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ABSTRACT
A SURVEY OF BEAM ASYMMETRIES IN SEMI-EXCLUSIVE ELECTRON
SCATTERING ON *HE AND !2C
by
Dan Protopopescu
University of New Hampshire, December, 2002

A study of the polarized electron beam asymmetry in semi-exclusive (e, €'p) reactions on
“He and '2C over a large kinematic range has been performed. The beam asymmetry Al r
is related to the imaginary part of the longitudinal-transverse interference and therefore it
vanishes in reactions proceeding through a channel with a single dominant mechanism. In
quasifree nucleon knockout, the helicity asymmetry provides an unambiguous signature for
the interference between direct knockout and rescattering amplitudes. The data were taken
in April-May 1999 using polarized beams of energies between 2.2 and 4.4 GeV, with the
CEBAF Large Acceptance Spectrometer (CLAS) detector located in Hall B at the Jefferson

Laboratory, VA. The measured asymmetries compare well with the theoretical predictions.
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CHAPTER 1

INTRODUCTION

Over the last several decades, electron scattering has proved to be a powerful tool for the
study of the structure and dynamics of atomic nuclei. This is because the leptonic part of
the interaction, described by the quantum electrodynamics (QED), is well understood and
the only uncertainties in modeling the reaction are restricted to the nuclear part, i.e. to the
physics governing the structure and the dynamics of the nucleus.

Electron scattering can be used to investigate a variety of nuclear and nucleonic prop-
erties. Since electrons interact very weakly, their mean free path within nuclear matter
is large enough to probe the entire nuclear volume. Therefore, deeply bound nucleons
can be studied. This is an important advantage over studies employing hadronic probes,
which have larger cross-sections and therefore higher event rates, but whose sensitivity is
restricted mainly to the nuclear surface. From a theoretical point of view, the weak char-
acter of the electromagnetic interaction allows the use of the Born approximation, which
greatly simplifies the form of the scattering cross-section.

In electron scattering, the incident electron transfers energy (w) and momentum (q)
to the target via exchange of a virtual photon. Here one finds the advantage of electron
scattering over real photon experiments in that that one can vary the transferred momentum

q and energy w of the virtual photon independently from each other, allowing a wider range



of flexibility in the choice of kinematics.

At momentum transfers |g| above several hundreds of MeV/c, the virtual photon’s
wavelength is of the the order of 10715 m so that it can resolve objects of the size of the
nucleon. At this scale, the nucleus behaves as a collection of strongly interacting individual
nucleons, with the effects of nucleon structure modeled by electromagnetic form-factors
that describe the charge and magnetization distributions of the nucleons. The modeling of
a typical many-body nucleus (A > 3) at this scale is based on the independent single-particle
(s.p.) model, where nucleons move independently within a mean-field potential. The single-
particle potential can be obtained using a Hartree-Fock technique, with three-body forces
and density dependencies added later.

Since the electron scattering can transfer a rather low energy combined with a large
momentum, it favors the direct interaction with a single nucleon. Among those kinematics,
the quasielastic regime is the most suitable for the study of the single particle structure of
the nucleus. The quasielastic regime is centered around an energy transfer w = Q%/2M
(zp = 1), where M is the mass of the nucleon and @ is the four-momentum transfer. This
is the same relation as for the free electron-nucleon scattering process. In a quasielastic
(e,€'N) reaction, all the energy and momentum of the virtual photon can be transferred
to the outgoing nucleon, so that energy and momentum conservation allows the initial
nucleon’s energy and momentum to be specified. Coincident (e, e'p) measurements can be
used in conjunction with the plane wave impulse approximation (PWIA)! to determine the
combined nucleon-hole energy and momentum distribution, the so-called spectral function
of the target nucleus.

During the last forty years, coincident (e,e'p) scattering has been extensively used to

probe the single particle properties of nuclei, starting with the pioneering experiments of



Amaldi et al. in 1964 [1] and Campos Venuti et al. in 1973 [2], which demonstrated the
existence of shell-model orbitals. Experimental work in this field was later pursued in Tokyo
(Nakamura et al. 1976 [3]) and Saclay (Mougey et al. 1976 [4], Frullani and Mougey 1984 [5]),
where the properties of the bound and outgoing nucleon wave functions were investigated in
detail. More recent measurements were performed at NIKHEF (de Witt Huberts 1990 [6],
Leuschner et al. 1994 [7]), MIT-BATES (Finn et al. 1984 [8], Lourie et al. 1986 [9], Ulmer
et al. 1987 [10], Weinstein et al. 1990 [11], Holtrop et al. 1998 [12] , Dolfini et al. 1999 [13]),
Mainz (Blomqvist et al. 1995 [14]) and in the last several years at TINAF (Gao et al. 2000
[15], Ulmer et al. 2001 [16]).

While (e, €'p) can conclusively establish single particle knockout as the dominant reac-
tion channel, this reaction has sufficient sensitivity and selectivity to idetify and characterize
secondary processes. There is evidence to suggest that other reaction channels contribute
to the strength in this region, like meson exchange currents! (MEC), A-isobar! configu-
rations, multi-nucleon knockout or final-state rescattering. Gaining an understanding of
these secondary processes has become the subject of intense experimental and theoretical
investigations.

The first findings came from measurements involving the Rosenbluth separation of the
longitudinal and transverse components of the cross-section. If the process taking place
at quasielastic kinematics would be truly quasifree, then the longitudinal and transverse
components of the spectral function, Sy, and St, should be equal. This is because Sp,
and St correspond to the probability of finding a nucleon by coupling to its charge or by
coupling to its magnetism, respectively. Indeed, in measurements of the coincidence (e, e'p)

reaction in quasielastic kinematics on 3He, the longitudinal and transverse components of

!explained in chapter 2



the spectral function S and Sy were found equal, as expected [17, 18]. However, for
heavier nuclei like *He or '2C the picture gets more complicated. Ducret et al. found out
that the longitudinal strength in “He is suppressed with respect to the transverse one by
20-40% [19]. For '2C at quasielastic kinematics, Ulmer et al. (1987) found Sz and St to be
equal for two-body breakup but observed an enhancement of St over Sy, at higher missing
energies. It was speculated that the enhancement may come from some new transverse
process involving two or more nucleons.

One of the main requirements towards a quantitative interpretation of the data is a
better understanding of the final-state interaction (FSI) supported by a relativistic theory
that includes single-nucleon, multi-nucleon and non-nucleonic degrees of freedom [20]. Our
theoretical colleagues can provide us now with advanced models that include these ingre-
dients. To gain a clear understanding of FSI effects, these models need to be tested on
experimental observables that are especially sensitive to final state interactions.

The effects of FSI can not be separated directly in a cross-section measurement. They
can be identified, however, through their interference with the dominant process. Thus the
ideal observable is the beam helicity asymmetry, A’ 1., because it arises from the interference
between the amplitudes corresponding to direct knockout and to rescattering through FSI
[21, 22].

In general, A’ corresponds to the longitudinal-transverse interference component of
the hadron tensor. It vanishes whenever the reaction proceeds through a channel with a
single dominant phase because in this case the hadron tensor is real. Therefore, at least two
interfering complex reaction amplitudes with different phases are necessary to produce a
non-zero A’ . Al is expected to be highly sensitive to FSI and much less to other effects

like, for example, MEC. A’ ;- provides the best observable for monitoring rescattering effects



in knockout reactions [23]. This observable lets us test our models in the intermediate Q?
region which is not yet well understood. The DWIA? is the usual approach at low four-
momentum transfer (Q? < 1GeV?/c?). At high Q?, where the scattering becomes highly
diffractive, the potential description becomes impractical and Glauber multiple-scattering
theory becomes the natural framework for the qualitative description of FSI. For the inter-
mediate region we have the optical model in eikonal approximation (OMEA)! developed by
the Gent group [24] with the purpose of bridging the two regimes.

Measurements of A, require polarized electron beams. In this case the differential
cross-section contains two terms: a helicity-independent term 3 and a helicity-dependent
term hA, with h standing for the electron helicity h = +1. They can be separated in the

helicity asymmetry A’ defined as'

dot —do~ A
! e
'™ dot +do— % (1.1)

and measured by simply flipping the beam helicity. In this formula, the dot and do~
denote differential cross-sections corresponding to the “41” and “~1” helicities, respectively.
Uncertainties induced by acceptance are in this case eliminated and microscopic factors are
not required for comparison with the theory.

In the past, spin degrees of freedom were seldom considered, mainly due to the technical
difficulties raised by the task of preparing polarized beams and targets. Since reliable high-
current polarized electron sources are available, at Mainz, MIT-Bates and NIKHEF, for
intermediate-energy physics, and at TINAF for higher energies, measurements of A ;. have

became possible. Two previous measurements of A}, were carried out at MIT-Bates by

2explained in chapter 2



Mandeville etal., 1994 [25] and Jiang etal., 1998 [26]3. The measurements of Mandeville
et al. revealed that the A’ , shows a great sensitivity to the choice of the optical model
and that only small corrections are necessary to compensate for the effects due to A-isobar
configurations. Jiang et al. found reasonable agreement between the measurements of A’
and DWTA predictions. One issue that both Mandeville et al. and Jiang et al. agreed upon
is that more data, with higher statistical accuracy, would be necessary in order to further
test the existing models.

To date, no measurements of A’ in ‘He were done. But “He is interesting in that
that it is a simple enough nucleus to be modeled theoretically and, despite being a four-
body system, “*He is a high density nucleus. The latter is a good reason to believe that an
exhaustive analysis of FSI effects in *He would give a good insight to the significance of
these effects in heavier nuclei.

The object of this thesis is a survey of A, asymmetries in (€, ¢'p) reactions on 12C and
“He in the quasielastic regime, exploring kinematics not previously accessible. The focus is

on the following issues:

1. How much of the strength in the quasielastic peak is due to something other than

direct knockout ?

2. Can a low luminosity, large acceptance device achieve sufficient statistics on these

asymmetries in fine enough kinematic bins to make relevant comparisons ?

3. What is the nature of the non-quasielastic strength in the quasielastic peak and can

present models account for it ?

4. We have models which successfully reproduce the L, T', LT components of the cross-

3see footnote for Jiang et al. in Chapter 2



section. Are they comparably accurate in describing the LT" term ?

The outline of this thesis is as follows. In Chapter 2 the formalism for the relevant A(€,e'p)
observables and kinematics is reviewed and a brief description of the theoretical models
is given. A brief discussion of the previous measurements of A’ is also included. The
experimental setup at TINAF (JLab), where the measurements were taken, is presented in
Chapter 3. The analysis techniques, including detector calibrations, data corrections and
cuts, are discussed in Chapter 4. The physics extraction and the comparison with theory

are done in Chapter 5, which ends with a summary and an outlook.



CHAPTER 2

THE (€, e¢'p) REACTION

The extraction of physical information from measured A(€,e'p) asymmetries involves some
theoretical modeling of which the major ingredients are: (1) the initial bound state, (2) the
final scattering proton wave-functions and (3) electromagnetic electron-nucleus coupling.

At lower values of Q? (Q? < 1GeV?/c?), the usual approach is the use of DWIA (dis-
torted wave impulse approximation), well tested by more than two decades of high-quality
electron scattering data. DWIA is based on the assumption that the initial (bound) and
final (scattering) states of the struck nucleon can be computed in a potential model while
the off-shell electron-nucleus coupling can be put in a corrected electron-proton form. At
high momentum-energy transfer (Q? > 1 GeV?/c?), most theoretical work is based on a
Glauber model [41]. The Glauber theory is very successful in describing small-angle proton-
nucleus scattering at higher energies [42] and is considered as a baseline for calculating the
effect of final state interactions in high-energy (e,e’p) reactions. The Glauber theory is a
multiple-scattering extension of the standard eikonal approximation that relates the ejected
particle’s distorted wave function to the elastic proton scattering amplitude by means of a
profile function [43].

A fully relativistic model for the description of A(e,€'p) reactions that bridges the gap

between the low and intermediate energy regimes, described in [24, 44], was used for the



calculations that accompany our data. Structure functions and polarization observables cal-
culated with these models were previously successfully tested against *he, 2C and '60 data
[45]. The longitudinal-transverse response function was found to be sensitive to relativistic
effects.

In the first sections of this chapter we will define the kinematic variables and review
some cross-section basics. Then a brief account of the ingredients of the three theoretical
models mentioned above will be given. The chapter will close with a detailed discussion of

the previous measurements of A’ ..

2.1 KINEMATICS

In one-proton knockout experiments, an electron and a proton are detected in coincidence
and therefore their energy and momentum are measured. If only one reaction channel is
open, i.e. if the state of the residual nucleus is fixed through the kinematics, then we have
an exclusive reaction. On the other hand, if the residual nucleus is left in a continuum
state and can fragment, one is dealing with an inclusive reaction where more complicated
processes take place.

The one-photon-exchange approximation (OPEA) will be used here. This approximation
assumes that the incoming electron and the nucleus (nucleon) interact through the exchange
of one single virtual photon. The OPEA approximation is easily justified in QED by the
fact that the probability for each additional photon exchange is diminished by a factor of
Zar Z[137 K 1.

Electron scattering in the one-photon-exchange approximation is schematically shown
in figure 2-1. The target nucleus has A nucleons. Except for g, where we use the convention

Q? = —q,q” > 0, we denote the four-vectors by capital letters K, P, P’ etc. and the three-
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ieJH(P,, P', P)

¢ %)

Figure 2-1: Lowest order graph for the exclusive (€,e'p) electron scattering process.

vectors by bold lower case letters q, k, p,p’ etc.

