9/FROST and g14/HDice experiments
- eg. $\gamma p \rightarrow K^+\Lambda$ from what we know now,
 and what we can expect ...
Analyses of $\gamma p \rightarrow K^+\Lambda$

- **published CLAS data:**

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Observable</th>
<th>E_γ range / W range</th>
<th>$\Delta E_\gamma / \Delta W$ binning</th>
<th>Publications</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLAS-g1c</td>
<td>$d\sigma, P$, C_x, C_z</td>
<td>1032 – 2741 1679 – 2454</td>
<td>100</td>
<td>PR C73,35202(06) PR C75,35205(07)</td>
</tr>
<tr>
<td>CLAS-g11a</td>
<td>$d\sigma, P$</td>
<td>938 - 3813 1625 - 2835</td>
<td>10</td>
<td>PR C81,25201(10)</td>
</tr>
</tbody>
</table>

- **Bonn-Gatchina PWA,** [Anisovich et al, Eur Phys J A48 (12) 14]

 including CLAS and CB-ELSA data on $\gamma p \rightarrow K^+\Lambda, K^+\Sigma^0, K^0\Sigma^+$

⇒ “new” N*

| N(1880)1/2$^+$ | ⭐⭐ | ⭐ | BnGa STAR ratings
| N(1895)1/2$^-$ | ⭐⭐ | ⭐ | $K\Lambda$
| N(1875)3/2$^-$ | ⭐⭐⭐ | ⭐⭐ | $K\Sigma$
| N(2150)3/2$^-$ | ⭐⭐ | ⭐⭐ |
| N(2060)5/2$^-$ | ⭐⭐ | ⭐⭐ |

⇒ intriguing, although STAR-confidence levels probably optimistic due to the presence of ambiguous multiple solutions
Multipole Analysis of $\gamma p \rightarrow K^+\Lambda$ with 8 published observables

- **published data**

<table>
<thead>
<tr>
<th>Data group</th>
<th>Experiment</th>
<th>Observable</th>
<th>E_γ range / W range</th>
<th>$\Delta E_\gamma / \Delta W$ binning</th>
<th>Systematic Scale error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CLAS-g11a</td>
<td>$d\sigma$</td>
<td>938 – 3814 [1625 – 2835]</td>
<td>10 [\pm 8% (E_\gamma \text{ dependent})]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>CLAS-g11a</td>
<td>P</td>
<td>938 – 3814 [1625 – 2835]</td>
<td>10 [\pm 0.05]</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>CLAS-g1c</td>
<td>$C_{x'}, C_{z'}$</td>
<td>1032 – 2741 [1679 – 2454]</td>
<td>101 [\pm 0.03]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>CLAS-g1c</td>
<td>$d\sigma$</td>
<td>944 – 2950 [1628 – 2533]</td>
<td>25 [\pm 8% (E_\gamma \text{ dependent})]</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>GRAAL</td>
<td>$O_{x'}, O_{z'}$</td>
<td>980 – 1466 [1649 – 1906]</td>
<td>50 [\pm 4%]</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>GRAAL</td>
<td>P</td>
<td>980 – 1466 [1649 – 1906]</td>
<td>50 [\pm 3%]</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>GRAAL</td>
<td>Σ</td>
<td>980 – 1466 [1649 – 1906]</td>
<td>50 [\pm 2%]</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>GRAAL</td>
<td>T</td>
<td>980 – 1466 [1649 – 1906]</td>
<td>50 [\pm 5%]</td>
<td></td>
</tr>
</tbody>
</table>

- **limited common energy range:** $E_\gamma = [1027, 1421]$; $W = \{1676, 1883\}$
Multipole fitting procedure –cont’:

• fix $L = 4$–8 multipoles to their (real) Born values
• Monte Carlo sampling of real and imaginary parts of $L=0$–3 multipoles – up to 10^7 per energy
• gradient minimization (with MINUIT) whenever χ^2 within 10^4 of current best
• choose a reference point for the overall phase – eg. $\delta(E_{0+}) = 0$

Results for the combined $g1c$, $g11a$ and GRAAL data sets:

