
CLAS12 – DAq/Trigger Electronics

System Goals and Physics Requirements

- 200kHz average L1 Trigger Rate, Dead-timeless, Pipelined, 2ns bunch crossing (CW Beam)
- Sector based L1 trigger supporting streaming subsystem hit patterns and energy summing with low threshold suppression
- Scalable trigger distribution scheme (Up to 128 front-end L1 crates)
- Low cost front-end & trigger electronics solution
- **Reconfigurable firmware** CLAS12 (Hall B) will use different programmable features for each Detector that participates in the L1 trigger

DAq/Trigger System - TECHNICAL PARAMETERS

PARAMETER	DESIGN VALUE
Module Format/Bus	VITA 41 - VME64x and VXS (High Speed Serial
	Extensions)
Number of Readout Crates	61
Number of L1 Crates	30
Serial Interface Technology	2.5 Gbps and 5 Gbps
Serial Interface Transmission	Backplane and Multi-Fiber Optic
VME64x Data Bus Transfer	200 MB/sec
Trigger Distribution Method	High Speed Serial over Fiber Optic
Full L1 System Latency	< 8μs
Trigger Rate Capability	200 kHz
Trigger Resolution	4 ns
Trigger Types	32
Front End Acquisition Clock	250 MHz
Synchronicity (All crates)	4 ns
Bit Error Rate	TBD

Construction Strategy and Project Leadership:

- DAQ hardware has been installed in the Hall where feasible
- Subsystem DAq/Trigger testing infrastructure planned to be ready before detector systems installed
- CODA DAg system software tests as detectors are commissioned
- Staff Scientist Leadership: S. Boyarinov
- Support Group: Fast Electronics B. Raydo, C. Cuevas

Significant Dates:

- May 2015
 - Successful custom pipeline cluster trigger finding algorithm used for HPS experiment
 - HPS DAQ synchronization of ECal and Silicon Vertex Tracker readout.
- December 2015
 - Barrel Micromegas and CLAS12 SVT synchronized for cosmic ray tracking.
- February 2017
 - CLAS12 KPP run first use of whole CLAS12 DAQ and Trigger systems

Project Status:

- Forward Carriage DAQ installed (ECAL, PCAL, FTOF, LTCC)
- CLAS12 Trigger System installed
- Subway DAQ installed (Drift Chamber)
- Space Frame DAQ 50% installed (HTCC, CTOF, SVT)
- Pipeline Trigger synchronization testing in progress
- · Trigger algorithms development in progress

Last updated: March 27, 2017

C. Cuevas, Fast Electronics Group Leader (cuevas@jlab.org) 757-269-5053

L. Elouadrhiri, Control Account Manager (<u>latifa@jlab.org</u>) 757-269-7303

G. Young, Associate Project Manager for Physics (voung@ilab.org) 757-269-6904

V. D. Burkert, Hall B Group Leader (burkert@jlab.org) 757-269-7540