The missing energy F,, and momentum p,, can be reconstructed as:

En=w-T,-T,; pm:q_pl (2.1)

where ¢ = k—k’ and, w = E.— E! are the momentum and energy transferred by the electron,
respectively, T}, is the outgoing proton’s kinetic energy and T; is the kinetic energy of the
recoiling system.

If final-state interactions (FSI) can be neglected, then p,, would be equal and opposite
to the initial momentum p of the emitted proton, thus giving information about the energy
and momentum distribution of the protons in the nucleus.

Referring to the threshold separation energy of the proton,

AE:mp—}—MA,l—MA

one obtains from (2.1)
Ep = AE + E* (2.2)

where E* is the excitation energy of the residual nucleus A-1.
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Figure 2-2: Kinematics for the semi-exclusive (€, e'p) process. (figure from [13]).

2.2 THE (€, e'p) DIFFERENTIAL CROSS-SECTION

Electron scattering in the one-photon-exchange approximation (OPEA) described by the
diagram in Fig. 2-1 is schematically illustrated in figure 2-2. An electron of initial energy
E. scatters through an angle 6, to a final energy E.. The scattering and reaction planes are
explicitly shown. The target nucleus is denoted A and the recoiling system is denoted B.
The ejected proton is detected in coincidence with the scattered electron e’. The coordinate
system is chosen so that the z-axis lies along the momentum transfer g and the y-axis is
perpendicular to the scattering plane, parallel to k X k’. In the ultra-relativistic limit the
electron helicity states h = +1 and h = —1 correspond to spin parallel and antiparallel

to k, respectively. In diagram (2-1) the virtual photon is represented by the propagator

DF(Q)/W = ig,w/QZ.
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The differential scattering cross-section in the laboratory frame can be written as [40]:

_1m2

do — deMdp,.mpdp
BE

E, (2m)° By (27)°

-(2m)*sW(q+P - P - P,) (2.3)

where 8 = |k|/E, = |ve| = 1 and the sum corresponds to the appropriate average over the
initial states and sum over the final states. The invariant matrix element M ; corresponding
to the given process depends on the electromagnetic electron current j,(K’,S’; K, S) and

nuclear electromagnetic transition current J*(P,, P'; P)y; as

E.E! '
Myi= ey | =t ulK', S5 K, 8) oy (P P P (2.4)
€

where (—e) is the electron charge.
In semi-exclusive measurements, the momentum of the residual nucleus is not deter-

mined and then one can integrate (2.3) over p, to obtain

d>o mim, M,
dE.d0.dQ, = ( m)® M Jrec Z|Mf’t (2.5)
e

where M, is the mass of the recoiling A — 1 system and f,.. is the hadronic recoil factor

wp' — qE, cos Oy,

free = ‘ 1+ M, (2.6)
and 6, is the angle between g and p, (see Fig. 2-2). It is customary to write
e 2 Ao 2 Q! g
D IMul* =57 ) (K SHE S)W Q) (2.7)

if

where o = €2 /4m ~ 1/137 is the fine structure constant and I, (K’, S"; K, S) and WH(Q) f;
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are the leptonic and the nuclear tensors, respectively, defined as

Lw(K', S5 K, S) = 3 (1K', 8 yute(K, )" (Te(K', ) 1ue(K, S))  (2.8)
if

WHQ) = 3@ (Q) (2.9)
if
The tensor W*((Q) incorporates all the structure and dynamics information about the
nucleus, but as we said, the leptonic tensor [, contains no secrets.

In general, the cross section (2.5) for the scattering of arbitrarily polarized electrons
from nuclei contains up to four types of terms, depending on whether the incident and/or
scattered electrons are polarized [39]. In our experiment, a longitudinally polarized beam
is employed but the spin of the scattered electrons is not measured. In these conditions,
Lw(K',S; K, S) =1,,(K'; K, S) and we retain two terms only

doo h
e =Y¢ +hAy; 2.1
(dEédQede) fi sithAsi (2.10)

where fi refers to the transition from an initial state labeled ¢ to a final hadronic state
labeled f which involves the final nuclear state F, accompanied by the emission of a proton
p', and h is the helicity state. The term X; is independent of the electron polarization.

If one does the algebra, one finds out that the contraction of the electron and nuclear

tensors from (2.8,2.9) can be put in the form [40]:
4m? 1 (K K, SYWH(Q) i = vo ¥ viR; (2.11)
i

where the label ¢ takes the values L, T, LT, TT,T', LT', TT, LT, LT'. These labels refer to

the longitudinal and transverse components of the virtual photon polarization and therefore,
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they correspond to the electromagnetic current components with respect to the direction
of ¢ = k — k’. Double subscripts indicate interference terms. For longitudinally polarized
beams, the underlined factors are suppressed by a factor of m./E,. In the energy range
in which our experiment was done, m./E. < 1 and we neglect these terms. More, if the
target is unpolarized, the T term vanishes as well. Now the nuclear structure and dynamics
information is contained in the response functions R; and the electron kinematics in the

factors! v;:

2
= (i)
q|?

Q* 9 Oc
v = + tan® —
2|g/? 2
vrT = — Q2
2|q|?
1/2
LT = —Q72( Q’ +tan2&>/
lq|2v2 \ 2|q/? 2
2
' Q Oe
= ————tan— 2.12

and v, is defined as v, = (E. + E.)? — |g|%. If we want the azimuthal dependence on ¢, to

be shown explicitly, the differential cross section in the laboratory frame (2.10) looks like

doc h
(dEédQede> i = Koy (vrfr +vefr + vrrfrrcos 2¢pq + vpr frT COS qbpq

+ v frrsingpg) = Dpi 4+ hAg (2.13)

or is the Mott cross section, corresponding to elastic Coulomb scattering from an infinitely

lin our notation, the prime from the label is moved to the function name, e.g. vpr — vip
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massive point target, and K includes the phase-space and recoil factors:

— o? 60,824(96/2) K- myM, p, 7-_ei
4E? sin*(0,/2) 83 Ma

(2.14)

The response functions which make up the cross section (2.13) provide independent
observables which are sensitive selectively to various aspects of the nuclear current. Hence,
in addition to measuring cross sections, the extraction of these additional observables can

considerably help us achieve a complete picture of the structure and dynamics of the nucleus.

2.3 BEAM HELICITY ASYMMETRY

The contribution of the LT term from (2.10) to the total cross-section (2.13) can be ex-
perimentally measured with minimal systematic errors in the form of the beam helicity

asymmetry:
, dPot —d’0~

LT = For + do— (2.15)

where o and o~ are the cross sections corresponding to positive and negative incident
electron helicity, respectively. Due to its complex dependence on ¢, the A’ asymmetry
gives a precise account of the relative strengths of the relevant amplitudes:

A — VprfLr Sin ¢pg
LT =
vrfr + vr fr +vrr for cos ¢pg + vrr frr €08 26,

(2.16)

In what follows we will investigate what type of theoretical models could be used to predict

the behavior of A’ from (2.16).
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2.4 INITIAL BOUND STATE

The traditional approach to the study of nuclear structure and the nucleon-nucleon in-
teraction used to be a non-relativistic Scrodinger framework, where nuclei are regarded as
bound states of nucleons interacting via two- and three-body potentials. More sophisticated
nucleon-nucleon potentials accommodate meson exchange currents as well as relativistic ef-
fects (section 2.7.2).

Following the discussion from [24], relativistic models have several advantages compared
to the non-relativistic ones: in a field-theoretic approach the mesonic degrees of freedom
can be implemented right from the start and the relativistic kinematics and spin-orbit
interaction (which is inserted by hand in non-relativistic approaches) emerge naturally.

The modern approach is based on a relativistic quantum field theory where nucleons
interact with each other by exchanging mesons, as originally introduced by Walecka in [50].
In the “o — w” model, which is an extension of the Walecka approach, nucleons (1)) interact
with scalar mesons (¢) through a Yukawa coupling (11$) and with neutral vector mesons
(V) that couple to the conserved baryon current 1/_17“1/). The model was extended to include
7 and p mesons, as well as coupling to the photon field. The Lagrangian density used in

[24] is:

L= §D My + 50,60 — m2) — 1GuG" + SV, VP (217)

_ _ 1 -
— 9Py VHE + gshipd + 5(3u7f SOMT — mEAT ) — igrpysT - T

1 1 1 - 1
— ZBWBW + im?)bu -b* — igpwfyu‘r - bp — ZFWFW

— AW+ )+ (by x B3+ (m x (9 -+ gy(m x B))y]
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with M the nucleon mass, ms and m, the scalar and vector meson masses, w, b, and 4,
the pion, rho and Maxwell fields, respectively, while B#Y and F*¥ are the rho meson and
electromagnetic field strengths.

The complete problem is approximated by replacing the meson fields with their expec-

tation values:

(8(r)) = do(r) (VE(r)) = 6"Vo(r) (2.18)

The infinite-matter approximation from [50] was replaced by a relativistic Hartree approx-
imation which leads to a theory similar in content except that one has to deal with a finite
system.

The Hartree approximation leads to a set of coupled equations for the fields. The
entering nucleon masses and coupling constants are taken from experiment or calculated
from limit conditions.

Starting from an initial guess of the scalar and vector potential in a Woods-Saxon form,
the Dirac equations are solved iteratively. Once the nucleon wave functions are obtained,
the densities of the meson fields are reevaluated.

The initial bound-state wavefunction used with DWIA is calculated within the NLSH

model of Sharma, Nagarajan and Ring [92].

2.5 KELECTRON-NUCLEON COUPLING

The matrix elements of the nucleon current are written as

Py, S¢|JHPS;) = @p(Pyr, S§)TH (", Py, P)ui(P;, S;) (2.19)
[HRf F\EfoRf !
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where I'* is the electromagnetic vertex function for the nucleon and u;, uy are the nucleon
spinors. For a free nucleon, I'* can be expressed in several fully equivalent forms, of which

the most widely used are

K
Pew = Om(Q@m = g - Fa(Q)(FY + Pp) (2.20)
. R v
Tr = Fl(QQ)WH%Fz(Q?)a“ W (2.21)

Here F; and F5 are the Dirac and Pauli form factors, respectively, o# = %z’(y“*y” — M),
and G = F] + kF5 is the Sachs magnetic form-factor where k is the anomalous magnetic
moment of the proton. When considering bound (off-shell) protons, however, the above
functions are no longer equivalent.

In calculations of (e,e’p) reactions on finite nuclei, current conservation is restored by

hand, using one of the substitutions

Jo — %J3 — Jy = (%Jg,J1,J2,J3) (2.23)
or, for example
Juvg”
Juy = Iy + 7%1

The expression (2.22) is in general preferred because the charge distribution Jj of the target
is usually better known from experiment. However, the ambiguities introduced by the choice
of one or the other current conservation restoration scheme decrease with increasing Q2 [24].

The transition matrix element (2.4) corresponding to the electron scattering process in
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its most general form is

Mfz' = juH;wJV (2.24)

where j, is the leptonic (electron) current and II,, is the photon propagator which reduces
in the Feynman gauge to D,, = ig,,/ Q?. The explicit form of IT,, is gauge dependent
and, in consequence, so is the matrix element. The most frequently adopted is the Coulomb

gauge where My; is written as
MCoulomb = ?]OJO - @ (.7 J = %) (2.25)

which is the result of using the Feynman propagator in (2.24) with the substitution (2.22)

for the nucleon current. Another choice would be

Mweyi = —& (j J - (‘1'2#) (2.26)

obtained in the same manner but using (2.23) this time.

2.6 FINAL STATE INTERACTIONS

The most straightforward approach to (e, e'p) scattering is the plane wave impulse approx-
imation (PWTA), where the wave function of the outgoing proton is approximated with a
plane wave as if the outgoing proton does not interact with the residual nucleus anymore.

When this residual interaction is to be considered, though, some corrections to this
simplistic model are needed. When the final state interaction is taken into account as a
distortion of the wave function of the outgoing proton, one gets the next approximation,

the DWIA, where the D’ stands for ’distorted’. In this model, the interaction between the
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outgoing proton and the residual nucleus is modeled by an optical potential.
At high four-momentum transfers, the optical potential approach becomes inaccurate
since the scattering is increasingly diffractive. The final state interaction is then modeled

as multiple rescattering of the outgoing proton on the individual nucleons.

2.6.1 IMPULSE APPROXIMATION

The impulse approximation (IA) is based on the assumptions that the nucleus can be treated
as a collection of noninteracting nucleons and that the dynamical behavior of the individual
nucleons is not modified by the nuclear medium. In these conditions, the nuclear current
is given by the sum of the currents of the individual nucleons treated as free particles, i.e.
J* is written as

JH(Py, P P) i = JM(Q) i = uyTH(P', Pi)u; (2:27)

with P; the initial proton momentum within the nucleus, u; and us the proton (distorted)

spinors and I'* the electromagnetic vertex function for the nucleon.

2.6.2 PLANE WAVE IMPULSE APPROXIMATION

When the impulse approximation (2.27) is used in conjunction with the assumption that
the outgoing proton wave function can be approximated with a plane wave (no FSI), one

obtains the Plane Wave Impulse Approximation (PWIA).
(-)

In general, the scattering state x,,

and the bound state 1 g, are solutions of the eigen-
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value equations:

ZHml wl Ea — E¢m,Ea (2.28)

Z H(E+w)xis, = (B+w)x b, (2.29)

where H,,;(E) is a one-body Hamiltonian of the Feshbach form but referred to the residual
nucleus. The |Ea) are the eigenstates of the residual nucleus with A-1 nucleons characterized
by the energy E and an additional set of quantum numbers a [23].