$\Rightarrow \exists$ bands of solutions with tightly clustered χ^2 : [SHKL, J Phys G38(11)053001]

<table>
<thead>
<tr>
<th>E_γ / W (MeV)</th>
<th>$\text{Best } \chi^2/pt$</th>
<th>$\text{Largest } \chi^2/pt$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1027 / 1676$</td>
<td>0.49</td>
<td>0.54</td>
</tr>
<tr>
<td>$1122 / 1728$</td>
<td>0.59</td>
<td>0.62</td>
</tr>
<tr>
<td>$1222 / 1781$</td>
<td>0.52</td>
<td>0.62</td>
</tr>
<tr>
<td>$1321 / 1833$</td>
<td>0.74</td>
<td>0.92</td>
</tr>
<tr>
<td>$1421 / 1883$</td>
<td>0.97</td>
<td>1.15</td>
</tr>
</tbody>
</table>
$K^+\Lambda$ multipoles:

Best χ^2

--

Largest χ^2

\[\text{Real}[A_{L\pm}] \]

\[\text{Imag}[A_{L\pm}] \]
K⁺Λ observables:

- **Best χ^2**
- **Largest χ^2**

exp indistinguishable

$E_γ = 1122 \ (W = 1728) \ MeV$

$E_γ = 1421 \ (W = 1883) \ MeV$
The χ^2 surface – valley or mine-field?

• construct a hybrid amplitude from any two solutions; track χ^2 between them.

$$A_h(x) = A_1 \left(1 - \frac{x}{100} \right) + A_2 \left(\frac{x}{100} \right),$$

$$x \in [0, 100]$$

• if $\chi^2(x)$ is smooth,
 - multiple solutions
 \iff ill-defined shallow χ^2 minimum

• if $\chi^2(x)$ shows peaks,
 - multiple solutions
 \iff real multiple local minima
The χ^2 surface – valley or mine-field?

- construct a hybrid amplitude from any two solutions; track χ^2 between them.

$$A_h(x) = A_1 \left(1 - \frac{x}{100} \right) + A_2 \left(\frac{x}{100} \right),$$

$$x \in [0, 100]$$

- there is always a peak between any two solutions!

\Rightarrow the solution bands are clusters of many degenerate local minima

χ^2 between Best and Worst solutions
The potential of complete experiments – studies with mock data

- generate mock data, using BoGa multipoles, at energies and angles of the CLAS data sets

- vary positions of mock points by sampling Gaussians of widths that reflect different levels of uncertainty
Creating mock data:

- curve predicted from assumed multipoles
- mock data point placed on curve at expected kinematic settings
- randomly pick value for each point within a Gaussian of width equal to expected errors

eg.
Simulated $K^+\Lambda$ CLAS results:
- points generated from BoGa multipoles, $W = 1900$
- errors from CLAS runs g1c, g8, g11a, and estimated errors for g9-FROST
The potential of complete experiments – studies with mock data

• generate mock data, using BoGa multipoles, at energies and angles of the CLAS data sets

• vary positions of mock points by sampling Gaussians of widths that reflect different levels of uncertainty

• fit mock data with the assumed uncertainties by varying multipoles, L=0–3
 - Monte Carlo sampling, with gradient minimization
 - phase constrained by a real E_{0+}
Expected accuracy of $K^+\Lambda$ multipole determination from CLAS results

--- Best χ^2 --- Largest χ^2
• ideal single isolated resonance

Argand plots:
• counter-clockwise rotating amplitude
 - characteristic resonance behavior

• weak state in EBAC model of KΛ production

fits to mock E06-101 data
with expected statistics and kinematic coverage
Summary

- ΛK and $K\Sigma^+$ channels provide opportunities to accumulate all 16 spin observables in photo-production

- There exist large sets of new single, double and triple polarization data on the proton and neutron that are under analysis. The prospects for determining the amplitude in at least a few photo-production channels are very good.

- Expect many multipoles to be well determined, providing a new window to the N^* spectrum

A few caveats:

- Given realistic errors, number of observables needed to determine an amplitude with reasonable uncertainty is much more than the “8” required for a “mathematical solution”

- Nonetheless, with measurements of all 16 observables, data with even modest errors will have a big impact!