CLAS12 - TORUS Magnet

The CLAS12 Toroid is based on six superconducting coils around the beam line to produce a field primary in the azimuthal (ϕ) direction. The choice of this configuration leads to an approximate toroidal field distribution around the beam axis. The Torus design was driven by the following physics requirements:

- Large acceptance for forward going particles (50% particle acceptance in detectors at 5 degrees from beam axis)
- Good momentum resolution
- 6 fold symmetry around the beam axis
- Large bore to allow passage of scattered primary beam

TECHNICAL PARAMETERS

PARAMETER

DESIGN VALUE

Toroidal Field Geometry
6
Double pancake potted in Aluminum Case
124
25,500
117
234
SSC outer dipole cable soldered in 20 mm x 2.5 mm Cu channel
0.003" E-Glass Tape ¹ / ₂ Lap
3770
882,000
3.58
Inner turn near warm bore adjacent to cooling tube
Yes
2.78 @ 5 degree , 0.54 @ 40 degree
2.00
14.2
Hard wired quench detector / 0.124Ω dump resistor
Conduction Cooled by Supercritical Helium
4.6
Min 1.52 (@5.3 K) to Generation temperature 6.82
LN2 Thermo-Siphon

• Construction Strategy:

- JLab lead the design effort
- JLab procured the soldered conductor
- □ FNAL manufactured 8 coils and potted them in the coil cases (CCMs)
- JLab assembled each coil into cryostats in an on-site factory
- All 8 coils tested at 80K
- The six coil torus assembled and tested as a magnet in Hall B

• Significant Dates:

June, 2015

- □ August 1, 2013 7 conductor spools soldered
 - December 1, 2013 Practice coil delivery to JLab
 - January 2, 2014 Prototype coil fabrication start
- Oct 17, 2014 Begin erection of the Torus assembly tooling in Hall B
- □ Nov 1, 2014 Complete coil fabrication process (Practice CCM001)
- □ Nov, 2014 First CCM delivered to JLab for Cryostating
- □ February 6, 2015 First coil delivered to Hall B
- □ May 11, 2015 4th Coil installed on Installation Spit
 - June, 2015 Last CCM delivery to JLab
 - 6th Coil installed on Torus
 - January, 2016 Magnet Assembled and off the Assembly Spit
- □ August 2016 Cooldown Starts
 - September 2016 Torus at 4 Kelvin
- □ November 2016 Torus commissioned and field mapped in Hall B

Project Status 3/15/2017

- □ Magnet achieved full field
- □ Small internal helium leak is not effecting performance
- □ Lower vacuum pump system will have Turbo Pump moved to low field region

Last Updated: March 22, 2017

Contact:

D. Kashy, Technical Lead (<u>kashy@jlab.org</u>) (757)-269-7275
V. D. Burkert, Hall B Group Leader (<u>burkert@jlab.org</u>) (757)-269-7540