In the PWIA the scattering wave function in momentum space Xga) from (2.29) becomes

a delta-function centered on the observed momentum of the outgoing nucleon. In this

approximation, the integral

THQ)fi = / dp 4T x5) (p + @) (J% 1) Ea(P, @) 50 (P) v/ Sa(E) (2.30)

can be performed immediately with the result that in the coincidence (e, €'p) cross-section a
factorization is possible between the electron-nucleon interaction and the nuclear structure
part given by the diagonal spectral density S(F,p). The PWIA cross-section has the form:

oo

I — 2.31
dEédQede KaepS(Eap) ( 3 )

with K given by (2.14) and oy, is the off-shell electron-proton cross section [49]. The spectral
function S(FE, p) contains all the information on the single particle properties of the nucleus.
Equation (2.31) tells that this type of reaction is able to give detailed information on the
single-particle structure of the nuclei.

The explicit expressions for the structure functions f; (eq. 2.13) are easily obtained in
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PWTIA. The nuclear structure part of the electron-nucleon interaction can be factorized out

such that:

fi=S(E,p)gi (2.32)

where the index i is the one from (2.11) and the functions g; contain the separated contri-
butions to the elementary electron-nucleon scattering cross-section.

The PWIA is able to reproduce the qualitative features of the nuclear response and
in particular it explains the peaks in the cross-section that reflect the shell structure of
the nucleus. However, it can not give a quantitative description of the experimental data.
The most important correction needed is for the effects of FSI, as will be discussed in the

following subsection.

2.6.3 DISTORTED WAVE IMPULSE APPROXIMATION

)

. is an eigenfunction of the Feshbach Hamiltonian

In general, the nucleon scattering state y
HY(E; +w) from eq. (2.29). The solution to this problem is simplified in DWIA by replacing
‘H with an optical potential, which simulates the medium-field interaction between the
residual nucleus and the ejected nucleon. The optical potential is complex with a real part

describing the average potential energy of the nucleon crossing the nuclear medium and an

imaginary part which takes into account the loss of flux due to inelastic processes.

2.6.4 FEIKONAL APPROXIMATION

This approximation covers a situation in which the potential V' (r) varies very little over a

distance of the order of a wavelength A\ (which can be regarded as small). The potential

itself need not be weak as long as E > |V/|. The exact wave function ug: S) is replaced by
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Figure 2-3: Diagram for the semi-exclusive (e,e’p) reaction. The DWIA adds to the PWIA diagram
the FSI, symbolized here by the shaded area.

the semi-classical:

ugg = e"p'reis(”x%ms (2.33)
with the eikonal phase
z
S(b,7) =" / 47 {Vi(b, 2') + Vig(b, 2') X [0+ (b x K) — ']} (2.34)
—0Q0

where we introduced the notation r = (b, z), V. and Vj, are the central and spin-orbit

components of the potential V', respectively, and k is the average momentum defined as
]‘ ’
K= 5(1’ +q)

where g = p’ — p, and ¢ > p;. In quasielastic regime that we calculate, will set ¢ = p’.
1
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2.6.5 OpPTICAL MODEL EIKONAL APPROXIMATION

The OMEA is an optical model based on a fully relativistic framework, using a relativistic
optical potential in conjunction with the eikonal approximation. Its validity ranges from
intermediate to high Q2.

The inelastic contributions to the exit channel are taken into account by the complex
optical potential constructed from fits to nucleon-nucleus data. The scattering wave function

is proportional to

1
(_|_) _ FE —I—mp iS(’I‘) .
Ups = /727% e exp(ip - ) Xim, (2.35)

1
Ty tVo—Vi (7 P)

with the eikonal phase given by (2.34) and V. and Vj, obtained from global optical potential

fits. It is normalized so that:

lim voh(r) = Op A (r) (2.36)

The optical potential used with the OMEA calculations contained in this thesis is that of
Cooper et al. [48]. By fitting proton elastic scattering data in the energy range of 20-1040
MeV, they succeeded in obtaining a set of energy-dependent potentials for 12C , 4°Ca, %0Zr

and 2%8Pb 2. The general form of their potential is:

U(r,E,A) = V(E,A)f"(r,E,A)+V*(E,A)f°(r,E,A) (2.37)
—iWY(E,A)¢"(r, E, A)

W (B, A)g* (r, B, A),

2but not for ‘He
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where the superscripts v and s refer to volume and surface peaked terms and the geome-
tries are parametrized through the functions fY(E,A) = fY(R(E,A),a(E,A)). Same for
f%,9%,9°. The energy and mass dependence of the potential are parametrized in a set of
polynomials in the expressions of V(FE, A), R(E, A) and a(E, A). The model provides a set
of 264 parameters, which are determined by comparison with the data.

One must note, however, that in OMEA the optical potential is used in a completely
different manner compared to DWIA. While the OMEA uses (2.34) to integrate along the
path of the outgoing nucleon, the DWIA solves (2.29) with the Hamiltonian replaced by

the optical potential.

2.6.6 RELATIVISTIC MULTIPLE-SCATTERING GLAUBER APPROXIMATION

For proton kinetic energies T;, > 1GeV, the use of optical potentials appears no longer
justifiable in view of the highly inelastic character of the elementary proton-nucleon scat-
tering process. An alternative is offered by an extension of the eikonal method, namely the
Glauber multiple-scattering method.

The RMSGA is a relativistic generalization of the Glauber approach, in which the

wavefunction of the escaping proton is written as:

—=S exp(ip - ) X1m, (2.38)

The operator S defines the action of subsequent collisions that the outgoing proton under-

goes with the spectator nucleons

A

S(’I‘, ro,r3,... ,’I‘A) = H [1 — F(b - bj)9(z — ZJ)] (239)
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where 6(z — z;) ensures that the ejectile only interacts with other nucleons if they are
localized in its forward propagation path. The spectator nucleons are considered as frozen
and the collisions are considered elastic or mildly elastic. I'(b — b;) is the profile function

for elastic pN scattering

tot

o V(1 —iepn) b2
o = i o () o

with the proton-nucleon scattering parameters taken directly from nucleon-nucleon scatter-
ing measurements (appendix D.1). These parameters are the total pN cross-section a;%,

the slope parameters 3,n and the ratios of the real to imaginary part of the scattering

amplitude e,y .

2.7 REVIEW OF PREVIOUS EXPERIMENTS

2.7.1 Cross-section measurements

The analysis of the 2C(e, €/p) reaction gives a nice example of what can be learned from
quasifree electron knockout on light nuclei. This reaction has been studied in great detail
and with high-resolution experiments [3, 4, 9, 10, 11, 12].

Figure 2-4 shows missing energy spectra of the '2C(e, e/p) reaction from experiments
done in 1976 at Saclay [4] (a) and Tokyo [3] (b). Three regions, present on the missing energy
spectrum of all nuclei, can be seen on (Fig.2-4.a): at low E,, they are peaks corresponding
to the valence states, then weakly excited states and at higher energy a large bump appears
containing the continuum states, corresponding in 12C to proton knockout from the (1s; /2)
level or to more complicated mechanisms.

High energy resolution (~ 1MeV) of the Mougey et al. experiment allows to isolate
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Figure 2-4: Missing energy spectra for the 2C(e, €'p) reaction, within different missing momentum
(pB) bins: (a) from J. Mougey et al. [4] (1976). (b) from K. Nakamura et al. [3] (1976). The data
is well reproduced by DWIA.

the first few levels of the residual ''B nucleus (Fig. 2-4.a): the ground state (37) at
approximately 16 MeV in E,,, the E, = 2.12MeV excited state (%_, E,, ~ 18MeV) and
the B, = 5.02MeV state (3, E,, &~ 21 MeV). The relative strengths of the three p-states
were measured to be 74, 13 and 9%, respectively, with a residual 4% attributed to higher
excitations. A short-lived, low-energy component of the 1s-hole strength for the %+ level
(Ez = 6.79MeV) can be seen as a wide peak centered around 40 MeV on Fig. 2-4.b. The
spreading of the 1s-hole strength indicates the breakdown of the simplest single-particle
(IPSM) picture.

Figure 2.7.1 shows the missing energy spectrum measured by R. Lourie et al. [9]. The

two p-shell excitations mentioned above (%_ and %_) are not resolved here. A uniform
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Figure 2-5: Missing energy spectra for 12C(e, e'p) at quasielastic kinematics from R. Lourie et al. [9].
The area above the dashed line is attributed to the s-shell.

continuum strength is found in the missing energy region extending from the s-shell up
to the highest measured value. This strength can be partly attributed to two-body and
multinucleon emission.

A more recent experiment on '®0 could be cited in order to illustrate the presence
of multi-particle contributions at high E,,. 10 has been a favorite nucleus for theorists,
being a doubly closed-shell nucleus whose structure is easier to model than other nuclei.
Experimentally, oxygen has been studied extensively. However, it is not as convenient a
target as carbon for example, hence less experimental data are available from 9O(e, e'p)
reactions [7, 14].

Figure 2-6 shows cross-sections measured by N. Liyanage et al. for 60(e,e'p), as a
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function of missing energy at Fpeqm = 2.4 GeV, for various proton angles 2.5 < 6,, < 20°.
The average missing momentum increases with 0, from 50 MeV /c to 340 MeV/c. The
data are accompanied by several sets of calculations. The prominent peaks at 12 MeV
and 18 MeV in F,, are due to p-shell proton knockout. At the lowest missing momentum,
Pmiss = 50MeV/c, the broad peak centered at E,, = 40MeV is due predominantly to
knockout of protons from the 1s;/; state. With increasing py,ss, this peak is less prominent
until it vanishes completely beneath a flat background for pp,ss > 200 MeV/c. At these
values of missing momentum or for E,, > 60 MeV the cross-section does not depend on E,,
and only very weakly of ppiss.

DWIA calculations by Kelly [53] accurately describe the 1p-shell cross-section up to
missing momenta of 340 MeV /c (see also. J. Gao et al. [15]). At larger pp;ss, the DWIA
cross-section is much smaller than the measured one. Relativistic DWIA calculations by
other authors [55] show similar results, confirming the attribution of the large missing mo-
mentum cross-section to non-single-nucleon knockout. The importance of these mechanisms
increases with p,;ss such that at missing momenta above 300 MeV /c they become dominant.

The (e, e'pn) and (e, €'pp) contributions to (e, e'p) are taken into account by the Rycke-
busch calculation [54] including pion-exchange currents, IC as well as central and tensor SRC
(dashed line on Figure 2-6). The flat cross-section predicted by this calculation is consistent
with the data but it can account for only half of the measured cross-section. This hints
toward additional contributions from MEC and two-nucleon knockout [52]. Measurements

of additional observables are needed to verify these contributions.
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Figure 2-6: %0(e, 'p) cross-section measured at different outgoing proton angles as a function of
missing energy from N. Liyanage et al. [52]. The curves show the single-particle strength calculated
by J. Kelly (s-shell only, solid curve) and by J. Ryckebusch (dashed curve), folded with the Lorentzian
parameterization of Mahaux. The dotted line shows the Ryckebusch et al. calculations of the
(e,e'pn) and (e, e'pp) contributions to (e, e'p) including MEC, IC and central correlations, while the
dot-dashed line also includes tensor correlations. (from N. Liyanage et al. [52]).
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2.7.2 A’ , measurements

Two experiments measured of A’ . in 12C(e, €'p) reactions, both at the MIT-Bates labora-
tory. To date, we are not aware of any measurements of A’ with “He targets.

The first measurement of the helicity asymmetry on '2C was carried out in 1994 and is
reported by Mandeville et al. [25] and Dolfini et al. [13]. They used a 560 MeV beam with a
duty factor of 0.6% and a polarization Pg = (34 & 4)%. P-shell proton knockout data were
taken for the '2C (e,e’p)!!B reaction in the quasielastic kinematics at a momentum transfer
g = 370 MeV/c. Measurements were made for two different angles (21° and 29°) of the
outgoing proton momentum with respect to the momentum transfer q, with an out-of-plane
spectrometer (OOPS) located at ¢,y = 90° (above the scattering plane). By performing
an absolute measurement of the helicity-independent part of the cross-section, they also

extracted the fifth response function:

Their results are shown in figure 2-7, along with DWIA calculations. The point at 6,, = 0°
in Fig.2.7(a), taken as a systematic error check, is measured with deuterium in parallel
kinematics, where f;, should be null. The theoretical calculations that accompany the
three data points were performed in the DWIA framework employing different mean-field
optical models to describe FSI.

Figure 2.7(a) is taken from reference [25]. The optical potentials used with DWIA are
the ones of Schwandt et al. [57] and Comfort & Karp (CK) [58]. Figure 2.7(b) is taken from
reference [13]. The optical potentials used are the ones of Schwandt et al. (S), Comfort &

Karp (CK), Giannini & Ricco (GR) [60] and Jackson & Abdul-Jalil (JA) [59].
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Figure 2-7: The A%, asymmetry and the fifth response function f}, measured in 2C(e,e'p)!'B
reaction at ¢ = 370 MeV/c, Q2 = 0.13 GeV?/c?, for p-shell knockout, measured at BATES [25, 13].

The theoretical curves are explained in the text.
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Each potential includes real and imaginary central terms and a real spin-orbit com-
ponent. The S and JA potentials additionally include very small imaginary spin-orbit
contributions. The CK and S potentials use volume wells for the imaginary central term,
while GR and JA use surface absorption. The S and CK potentials are quite similar in
strength and shape but they differ mostly at small radii. The JA potential has a much
smaller depth of the real and imaginary central wells. The real spin-orbit part of JA is
sharply peaked at a radius that is small compared to those of the other potentials. The GR
potential produces an asymmetry that is not very different from S and CK, yet the shape of
its imaginary central well is much different from the one featured in those potentials and GR
has a smaller depth of the real spin-orbit well. Comparatively with the cross-section, where
only the absorbing imaginary central term of these potentials produces a visible effect, in
the asymmetry all terms were found to contribute significantly [13]. However, we must note
that more recent discussions [56] revealed that the optical potentials of Schwandt et al. (S)
[57] and Jackson & Abdul-Jalil (JA) [59] are inappropriate for the comparison with the
Bates results. The Schwandt potential is optimized for A > 40 and 80 < T}, < 180 MeV and
does not extrapolate well in either mass or energy, while the Abdul-Jalil potential creates
particles for T, ~ 50 MeV (the imaginary central potential has the wrong sign). There-
fore, any correspondence between data and the calculations using these two potentials is
now considered irrelevant. We will tacitly exclude the respective curves from the following
discussion.

The curves in Fig. 2.7(a) are corrected for meson exchange currents (MEC) and A-
isobar configurations. These contributions were found to produce only small variations. All
calculations were corrected for Coulomb distortion of the incident electron. The results for

fr were scaled to fit the data.
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Figure 2-8: The A’ , asymmetry for ¢ = 0.35 GeV/c, w = 0.072 GeV (Q? = 0.128 GeV?/c?), for
p-shell knockout on 2C , measured at BATES by X.Jiang et al. [26]. The three curves correspond
to different choices of optical potential (explained in the text).

The 2C s-shell asymmetries measured by Mandeville et al. were complicated by the
large p-shell radiative tail. Approximating the valence shell contribution in the 32 MeV
and 45 MeV region with the peak value, they reported asymmetries of (—0.47 4+ 0.48) at
Opg = 21° and (—0.15 £ 0.56) at 0,4 = 29°.

Jiang et al. [26] measured A’ for slightly different kinematics (Fig.2-8). At the same
beam energy, they measured the A}, asymmetry for ¢ = 0.35 GeV/c, w = 0.072 GeV, for
p-shell knockout on 2C. They also measured the Ar7 and the response functions ff, and
frr. While the A’ ;. is mostly sensitive to FSI, the Arr is sensitive to the details of nuclear
structure.

For comparison with the theory, Jiang et al. used DWIA calculations with the optical

potentials of Schwandt et al. (S), Giannini & Ricco (GR) [60] and Comfort & Karp (CK)
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[58]. The three choices of potential were found to give similar predictions for A}, (see
figure 2-8), in acceptable agreement with the measured points, but they found significant
disagreements for frr.

Within the range of the data, all theory curves seem to be compatible. However, no
trend could be deduced without additional 6,4, points. The data was too limited to draw
a conclusion more interesting that “consistent with DWIA”. From this point of view, both
experiments were considered sub-optimal.

More data with higher statistical precision were deemed necessary to gauge the accu-
racy of the mean-field treatment of FSI. But the inherent accuracy of helicity asymmetry
measurements and their insensitivity to mechanisms other than FSI qualifies them as an
excellent tool not only for this task but also for evaluating effects consistently beyond the

mean-field approach. This work follows exactly in this direction.
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NOTES TO CHAPTER 2

MEC - MESON EXCHANGE CURRENTS

The nuclear environment significantly modifies the impulse approximation (IA) nuclear
current. Besides nucleons, other degrees of freedom are effective at low and intermedi-
ate energies (section 2.4). They are associated with low-lying mesons such as w (J™ =
07,1 =1,m; = 139.6 MeV/c), p (17,1,770 MeV/c) and w (17,0,783 MeV/c), together
with nucleon excitations, basically the A(1232) resonance (3/2%,3/2,1232 MeV/c). When
considering two interacting nucleons, such degrees of freedom play a role by adding a two-
body contribution too the TA current. An important part of such a contribution is due to
the exchange nature of the nucleon-nucleon interaction that arises from the charge-carrying
particles exchanged by the nucleons with the applied electromagnetic field. As the ex-
changed particle is a meson, they are known as meson exchange currents (MEC). They
are isovector contributions to the longitudinal (L) component of the current and they are
model-independent in the sense that they contain no parameters not already present in the

nucleon-nucleon interaction.

A-ISOBAR CONFIGURATIONS

The A-resonance is an intermediate configuration that gives rise to a transverse (T) current.
This belongs to the category of model-dependent currents in the sense that they can not be
deduced from the nucleon-nucleon potential or from the continuity equation for the nuclear

current.



CHAPTER 3

EXPERIMENTAL SETUP

The experiment has been performed at the Thomas Jefferson National Accelerator Facility,
in Newport News, Virginia, in April-May, 1999. The data was taken in the Hall B of
the facility and made use of the 4r CLAS detector. CLAS is the acronym for CEBAF!
Large Acceptance Spectrometer. The following sections give a general description of the

accelerator and of the subsystems of the detector.

3.1 ACCELERATOR

The CEBAF accelerator is a superconducting radio frequency (RF) electron accelerator.
It was commissioned during the early 1990s and produced its first experimental beam in
October of 1994. The accelerator delivers beam to three experimental halls, denoted as A,
B and C in figure 3-1. The construction of a fourth hall, D, is underway.

The accelerator uses a state-of-the-art photocathode gun system that is capable of de-
livering beams of high polarization and high current to Hall A and Hall C while maintaining
high polarization low current beam delivery to Hall B. An RF chopping system operating at
499 MHz is used to develop a 3-beam 1.4971 GHz bunch train at 100 keV. The beam is then

longitudinally compressed in the bunching section to provide 2 ps bunches, which are then

!CEBAF is also an acronym, standing for Continuous Electron Beam Accelerator Facility
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accelerated to just over 1% of the total machine energy in the remaining injector section.

The beam polarization, optics and energy are verified in the injector matching region prior

to injection into the main machine.
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Figure 3-1: The CEBAF Accelerator. The three blowup boxes show (clockwise from upper Lh.s.):
one of the linac cryomodules, a cross section of the tunnel with the five recirculating arcs, and a

cross section of a cryomodule.

The beam from the injector is accelerated through a unique recirculating beamline that

looks something like a racetrack (see Fig. 3-1), with two linear accelerators joined by two

180° arcs with a radius of 80 meters. Twenty cryomodules, each containing eight supercon-

ducting niobium cavities, line the two linear accelerators. Liquid helium, produced at the

Lab’s Central Helium Liquefier (CHL), keeps the accelerating cavities superconducting at

a temperature of 2 K. The linac energies are set identical and the RF cavities are phased

to provide maximum acceleration. Subsequent passes through the accelerator are phased



39

to maximum energy gain by adjusting the length of travel in the dogleg section of the pre-
ceding arc. Quadrupole and dipole magnets in the tunnel steer and focus the beam as it
passes through each arc. More than 2,200 magnets keep the beam on a precise path and
tightly focused.

Beam is directed into an experimental hall’s transport channel using magnetic or RF
extraction. The RF scheme uses 499 MHz cavities, which kick every third bunch out of the
machine. The beam is recirculated up to five times into the linacs and then delivered to
the experimental halls simultaneously.

The maximum beam energy available is approximately 5.5 GeV with an energy spread
of 0.01% or better. The maximum current is about 200pA with a beam spot size at the

target of 0.5 mm. Typical beam currents in Hall B are 2-20 nA.

3.2 THE CLAS DETECTOR

A large acceptance spectrometer is needed in experiments that require the detection of
several uncorrelated particles in the hadronic final state or in measurements where the
luminosity is limited by the beam, target or accidental background.

The CLAS is such a detector [61], having a nearly 4w sr coverage, consisting of drift
chambers to determine the paths of charged particles, gas Cerenkov counters for electron
identification, scintillation counters for measurement of time-of-flight (TOF), and electro-
magnetic calorimeters to identify showering particles such as electrons and photons. The
trigger is formed using fast coincidences between the Cerenkov counters, TOF counters or
electromagnetic calorimeters. The integrated charge passing through the target is measured
by a Faraday cup located at the end of the beam line.

The six sectors between the coils are individually instrumented to form six independent
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SC Panels

Figure 3-2: Three dimensional view of CLAS (produced with GSIM). The electron calorimeter is
shown in green, the red boxes represent the TOF counters (SC) and the dark blue boxes are the
Cerenkov counters. The three layers of drift chambers (DC) are shaded in purple. The target is
located in the center of the detector, on the beam axis.

magnetic spectrometers. This makes a good basis for the desired high-luminosity operation
and high count-rate capability.

The coverage range of CLAS in the laboratory frame is from 8° to 140° for charged
particles and from 8° to 60° for neutral particles. CLAS can detect two or more coinci-
dence particles in the final state with a signal to background ratio of 1/1000 or better at

luminosities of up to 1034 cm2sec .
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3.2.1 TOROIDAL MAGNET

The magnetic field of CLAS is generated by six toroidal iron-free superconducting coils [62]
arranged around the beam axis to produce a circular field with a maximum intensity of
about 2 T. The geometry of the coils (see Fig. 3-3), about 5 m long and 2.5 m wide, is
optimized for experiments using fixed targets and electron beams with energy in the range
of a few GeV. Each superconducting coil has 80 turns of cable in conduit conductor, cooled
with liquid helium in a forced flow scheme, ensuring the most effective heat removal. They
operate at a current of 10 kA. The magnetic field created has the maximum value in the
forward direction (2 T) and drops by a factor of five at large angles. The center region of

the spectrometer is field-free, to allow polarized target operation.

Figure 3-3: The CLAS superconducting toroidal magnet.

A magnetic field to sweep away low energy (background) electrons is generated by a
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small toroidal coil inserted into the cavity of the large superconducting magnet (Minitorus
in Fig. 3-2). The field created by this shield is small compared to the field of the main
coils, but the Mgller electron background elimination is excellent: nearly a factor of 100 in
background rejection in the region enclosed by the first drift chambers layer (DC Region 1

in Fig. 3-2).

3.2.2 DRIFT CHAMBERS

Charged particles in CLAS are tracked using multi-wire drift chambers (DC) [63]. The drift
chambers cover a geometrical range of 8° to 140° in polar angle and 80% of the azimuthal
range, and track particles with momenta above 0.2 GeV/c. The drift chambers are arranged
in three regions (Fig. 3-2): DC Region 1 is located closest to the target, within the (nearly)
field free region inside the Torus bore, and is used to determine the initial direction of
charged particle tracks. DC Region 2 [98] is located between the Torus coils, in the region
of strong toroidal magnetic field, and is used to obtain a second measurement of the particle
track at a point where the curvature is maximal, in order to achieve good energy resolution.
DC Region 3 is located outside the coils, again in a region with low magnetic field, and
measures the final direction of charged particles headed towards the outer Time-of-Flight
counters, Cerenkov counters and electromagnetic calorimeters.

Each region consists of six separate sectors, one for each of the six sectors of the CLAS.
Each region within a given sector contains one axial superlayer with up to 1200 sense wires
in six layers (4 layers in the case of DC Region 1) and one stereo superlayer with sense
wires in six layers at an angle of 6° with respect to the axial wires. This setup allows
the measurement of both polar angle § and azimuthal angle ¢ of the track. The wires

are arranged into a hexagonal pattern, with each sense wire surrounded by six shared field
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Figure 3-4: Superlayers in Region 3 of the drift chambers. Each hexagon represents a drift cell, with
sense wires at the center of the hexagon and field wires at the vertices. A track is produced here by
signals from the shaded cells.

wires (Fig. 3-4). The hexagonal configuration has been chosen as a good approximation of
the ideal circular cell in which the drift/time relation is independent of the entrance angle.
Each superlayer is surrounded with a row of guard wires to minimize edge effects.

The gas filling the drift chambers is a mixture of 9/10 Ar and 1/10 COq, which gives a
drift velocity of up to 0.04 m/us and an operating voltage plateau of several hundred volts.
The average layer efficiency is greater than 98%.

The hits within each superlayer are combined to form a track segment. Then the ob-
tained segments from different superlayers are linked together to form a track. This gives a
momentum within 5% error of the true value. In a second stage, the start time signal from
the scintillator counters is used to obtain the drift time which is converted into distance

from the center of the cell. The resolution obtained using time information is better than
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0.4%.
The DC drift time resolution is only 1 ns while proton/pion discrimination for momenta
up to 2.5 GeV/c requires a 300 ps resolution. This is obtained by combining the drift

chamber and time-of-flight information, will be described in the next subsection.

3.2.3 SCINTILLATION COUNTERS

Particle identification and triggering? are done by a Time-Of-Flight (TOF) system [64],
consisting of a layer of scintillator counters just outside the tracking system. The scintilla-
tors are positioned outside the DC Region 3 and Cerenkovs to reduce multiple scattering
and production of knockout electrons (see Fig. 3-2). Each scintillator paddle is placed per-
pendicular to the beam direction, so that each counter subtends approximately 2° of the
scattering angle. The scintillators are parallel to the axial drift chamber wires and span the
azimuthal angular range of each sector.

There are a total of 57 scintillators per sector, each with PMTs at both ends. The last
18, covering the backward angles, are paired into 9 logical counters, so that the resulting
system has 48 logical counters (often referred to as 'paddles’) per sector. The lengths of
the counters vary from 445 cm in the center region, to 32 cm at the forward and backward
edges. The first 23 paddles (r.h.s. in Fig. 3-5) and the last four paddles are 15 cm wide
while the rest of them are 22 cm wide. The scintillation detector subsystem sums a total
area of about 206 m?.

The maximum counting rate in the scintillators occurs in the forward direction. At a
luminosity of 103* cm~2s~!, the hadronic rate per scintillator at § = 10° is 5 kHz. This rate

is only 0.5 kHz at 8 = 90°. At small angles, better timing resolution is naturally achieved

2except for electrons
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Figure 3-5: The four panels of scintillators that equip one sector. The dimensions and the readout
configuration differ from one scintillator to another.

due to the smaller paddle length and better velocity resolution is obtained due to the longer
distance from the target to the scintillator array. The average time resolution for electrons
is 163 ps [64]. When combined with magnetic analysis, this allows good separation of the
particles in the final state, though this is somewhat limited by the track and momentum
reconstruction and the paddle-to-paddle calibration?.

The Time-Of-Flight system of CLAS was designed, built and tested at the University of

New Hampshire. It was constructed over five years and delivered to the hall in June 1996.

3.2.4 CERENKOV COUNTERS

The Cerenkov counters [65] are used to identify electrons and separate them from pions and
other charged particles. In electron scattering experiments, the primary charged particle

background is due to negative pions. For measurements of inclusive cross sections, the

3gee section 4.1.7
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ratio of the pions misidentified as electrons to the true electrons must be below 0.01. The
gas Cerenkov counters ensure a typical rejection power of 100:1, which is sufficient when
N,-/N,- < 1.

Pions may be misidentified when they produce knockon electrons with velocity greater
than the Cerenkov threshold. These are produced in the CyF radiator gas, in the entrance
window or in the material of the last layer of the DC. Fortunately, the efficiency of detecting
these electrons is lower than that for the primary particles because a large fraction of them
is produced at unfavorable angles.

Due to the symmetry of the toroidal magnet, the azimuthal angle of the scattered
particles remains almost unchanged after they pass through the magnetic field. Then there
is a high correlation between the angle of the particles and their position in the detector. The
detectors consist of a three-mirror system that focuses the light from particles with different
azimuthal angles to a point near the coil, where a photomultiplier with sensitivity to single
photoelectrons is situated. The detectors of each sector (see Fig. 3-6-a) are divided into
two halves, each half containing 18 optical modules and subtending a A¢ = 25° azimuthal
angle and approximately 15° in . Thus, there are 12 units around the beam axis for each 6
interval, up to 45°. The components of the Cerenkov counters are mounted on a triangular-
shaped aluminum frame and protected with a 0.08 mm Tedlar PVF film sandwiched around
a sheet of mylar.

The efficiency of the Cerenkov counters is better than 98% in the fiducial region [65, 82].

3.2.5 ELECTROMAGNETIC SHOWER CALORIMETERS

In order to achieve acceptable e/7 discrimination and to detect photons and other neutral

particles, CLAS is equipped with an electromagnetic shower calorimeter (EC) that covers
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Figure 3-6: Cerenkov counters system: (a) Each sector is equipped with 36 optical modules (b)
Simplified ray tracing scheme in a CC module: Cerenkov light from electrons is reflected twice from
the mirrors into the Winston cone, which focuses the light into the photomultiplier (PMT).
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polar angles from 8° to 45° in all sectors. For two of the sectors, the coverage is extended
up to 60° with the large angle calorimeters (LAC).

The importance of calorimeters [66] in the detection system, as said before, is in parti-
cle identification. In electron scattering, the information provided by the calorimeters, in
conjunction with the information from the CC, is used for pion and electron identification
(at Ee > 0.5 GeV). The electromagnetic calorimeters are also used to reconstruct 7° and
n by identifying their 2y decay products (for E, > 0.2 GeV) and for neutron identification
and discrimination between photons and neutrons.

The calorimeters feature a lead-scintillator sandwich design consisting of alternating
layers of scintillator strips and lead sheets, with a total thickness of 16 radiation lengths. A
lead/scintillator ratio of 0.21 is used, requiring 39 cm of scintillator and 8.4 cm of lead per
module. With this ratio, approximately 1/3 of the energy in an electromagnetic shower is
deposited in the scintillator.

The lead-scintillator sandwich for the forward calorimeters has a triangular shape and is
composed of 39 layers of BC412 scintillator 10 mm thick with 2.2 mm Pb sheets in between.
Each layer is composed of 36 scintillator strips parallel with one side of the triangle (see
Fig. 3-7-a), the orientation of the strips changing by 120° between two adjacent layers. The
three orientations, labeled U, V, W, provide stereo information on the hit position. Each
of the U, V, W orientations, containing 13 layers, is subdivided into an inner and an outer
stack, containing 5 and 8 layers respectively. This allows an improved hadron identification
by longitudinal sampling of the shower. There are 1296 photomultipliers (PMT) and 8424
scintillator strips in the forward electromagnetic calorimeters subsystem.

The two large angle calorimeters (LAC) that equip sectors 1 and 2 (see Fig.3-2) have a

different design. Each pyramidal trunk shape LAC module consists of 33 layers, each com-
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Figure 3-7: Forward electromagnetic calorimeters : (a) exploded view of one of the modules and
(b) scheme of the EC light readout system where we denoted FOBIN-fiber optic bundle inner,
FOBOUT-fiber optic bundle outer, IP-composite inner plate.

posed of a 0.20 cm thick lead foil and NE110A plastic scintillator bars with an average width
of 10 cm and 1.5 cm thick. The module thickness corresponds to 12.9 radiation lengths.
Teflon sheets of 0.2 mm thickness are inserted between the lead foils and scintillators while
0.2 mm thick Teflon strips separate each pair of contiguous scintillators bars in order to
avoid optical crossover. Each layer is rotated by 90° to form a 40x24 matrix of 10x10
cm? cells. Each LAC module is vertically divided in an inner and an outer part to improve
electron/pion discrimination.

The technical parameters of the CLAS Cerenkov counters detector subsystem are sum-

marized below:

1. Fast (less than 100 ns) total energy sum for trigger

2. e/v energy resolution op/F < 0.1/1/E(GeV)

3. Position resolution dr ~ 2 cm at 1 GeV
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4. /e rejection greater than 99% at energies greater than 1 GeV
5. Mass resolution for two-photon decays dm/m < 0.5 GeV
6. Neutron detection efficiency greater than 50% for E,, > 0.5 GeV

7. Time-of-flight resolution around 0.4 ns

3.3 POLARIZED ELECTRON SOURCE

The polarized electron source at CEBAF is an optically pumped strained GaAs crystal. In
this device, a 780nm laser is used to project circularly polarized light onto the crystal. The
laser is pulsed to the accelerator frequency of 0.5 GHz and the bunch-length is 50 ps. Left
and right circular polarization of the laser beam are obtained with a Pockels Cell (PC) by
applying the voltage corresponding to the quarter wave retardation.

To eliminate possible bias, the helicity was flipped at a 30 Hz frequency and was phase
locked to the 60 Hz AC cycle. Helicity pulses are associated in pairs of opposite helicity.
The leading pulse helicity is chosen by a 24-bit pseudo-random number generator which also
sends a signal to the DAQ to be recorded in the data file. Due to special demands imposed
by the HAPPEX [106] experiment that was running in parallel in Hall A, this helicity signal
was delayed by 8 pairs and therefore the true helicity had to be determined afterwards in
the data analysis (appendix C).

Another precaution that was taken was to insert periodically in the laser beam a half-
wave plate, which reverses helicities and thus provides a useful systematic check. The half
wave plate position was saved in the EPICS database and is listed in appendix C.

Beam polarization in Hall B is measured with a Mgller polarimeter. In this device, the
polarization is determined from the asymmetry of the counting rates when the helicity of

the beam is reversed. About 20 minutes of measurement time or 3 M events are needed to
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take data with a statistical error below 1%.

The online analysis results of the polarization measurements were saved in the runtime
logbook [107, 108], and are presented in figure 3-8. A detailed analysis of this data is
presented in appendix C. For the purpose of this analysis, the beam polarization value used

is Pp = (63+2+3)% as will be detailed in the next chapter.

Beam polarization from runtime Moller measurements

75

~
o
!

[e2)
a1

: ﬁ
N

[e2]
o

Beam Polarization (%)

¢,
a1
!

0 n n n 1 n n n 1 n n n 1
17866 18082 18298 18514
run

Figure 3-8: The electron beam polarization during the E2A run period as obtained from online
analysis of the Mgller measurements. The dotted line corresponds to the mean value.

3.4 'TARGETS

Of the four targets employed by the E2A run, this thesis presents results obtained with *He
and 12C. These two targets differ from each other by state of aggregation, geometry and by
their position along the beamline. A blueprint of the CLAS target system is presented in

figure D.2 in the appendices.
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CRYOTARGET for E2 run

General view
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Copper-red
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Figure 3-9: Targets for the E2A run: liquid *He filled areas are drawn in blue. The small black
square on the right is the solid '?C target. The beam line coincides with the symmetry axis of the
cylinder and the beam comes from the right. The *He circulation system is not shown.
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Target cell #1 # 2 # 3
Time period Apr 15 - May 7 | May 8 - May 12 | May 12 - May 15
Contents ‘He ‘He 3He
Cell length (cm) 4.99 3.72 4.13
Cell diameter (cm) 0.97 2.77 2.77
Position relative to
the center of CLAS -0.1 cm -0.625 cm -0.635 cm
Materials used Polystyrene

(p = 0.03 g/cm?)

Mylar Mylar Mylar
(p =1.39 g/cm?)
Aluminum Al Al Al
(p = 27 g/em?)

Table 3.1: Liquid target cell parameters (courtesy of N. Dashyan [67] and R. Niyazov [70]).

The liquid helium is contained in a target cell maintained at a low temperature by a
cryogenic system. The target cell, shown in figure 3-9, is a cylinder flat at one end and
slightly rounded at the other, mounted on a trunk-conical base and covered with insulation.
The liquid helium is circulated through a system of pipes, as can be seen in figure D.2.
Three different cells used during the E2A run period are listed in table 3.1. The cells differ
from each other by the dimensions of some components, by the thickness of the insulation
as well as by position along the beamline.

The solid '2C target is a thin square plate of 9x9 mm and about 1 mm thick. The solid

target is inserted into the beamline by the action of a lever (see Fig. D.2).

3.5 TRIGGER AND DATA ACQUISITION

The triggering system is designed to select events of interest and reject background pro-

cesses, and must be effective at the run parameters of CLAS, that is at a luminosity of 1034
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cm 257!, corresponding to a hadronic interaction rate of approximately 10% s~1.

The LEVEL 1 trigger establishes the time bases for digitization. It uses the hit pattern in
scintillator (SC) and Cerenkov (CC) layers and the energy deposited in the electromagnetic
calorimeters. The analog signals from the EC are summed together within subregions and
each of these sums is then compared against a threshold value set within the hardware. The
LEVEL 1 trigger is programmed by specifying which hits and sums over the threshold from
each sector must be in coincidence.

During our data taking the trigger scheme was as follows:

e For 1.1 and 2.2 GeV runs: EC and CC hits in the same sector and EC > 300 MeV

electron equivalent

e For 4.4 GeV beam energy: EC hit but EC > 1 GeV electron equivalent. The higher

threshold was set to avoid solid angle losses by the CC at this beam energy.

The average event size for the CLAS is 5 kbytes, and the event rate was up to 2.2 kHz. The
events are written to tape at about the same rate (in the worst case at 80% of this rate).
Figure 3-10 shows the CLAS trigger scheme for the E2A run. Since the physics covered
by E2A was rather varied, the only constraint on the recorded events was that they contain
an electron, which means that only Level 1 trigger was used. In this case, the data flow
is as follows: The signals from the detector go to the front end controllers (ROC) and the
pretriggers. The pretriggers initiate the readout from the particular detector subsystem
and are also inputed into the Level 1 trigger. If there is a trigger, then the data signals
are read out and transferred to the Event Builder (EB) process running on clonl0 and
temporarily stored on the Data Distribution (DD) ring in a shared memory area. From

here, an event recorder (ER) process writes the data to the RAID (Redundant Array of
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Inexpensive Disks). Later on, the data is transferred to the tape silo for permanent storage.
In the analysis chapter, we will discuss the connection between this trigger scheme and

electron identification.
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Figure 3-10: CLAS Data Acquisition Scheme for E2A: The signals from the detector go to the front
end controllers (ROC) and the pretriggers. The pretriggers initiate the readout from the particular
detector subsystem and are also inputed into the Level 1 trigger. If there is a trigger, then the data
signals are read out and transferred to the Event Builder (EB) process and temporarily stored on
the Data Distribution (DD) ring. From here, an event recorder (ER) process writes the data to the
RAID. The data is later transferred to the tape SILO for permanent storage. (diagram courtesy of
K. Loukachine).



CHAPTER 4

CALIBRATIONS AND ANALYSIS

The scope of experiment E98-104 is the measurement of the helicity asymmetry of the semi-
exclusive electron scattering cross section on several target nuclei. E98-104 is one of the
seven experiments comprising the CLAS E2 group.

The E2A data were taken between April 15** and May 27", 1999. This run period used
about half of the total E2 approved runtime, summing 34 days, for a total of 456 hours of
active data accumulation. A second run period took place in May-June 2002.

During E2A, data on 3He, *He, 12C and %Fe targets at three beam energies: 1.162,
2.262 and 4.462 GeV (referred to as 1.1, 2.2 and 4.4 GeV) was taken. Data were acquired
with the CLAS “single electron trigger”. A total of 2300 M physics triggers from €A
interactions were recorded on tape. The average (nucleon) luminosity during the run was
L =7 x10% sec 'em™2. At low energies, the luminosity was limited by the CLAS DAQ,
at high energies the limitation come from the high occupancy of the CLAS Region 1 DC.

This thesis covers the *He and 2C measurements at 2.2 and 4.4 GeV beam energies. The
data accumulated with the 2C target amount to 756M triggers (3.0 Tb of data), divided in
323M triggers (1.6 Tb) at 2.2 GeV and 346M triggers (1.2 Tb) at 4.4 GeV (also four days
of 1.1 GeV yielding 87M triggers (230 Gb) were taken). Liquid target *He data amount to

752M triggers (2.8 Tb of data), divided as follows: 310M triggers (1.2 Tb) at 2.2 GeV and

o7
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442M triggers (1.6 Tb) at 4.4 GeV. Additional empty target calibration data were taken
for each beam energy.

We have described the flow of the data at the end of section 3.5. There we saw that the
raw data from the detector is saved in BOS [68] format on the tape silo (see figure 3-10) for
permanent storage. From this point, the off-line processing starts.

Processing the data, or COOKING, involves taking a file of BOS banks produced by
the on-line data acquisition system (RAW file) and producing a file containing higher level
information, such as four-vectors [69]. This job is performed by a program called RECSIS
(REConstruction and analySIS package), which is the engine for the reconstruction scheme.
RECSIS reads an input file of raw BOS banks, obtains the necessary calibration constants
to properly analyze these banks and produces a BOS file containing various reconstruction
banks, referred to as a COOKED file. The output from RECSIS is then used as input for
various monitoring and calibrations programs.

Calibration programs generally read a RAW or COOKED data file of BOS banks and
produce some calibration constants typically in ASCII text format. The user must then
place these calibration constants into the proper map. Monitoring programs produce ASCII
reports and histograms which can be archived in the off-line databases.

There are two important databases for off-line processing, the Map-manager database
and the off-line database. The Map-manager database (often referred to as the calibration
database) stores calibration constants used by the reconstruction and analysis codes while
the off-line database stores monitoring information in a convenient form for assessing the
quality of the cooked data.

These COOKING/CALIBRATION sequences were repeated several times (referred to

as passes), since the calibration of some detector subsystems requires previous calibration
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Figure 4-1: Snapshot of a CLAS Event Display (CED) screen to illustrate RECSIS track recon-
struction. The display shows a cross-section through two diametrally opposite sectors of CLAS.
The inbending track is the electron that gives the trigger. The outbending track corresponds to a
positive particle.

of others.

After the calibration of all subsystems was done, the BOS files were cooked for the last
time, in what we call the production passl. In this process, only the specific BOS-banks
that are relevant for the physics analyses of the Multihadron Group were selected.

Then each individual analysis group did an additional filtering of the data, which was
put in either ntuplel0 or rootDST format. These two formats are compact and contain only
the essential physics information. The cooked data was stored back on the SILO. In our

case, we also had the possibility to download all the rootDST data onto the local raid-disk
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at UNH-NPG.

To measure beam helicity asymmetries, we developed our own software based on the
E2AnaTool [99, 100] package. One code scans through the events in the Root event tree,
selects the (e, e’p) events based on certain criteria, and saves them in a skim file. This takes
several hours. Then in only a few minutes, a second code parses this skimmed data file,
selects the desired kinematics and outputs the results in various formats: graphic, text file
etc.

The calibration, data reduction and some analysis software writing were shared by the
entire Multihadron Group, while the specific physics analyses were done separately within
the individual groups associated with the experiment.

Since in the Time-of-Flight calibration we were directly involved, the following section
provides a relatively detailed description of this procedure. Shorter procedure description
are provided for the DC [70] and EC [71] calibrations while for the calibration of the

Cerenkov counters, the reader is directly pointed towards references [72, 101].

DETECTOR CALIBRATION

4.1 TOF CALIBRATION

The scintillator counters are essential for charged hadron identification without which the
study of complex final states composed of protons, pions, etc., would not be possible. The
quality of particle identification in CLAS therefore depends primarily on the precise tuning
of the Time-of-Flight components. As builders of the TOF, the UNH-NPG group had the

task of calibrating the Time-of-Flight system.
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CALIBRATION STEP REQUIRES
1 Pedestals dedicated data
2  TDC calibration dedicated data
3 Time-walk correction laser data
4  Left-right alignment raw data
5 Energy loss L-R time alignment at SC BOS-bank level
6 Attenuation length L-R time alignment at SC BOS-bank level
7 Effective velocity all of the above and good Time-Based Tracking
8 RF parameters all of the above
9 Paddle-to-paddle delays all of the above
10 RF offsets all of the above

Table 4.1: The TOF calibration sequence [73]. Good Time-Based Tracking (TBT) for the steps 7
and up necessitates previous DC calibration [70].

The calibration procedure [64] consists of: calibration of individual TDC channels, left-
right PMT alignment and/or energy loss, attenuation length calibrations, effective velocity
calibration, then counter-to-counter delay adjustment and, when this is done, an overall RF

(accelerator Radio Frequency) offset calibration.

4.1.1 PEDESTALS AND TDC CALIBRATION

The ADC thresholds are called pedestals and are measured by taking data with a dedicated
DAQ configuration. The data are analyzed online and the resulting constants are saved
into the calibration database.

The channel-to-time calibrations of all the CLAS TDCs, except the drift chamber TDCs
is performed using a special pulser run and the responses of each TDC for various delays
between START and STOP are analyzed. A quadratic equation is used to convert the TDC

channel number T to actual time #(ns):

t=co+ T+ coT? (4.1)
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The parameters ¢; and co are saved in the calibration database. The ¢y parameter is not

relevant since a left-right calibration will be done later on.

4.1.2 TIiME-WALK CORRECTIONS

40

Sector 6 Counter 21 Left

Counter time - diode time (ns)

28

26

AR B S RS RS RS S B B

0 1000 2000 3000 4000 5000 6000 7000 8000
Pedestal-subtracted ADC (channels)

Figure 4-2: Typical dependence of the TDC times (ns) versus pulse height (ADC counts). The fit
is done with with the function in eq.4.2. (from [64])

Time-walk is an instrumental shift in the time measured using a leading-edge discrimi-
nator that is due to different time-rise in the analog pulse for different pulse heights. The

time-walk correction is implemented in the software using the function

tw =1t — fu (ﬁ> + fu (@> (4.2)

T T

where Ap is the pedestal-corrected ADC channel number, 7 is the channel corresponding
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to the leading-edge discriminator threshold of 20mV (= 35 channels) and f,,(z) is the time-
walk correction function. The figure 600 corresponds to the minimum ionizing particle
(MIP) channel setting, where t,, — t. The correction function f,(z) is obtained for each
PMT separately using laser calibration data. In general, a function of three parameters is

used:

az? if z<e¢

fw(w) =

acP(b+1) — zabe D) if 2> ¢

This function first drops abruptly and then changes to a slow linear decrease, which corre-
sponds to saturation of the PMT-s (see figure 4-2). The fit parameters a, b, c are saved in

the calibration database.

4.1.3 LEerFT-RIGHT PMT ALIGNMENT

Establishing the left-right signals time offsets is crucial for hit position identification in
the scintillator paddle. The left-right alignment is a crude adjustment of these offsets, the
fine tuning being done when the effective velocity of light in the scintillator is calibrated
(subsection 4.1.5).

Raw data is used to obtain histograms of the quantity

¢ =TDC(left) — TDC(right)

using the existing database offset values. If the offsets are not correct, the distribution is not
centered (see Fig.4-3.a) The edges of the z-projection for each counter should be symmetric

with respect to zero. The value of the left-right offset is determined as

At = é/'”eff
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Figure 4-3: Example of left-right alignment of TOF counters. The vertical axis is the TOF counter
number. (from [64])

where v, is the effective velocity of light in the scintillator material, taken to be 16 cm/ns
at this stage. Once the calibration database offset is incremented by the obtained At, the
distribution must look like Fig.4-3(b).

The codes used to perform this calibration are tof_calib and tdc_lr.kumac from the

sc_calib software package.

4.1.4 ENERGY L0OSS AND ATTENUATION LENGTH CALIBRATION

For high quality calibration of CLAS we want the scintillator counters to be able to separate
pions from protons without relying on timing information. The dependence of the deposited
energy on momentum is different for proton and pions, and thus pions and protons can be

separated once the energy loss § E/dz in the scintillator material and the attenuation length
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(M) for each counter are precisely calibrated.
The measured pulse heights normalized to the calibrated MIP peak value are used to

reconstruct the energy deposited in the scintillators:

Ay = TEBep(-(L/2 -5/ (4.3)
An = DR Bgexp(~(L/2+y)/)

where A; is the pedestal-corrected ADC channel, E; (i = L, R) is the deposited energy,
k =10 MeV, L is the length of the scintillator and ¥ is the hit position measured from the
center of the detector. The normalization constants IV; correspond to the peak heights of
minimum ionizing particles (MIP) normally incident at the center of the scintillator.

The geometrical mean of the left and right signals is:

A= Vv ALAR = OzE'd exp(—L/Z)\) (44)

where a = /N, Ng/k. The quantity E; = \/E[ER is a position-invariant measure of the
deposited energy.

To measure the geometric mean of the MIP peak position in each counter, loose timing
cuts are employed to select the pions used in the calibration. This method requires that
a reasonable timing calibration has been previously done. The geometric mean position is
obtained by a fit of the dependence in figure 4.4(a). The desired value of A is 600.

To calculate E; from eq.(4.4), normally incident minimum ionizing particles are used
to measure the quantity aexp(—L/2)). A plot of In(A;/AR) versus y is shown in figure

4.4(b). The slope of the linear fit is equal to A/2 and the offset is equal to In(NEL,/NrER).
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Figure 4-4: Monitoring histogram showing (a) the fit to the geometric mean of the energy loss for
MIP-s in the counter and (b) correctly calibrated attenuation length and energy loss. (from [64]).

Figure 4-5 shows the measured dependence E; = E4(p) after the calibration. The energy
loss of the protons increases quadratically with momentum until they begin to penetrate
the scintillator, at which point their energy loss follows the Bethe-Bloch formula.

At low momenta, the pion and proton bands are well separated, whereas above momenta
of 0.8 GeV/c they start to merge, since protons become MIP-s. Therefore, this criteria of
pion-proton separation is not suitable for analysis and is used only to provide a reasonably
clean pion sample for the next calibration steps.

The procedure outlined in this section is based on standard CLAS calibration software

and was semi-automatized using the tofs shell script attached in appendix D.3.
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Figure 4-5: Energy loss in the scintillator material versus particle momenta. One can clearly distin-
guish the protons and pions and also a weak deuteron band.

4.1.5 EFFECTIVE VELOCITY CORRECTION

The position y of a hit along the length of the scintillator can be determined from the timing

information from the left and right tubes

Yy =Vesr(te —tr —toffset)/2

The constants can be calibrated using the position y from DC tracking. The dependence of
the quantity ¢, —tg versus y can be fitted with a linear curve to determine the constants v,y

and t,f st for each scintillator paddle. This procedure is accomplished using the program

veff.
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4.1.6 RF PARAMETERS

The RF-signal from the accelerator was used as the reference timing signal for the CLAS
particle identification. This signal is generated for every electron bunch, therefore with a
frequency of v,.. = 1.4971 GHz (section 3.1). The beam arriving to Hall B consists of 2 ps
bunches separated by 2 ns intervals. The RF signal is sent to the three experimental halls
with a prescale factor of 40.

Each CLAS trigger is caused by an electron from one of these bunches. Ideally, one would
like to be able to identify the bunch containing the electron which caused a particular event,
but this is impossible to do, because of the prescale factor, which means that only one out
of 40 RF-signals is sent to the experimental halls.

However, for the TOF calibration purposes, it is adequate enough to be able to align
the timing of all scintillator counters to the same RF bunch, because all electron bunches

delivered into Hall B are separated by a constant time interval:

3 3

AT = = 14971 GHZ

~ 2.0039 ns (4.5)

where the factor 3 comes from the fact that the beam is shared among the three experimental
halls. The RF signal is sent to the halls every 40x AT ns. We define the RF offset as the
delay time between the RF signal and the averaged event time.

To have an acceptable TOF calibration for a large data sample the RF offset must be
adjusted throughout the run period. For each beginning of a run period, as well as for each
beam energy change, the RF phase changes and new offsets must be determined [73]. The
RF calibration is done using the program rf.mon. One must note that this step needs to

be repeated after the paddle-to-paddle calibration.
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4.1.7 PADDLE-TO-PADDLE CALIBRATION

Once all individual scintillator counters have been calibrated, one has to ensure that their
signals are aligned with respect to the accelerator RF signal, which is used as a reference
signal for particle identification. This is done by introducing a time delay in the software
for each counter.

The TOF timing of a hit at position y is calculated as the average of the times from the
two ends of the fired scintillator:

Tsc = —F— (4.6)

where T7, and T7 are the times measured by the two TDCs.

In the first stage of the paddle-to-paddle calibration all scintillator strips are aligned to
one of the RF-signals coming to the experimental hall. One can calculate the difference
between the event start time, using the signal from the hit scintillator counter, and the RF
time as:

AT = (Tsc — Tiight) — Trr (4.7)

where Ts¢ is the time in nanoseconds measured by the scintillator, T'fj;gpn¢ is the flight time
of the particle from the target vertex to the scintillator and Ty is the time when RF-signal
arrives to the TDC-s in Hall B. All these times are measured with respect to the CLAS
trigger signal.

The distribution of the number of events versus At for a single channel is shown in
Fig. 4-6-a. The multiple peaks on this plot arise because only one out of forty RF-signals is
sent to Hall-B, while the observed event can be caused by an electron from any of the forty
electron bunches. The peaks must be separated by exactly 2.0039 ns if the TOF TDC-s

and the TDC of the RF-signal are calibrated correctly. As a matter of fact, this plot is
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Figure 4-6: Tllustration of the beam RF-structure: (a) A7 distribution with properly calibrated
TDC-s, (b) A7 distribution when the ¢; parameter of the TDC of the RF-signal is miscalibrated by
less than 1%, (c¢) R-distribution for a single scintillator channel, fitted with a Gaussian curve (figure
courtesy of H. Egiyan [74]).

a sensitive test of the accuracy of the TDC calibrations (subsection 4.1.1), since in case
of miscalibrated TDC-s one can see a pattern similar to one shown in Fig. 4-6-b . Extra
corrections may be needed to the ¢; TDC calibration parameter, defined in eq. (4.1), if this
type of pattern appears in the plot in Fig. 4-6.

The time offset for each scintillator counter is defined as [75]:

AT
R = modar (Tsc — Ttiight — Trr + 100 - AT) — -0 (4.8)

where AT was defined in eq. (4.5). R determines how much the time signal given by the
scintillator counter Tsc should be delayed in order to align it with the RF-signal.
The distribution of events versus the offset R for a single Time-of-Flight channel is

shown in Fig. 4-6-c. The position of the peak defines the time offset to be subtracted from
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Figure 4-7: Two dimensional plot showing versus 7, s for (a) uncalibrated RF-signal and (b) cali-
brated RF-signal (figure courtesy of H. Egiyan [74]).

the Tsc when calculating the mass of the particle using TOF information. The width of
the distribution depends on the timing characteristics of the scintillator, the quality of the
calibration for that particular channel, and the TDC calibration of the RF signal (section
4.1.6). If the RF signal TDC is miscalibrated, then the plot of R vs. Trpr will exhibit a
slight slope.

After a proper calibration the R versus Trp distribution must look like a horizontal
band, as illustrated in Fig. 4-7-b. Then one can vary the slope parameter of the scintillator
TDC calibration to find the value which produces the narrowest width of the R-distribution
shown in Fig. 4-6.

Once the RF and the Time-of-Flight TDC-s are calibrated to produce satisfactory re-
sults, the next step is to fit the R-distributions for each counter with a Gaussian curve to
determine the peak positions. The obtained values are called “fine tuning constants”. Since
the electrons are predominantly produced in the forward direction, pions must be used to
determine the fine tuning constants for the backward strips. The disadvantage of using

pions is that, unlike electrons, they have a significantly smaller 3, and therefore one has to
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use the pion momentum from tracking to determine their velocity. Protons are even less
useful, because they have significant energy losses on their way to the scintillators. For the
reasons mentioned above, the fine tuning of the forward scintillators from (1-20) is done
using electrons, while the remaining channels are calibrated with pions, identified by their
dE/dz signature (Fig. 4-5).

Most of the channels gave Gaussian R-distributions, whereas the channels from 40 and
up were producing double peaks, caused by the fact that two actual scintillator strips
are connected to a single electronic channel’. For the low energies, the timing resolution
obtained, oy ~ 2 ns is sufficient to reliably separate pions and protons at such large angles,
because these backward tracks typically have momentum less than 1 GeV/c.

After the fine tuning is done, all scintillator counters are aligned with the RF signals. But
there still can be an offset between different paddles, because their timing might be aligned
with RF-signals corresponding to different electron bunches. Therefore, any time offset
between any two channels must be a multiple of 2.0039 ns. A procedure was developed [75]
to solve this ambiguity in selection of the reference timing signal using the events containing
an electron and at least one pion. This procedure, known as “crude tuning”, consists of
three steps. The first is to equalize the time delays for the first ten channels in each sector.

Once the timing for the first ten channels of all sectors are aligned, one has to find the
relative delays between sectors, which again can only be multiple of 2.0039 ns. To find these
timing offsets, we use events containing an electron in one of the ten forward scintillator
counters of the sector being calibrated, and a pion in the first ten counters of sector 1,
chosen as a reference.

The final step in the paddle-to-paddle calibration procedure is the alignment of the time

! At the present time, this is compensated using tracking information to identify the individual paddles
in the pair.
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delays for the channels from 11 to 48. For this purpose, events containing an electron and

at least one pion are selected. The electron is required to be detected in any of the first ten

paddles in any sector, while the pion signal must be in the scintillator being calibrated.
The paddle-to-paddle calibration makes use of the p2p_delay_el code and is described

in detail in reference [74].

4.1.8 ALIGNMENT OF THE TOF SYSTEM TO THE RF-SIGNAL

To determine hadronic masses using flight time information, one has to know the start time
of the event. For the electron runs the natural choice would be using the electron timing
to determine the start time of the event at the target vertex. Then the flight time of the

hadron and the corresponding resolution are given by:

Le
Thigne = Tsc— (T§c - ”T(wk> (4.9)
oL \?
T Figns = A 0TE2 +0TE? + (%’f) (4.10)
where L7 . is the length of the electron track from the vertex to the scintillator and c is

the speed of the electron, taken equal to the speed of light. The electron timing resolution
0T§, makes a significant contribution into the uncertainty of the determination of the flight
time. One of the ways of eliminating the contribution from the electron timing errors and
improving the resolution of the hadron flight time is to use the RF-signal to determine
the event start time. In fact, after the paddle-to-paddle calibration procedure is complete,

the timing of all scintillator counters are adjusted to the same RF bunch. Therefore, the
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RF-corrected flight time, defined as:

Le
T = T~ (Tso - oot — 1) (@11)
5L \?
g = \/ (6752 + (2Pt ) (412

can be used to calculate the velocity of hadrons. Equation (4.11) is valid as long as all
Time-of-Flight counters are adjusted with respect to the RF-signal. But because the tuning
of the beam may change the path length of the electrons from the injector to the target,
and because the signal propagation speed in the cables may vary with time, this alignment

had to be done for each run.

CALIBRATION RESULTS

The procedures described above were done to ensure that the offline CLAS analysis software
reliably distinguish among different types of hadrons. The timing resolution determined by
the Time-of-Flight calibrations directly affects the level of non-physical background.

Figures 4-8 (a) and (b) and 4-9 illustrate the quality of the PID (particle identification)
calibration. In 4.8(b) the dependence of 8 versus momentum for positively charged particles
is shown (all scintillators combined). The mass of the hadron can be calculated knowing its
velocity and momentum. The mass spectrum from an empty target run at 4.4 GeV electron
beam energy is shown in Fig. 4.8(a). Clearly distinguishable are the peaks corresponding
to the proton, pion and deuteron, and somewhat smaller kaon and triton peaks.

At very low momentum the resolution of the TOF system is adequate for separation
of positrons, pions and muons from pion decays, as illustrated in Fig. 4-9. The feasibility

for separation of these three types of particles is strongly momentum dependent, because
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Figure 4-8: (a) Mass spectrum of hadrons from an empty target run. (b) Plot of 8 versus momentum.
Here the kaon band was artificially enhanced. The pion and proton bands are reliably separated up
to 2.5 GeV/c momenta (from [74]).

at higher momentum the mass resolution deteriorates and these peaks merge. For this
reason the CLAS particle identification procedure presumes all these particle to be pions
by default.

For further information as well as technical details regarding the Time-of-Flight calibra-

tion, the reader is referred to [76].

4.2 ELECTROMAGNETIC CALORIMETER TIME CALIBRATION

The electromagnetic calorimeters are an important component of the particle identification
scheme since the EC time provides the start signal for the SC¢, SC™ and RF TDCs.
Also, neutral particles in CLAS are detected in the electromagnetic calorimeters. The

neutron’s time of flight is the only measurement of its energy because the neutron does



76

" 5000 "
250001 a) L b) €
C 4000~
20000~ i
i 30001~
15000~ -
10000 20007
5000 10001~
bl I N 01..J|...|....|.. N I I
002 -0.01 0 001 002 003 004 005 0.06 002 -0.01 0 001 002 003 004 005 0.6
M2, GeV? M2, GeV?

Figure 4-9: Mass squared for backward flying particles (paddles 20 and above) with momentum
below 0.25 GeV/c (a) without any sector cut (b) the electron and the other particle are required to
be in the same sector (from [74] ).

not deposit all its energy in the calorimeter. This makes EC time calibration essential for
experiments that detect neutrons in the final state.

We use electron time measured by Time-of-Flight to calibrate EC time measurements.
First we identify an electron. Because there is no magnetic field between the scintillator
counters and the electromagnetic calorimeters, the track is straight. If we assume that t,,

is correctly calibrated, we can predict the time measured by EC as:

d
bop = tgp 4 ecscCOSEX
where decs is the distance between the EC and SC layers, c¢ is the electron velocity and «
is the impact angle to the EC plane (see Fig. 4.10(a).
The value t.. is assigned to the EC scintillation bar with the largest ADC for each of

the three views, exactly the same way as it is done in the reconstruction code [110]. The
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Figure 4-10: (a) EC time extrapolation from SC time. Only the scintillation bar with the largest
ADC value in one view for each EC layer is shown. (b) Obtained EC time resolution for electrons
in sector 1 (from [71]).

time dependence is fitted with the function

b2 +p3-12+p4-l3—

l
Vadc Veff

tec = po + p1 - tde +

where p; are five fit parameters, tdc and adc are the TDC and ADC values, respectively, [
is the length from the hit point to the EC readout edge and v,y is the speed of light in the
scintillator material. The first two terms are simple linear TDC response, the third term is
the time-walk correction, the fourth and fifth terms are small corrections for the fact that
signals arrive at the readout edge at slightly different times for scintillation bars connected
to the same PMT and the last term is inserted to compensate the time for scintillation light
to travel from hit point to readout edge.

The best fit constants are saved in the calibration database. The difference between the

reconstructed EC time and the Time-of-Flight value defines the time resolution for electrons
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(Fig. 4.10(b)). The overall o is ~ 250 ps, which is partially due to the TOF resolution. If we
take the TOF time resolution to be ~ 150 ps (see previous section), then the electromagnetic
calorimeter time resolution for electrons is approximately V2502 — 1502 = 200 ps. For
neutral particles, this figure is not as good. A neutron can interact anywhere within the
thickness of the calorimeter which is as large as 40 cm. In a rough approximation, this
results in an uncertainty in the flight path equal to half this thickness, which for a neutron
with =1 is equivalent to a time uncertainty of £700 ps. For lower it will be even larger.
Therefore, for neutrons, the resolution obtained can not be below +700 ps.

For a detailed description of the EC calibration procedure as well as for technical details,

the reader is referred to [71].

4.3 CALIBRATION OF THE DRIFT CHAMBERS

The primary purpose of the drift chambers calibration is to refine the position measurements
from time based tracking (TBT). Specifically, the calibration constants for the time-to-
distance function need to be calibrated and checked. This involves choosing calibration runs
evenly spaced throughout the running period and the processing of at least 100K events
from each of those runs. The exact frequency by which runs should be calibrated depends
on the run period. Obviously, if the calibration constants change by a large amount from
one calibration run to another the frequency of updating calibrations should be increased.
In general, the tracking calibrations are checked for every day of the running period.
While the primary purpose of drift chamber calibration is to obtain a first set of time
based tracking calibrations, it also provides a good opportunity to assess the overall quality
of all calibrations. Problematic running periods can be identified, and runs can be selected

for the next stage of analysis.
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The drift chambers are calibrated by parametrizing the drift velocity function. 36 out of
365 runs collected during the E2A run time were chosen for calibration purposes, covering
every day of the run period. The calibration program dc_calib_check-2-0 presented in

[77] was used to calibrate these runs.

4.3.1 DRIFT CHAMBER NOMENCLATURE

The CLAS drift chambers can be separated in several ways. Figure 4-11 gives a basic idea

of how the chambers are arranged.

Superlayer 1
Superlayer 2
Superlayer 3
Superlayer 4
Superlayer 5
Superlayer 6

Figure 4-11: Schematic of CLAS drift chambers showing how regions and superlayers are named.
The picture represents a slice through the CLAS perpendicular to the beam line at about the target
position.

Each of the six sectors of CLAS has an identical set of drift chambers. Each set can
be separated by region or by superlayer. Practically, each region is a separate physical

volume containing two superlayers. Each superlayer contains six layers of sense wires,
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except superlayer 1 which has only 4 layers. Each superlayer of each sector is calibrated
separately, for a total of 36 sets of parameters [70].

When a charged particle goes through the drift chambers, each of the 34 layers is hit.?
Each hit detected in the chamber is used to determine the particle’s track via a least squares
fit which is done within the CLAS reconstruction program. Two terms are used to describe
the distance of the charged particle track from a sense wire:

DOCA (Distance Of Closest Approach) is the distance from the sense wire to the track
as determined using information from all the hit wires.

DIST is the predicted distance from the sense wire to the track. This is calculated from
the drift time and some other parameters.

Additionally, the residual is defined as:

RESI = |DOCA|— |DIST|

This is also known as the “time residual” because its sign is determined by the sign of
any systematic time shift. The residuals are the primary means of measuring the resolution
of the drift chambers. We estimate standard deviations (residual sigma) of the residual
distributions by means of a Gaussian fit. Note also that DIST is positive definite, while
DOCA is assigned a sign determined by whether the track passed to the right or to the left

of the wire.

4.3.2 PARAMETERIZATION METHOD

The CLAS drift chambers are calibrated by parameterizing the drift velocity function for
every superlayer in every sector. The drift velocity function is the relation between the

calculated distance of closest approach (DIST) of a particle track to the drift time ¢4. The

In practice, we find an average of 30 hits per time-based track. This is mostly due to inefficiencies or
holes in the chamber’s fiducial volume
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drift time %4 is defined as the time necessary for the ions created by the particle to drift to

the sense wire (see figure 4-12).
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Figure 4-12: Drift time for superlayer 5 in sector 4.

The function’s parameters are determined by fits to DOCA versus time plots produced
from CLAS data. Figure 4-13 shows a typical DOCA versus time distribution.

The DOCA values are obtained from fits of global tracks (i.e. fits which include all
layers) and the drift times are calculated from the wire’s TDC values accounting for fixed

cable delays and event-dependent delays such as flight time.

4.3.3 CALIBRATION QUALITY

The quality of the calibration is double-checked by examining quantities like the time resid-
ual sigmas (resolution), TBT hits per track and x? values obtained for all 36 fits 3. Figure
4.14(1) shows residual sigmas as function of calibration run number for two cases: super-

layer 3, averaged for 6 sectors and sector 3 averaged for 6 superlayers. Different symbols

36 sectors x 6 superlayers
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Figure 4-13: Drift velocity function for superlayer 5, sector 4. On the vertical axis is DOCA (cm)

and on the horizontal axis is the drift time ¢4 (ns).

on the plots correspond to different beam energy of the calibration runs. Slight changes of

the resolution are due to beam energy changes.
Figure 4.14(2) shows the TBT hits per track as a function of superlayer number and

sector number averaged over all calibration runs. The number of hits per track for superlayer
1 differs from the same quantity measured for the other superlayers due to the fact that

Figure 4-15 shows the residual sigma as a function of

superlayer 1 has only 4 layers.
superlayer number and sector number averaged over all the calibration runs.

A more detailed description of drift chamber calibration procedure is given in [77, 70]
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Figure 4-14: Indicators of calibration quality (E2A data).
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Figure 4-15: Resolution versus a) superlayer averaged over 6 sectors and b) sector averaged over 6
superlayers. Both a) and b) are averaged over the 36 calibration runs (E2A data).

DATA SELECTION AND ANALYSIS

4.4 ELECTRON IDENTIFICATION

Based on our “single electron trigger” configuration, an event was recorded if there was
a signal in the electromagnetic calorimeters and Cerenkov counters (except 4.4 GeV runs
where the CC was not in the trigger). At the analysis stage, our aim is to recognize as
many scattered electrons as possible without significantly contaminating the data sample.

To double-check the particles that the SEB [110] labeled as electrons, we looked at
the ratio of the particle’s energy deposited in the EC to the momentum measured by the
DC (sampling fraction) [78, 110]. The reconstruction code stores information about the

deposited energy in the inner (EZC), outer (FZY) and the whole (EES) electromagnetic

out
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calorimeters (section 3.2.5). We use this as a supplementary check of the reconstruction

accuracy. Because EfLC or Eﬂ? were frequently absent, we took

EEC = max(EEC 4+ EEC EEC) (4.13)

0 out

A study of the relationship between the deposited energy in the electromagnetic calorimeters

and the momentum of the electron has been done. Figure 4-16 shows this dependency for
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Figure 4-16: Dependence of the total deposited energy in the forward calorimeter (EZS) versus the
electron momentum p.. The data shown is for 12C (e,e’) at 2.261 GeV and the cut is defined by the
conditions (4.14) and (4.15).

‘He data at Epeqm = 2.261 GeV. A threshold

EtEotC > Ethresh (4.14)
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Target | Epeam(GeV) | BT (GeV) | apc(GeV) brc(cu.) | ago(GeV)  bpo(cu.)
‘He 2.261 0.10 0.251 -0.049 0.390 0.003
4.461 0.33 0.273 -0.118 0.371 0.042
12C 2.261 0.10 0.252 -0.053 0.376 0.004
4.461 0.33 0.277 -0.140 0.366 0.041

Table 4.2: E;,; threshold and constants for the 3¢ cut from (4.15).

is set in order to eliminate the minimum ionizing particles. The 30 cut is defined by

apc + bpepe < EEC < alpe + bpope (4.15)

with agc, dlyc, bec and by four fit constants ( table 4.4) and p, the electron momentum.
The cut is determined by the fit of the 3¢ ridge of the EES versus p, distribution. Similar
conditions have been applied to all the data sets. Also a sector by sector comparison has
been done and we concluded that an overall cut is sufficient.

To summarize, we require that electrons satisfy the following conditions:

1. Cerenkov counters status is OK (excepting the 4.461 GeV data)

2. 30 cut on E;y versus momentum p,

3. Ein > 0.055 GeV or E;, = 0 (from trigger; if E;;, = 0 then the information is missing)
4. be above the E;y recommended threshold [79]

For our data, SEB sometimes mislabelled electrons as Id=0 (i.e. as an unidentified
negative track). The procedure we described above will account such an SEB Id=0 particle
as electron, if it fulfills the above conditions. The gain of our selection method with respect

to the SEB labeled electrons is of 3-10%.
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4.5 ELECTRON MOMENTUM CORRECTIONS

Geometrical uncertainties in the detector alignment and in the magnetic field mapping can
influence the measurements of the momenta. What one can do, using as a reference some
well known process, is to derive a correction procedure that would restore the true values.
One such procedure is based upon elastic electron-proton scattering. Assuming that the
beam energy is exact and that the polar scattering angle 6 is accurately determined, the
scattered electron momentum can be calculated and compared with the measured one. The
ratio of these two values gives a correction factor which depends solely on the angles 8 and
¢ in the lab frame and therefore can be applied to other target data as well. A detailed
description of this procedure is given in [81] and included in appendix A.

The electron momentum corrections were less than 3 %, typically 1-2 %.

4.6 ELECTRON FipuciaL CuTs

For electron identification, in most cases, valid signals in all four detectors are required.
Electron detection efficiency around the mid plane in each sector is reproducible in the GSIM
simulations. Due to the complicated readout structures of electromagnetic calorimeters and
Cerenkov counters, detection and reconstruction efficiencies are not well understood in the
regions close to the torus coils, and close to the dead channels of detector elements. In order
to minimize systematic uncertainties in the physics analysis it is important to accept events
in the fiducial region of the detector, where efficiencies are flat and understood. Fiducial
cuts define a region in (6, ¢) space for a given momentum, where detection efficiency is
almost constant with ¢ and can be reproduced in simulations. These functions depend on

the actual run conditions (bad channels, target position, trigger, etc.). The procedure of



88

deriving the fiducial cut functions for liquid target, at 4.4 GeV beam, with no Cerenkov

counters in the trigger is presented in detail in [82] and appendix B.

4.7 PROTON IDENTIFICATION

The CLAS allows separation of protons and kaons for momenta up to 1.6 GeV/c and of pro-
tons and pions up to 3 GeV/c. For the present analysis our main concern is contamination
of protons with pions.

Protons are identified by the charge and momentum measured using the track length
provided by the DC tracking and the time-of-flight measured at the SC. The final rootDST
stores the 8 and the momentum of the particle. A positively charged particle is identified as
a proton if it has the smallest |Bmeasured — 2/ v/ P? + m?2| compared to nt, KT or deuteron,
where p is the momentum measured by the tracking.

In figure 4-17 one can see that the bands for protons and pions are clearly visible and
well separated. This separation is done in the lower level software [69, 110] and we use the
result. A more rigorous proton selection can be done using a dE/dz cut but this would be

beyond the precision requirements of the present analysis.

4.8 VERTEX CUTS

The two targets discussed in section 3.4 are different from one another in many respects.
The carbon '2C target is a graphite square less than 1mm thick, shifted by approximately

5.5 cm downstream from the center of the detector, downstream of the liquid target cell. The

beam that passes through this target scatters before on the empty cell and gives spurious

background. To eliminate this background we used tracking information to reconstruct
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Figure 4-17: Plot of 8 versus momentum for positive tracks in CLAS. Notice the clear separation
between 7t and protons. KT are too faint to be seen on this plot.

the reaction vertex and match this with the physical position of the target. Figure 4-18
illustrates the steps of this procedure. On the electron-proton z-vertex distribution in (a)
we identify the most intense ridge as the 2C target and the faint bands as (from top to
bottom) the heat insulation and the output and input windows of the empty liquid target
cell. Then it is simple to fit the uppermost ridge (b) and cut around it. Sub-figure (d) shows
the acceptable region, where VZ_e and VZ_p stand for the z-projection of the electron and
proton reconstructed vertex, respectively.

The situation is slightly different in the case of the helium target. The 2C target flips
out of the beamline but we have the cell windows and heat shield to worry about now, since
the beam passes through them before and after scattering on the “He nuclei. To ensure

that the electron-proton pairs detected originate in the target, we used the empty target
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Figure 4-18: Solid Target: The intense band in (a) is the 12C target whilst the three faint bands
are the walls of the liquid target cell and the insulation. We fit the ridge of the 2-d distribution (b)
and cut 0.5 cm under and above it. The center is determined by the fit in (c) which gives a vertex

resolution o, = 4.3 mm.
data taken with the same cell to identify the contribution from the cell material. Similar to
the case of 12C target, one can recognize in figure 4-19(a) the insulation and the input and

output windows (in this order, from top to bottom). Same fit-and-cut procedure produces
the result in Fig. 4-19(d).
4.9 BEAM CHARGE ASYMMETRY

The beam charge asymmetry (BCA) is defined as the ratio of the normalized beam inten-

sities for the two helicities. To ensure that integrated currents for the two helicity signs are
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Figure 4-19: Liquid Target: the three visible bands in (a) are the thermal insulation and the target
walls (in this order, from top to bottom). The position of the ridges in (b) and (c) is determined by
a slice fit of the 2-d distributions. The cuts are positioned 3 mm inside the walls (d).

equal to each other and to correct any possible y-offset in our asymmetry measurement, we
calculated the beam charge asymmetry on a run by run basis and corrected our data for it.
We calculate the BCA using the inclusive (e, ') electron yields at positive (N;) and

negative (N, ) beam helicities for each run:

Ag = =2 (4.16)

This method is based upon the fact that the inclusive (e,e’) cross-section has no helicity

dependence. Another way to extract the BCA would be using the Faraday cup readings, but
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this was found to depend on various beam parameters including the beam current and the
resolution of the charge integrator used to digitize the Faraday cup signal [84]. Figure 4-20
shows the run by run values of the beam charge asymmetry measure using inclusive (e, e’)

events.

Beam Charge Asymmetry for the e2a Run Period

1.04 —— I

1.02 A

BCA
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0.96 L L 1 L L 1 L L 1 L L 1 L L
17875 17968 18061 18154 18247 18340

run number

Figure 4-20: Beam Charge Asymmetry (BCA) for the whole E2A run period. The error bars are
statistical.

In these conditions, eq.(2.15) is written as:

;1 dPot = Agdio
L pg dbot + Agddo—

(4.17)
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“He Target
Step  Epeam (GeV) 2.261 | 4.461
Total Triggers 310 M | 442 M
1 Reconstructed Events 113 M | 102 M
2 Events after electron selection 8 M| 51 M
3 Number of ep coincidences 17 M 6 M
4 Quasielastic (e, €'p) 3.8M | 1/3M
5  Calculated points (DWIA+RMSGA) 486 324
12C Target
Step  Epeam (GeV) 2.261 | 4.461
Total Triggers 323 M | 346 M
1 Reconstructed Events 98 M| 66 M
2 Events after electron selection 1M | 33 M
3 Number of ep coincidences 17 M 6 M
4 Quasielastic (e, e'p) 27TM | 1/4M
5  Calculated points (OMEA+RMSGA) 666 441

Table 4.3: The *He and '2C data samples (M stands for 'millions’). Theoretical calculations were
added as number of kinematical points computed. Each theoretical point requires 10 to 20 minutes
of CPU time.

4.10 FINAL DATA STATISTICS

We presented the raw data sample at the beginning of this chapter and then we described the
criteria used to select clean physics events. Table 4.3 summarizes the surviving statistics at

various steps in this process and figures 4-21 to 4-28 show the (e, e'p) accessible kinematics.

The quasielastic kinematics requirement implies that the energy and momentum of the

virtual photon can be transferred to a single nucleon, the ejected proton. For selecting this
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regime, we use the condition w; < w < we where the limits are

wi = (1/2 —a1)Q*/m,+ AE

wy = (1/2+a2)@Q*/m,+ AE (4.18)

with ay = 0.2, a1 = az/[1 + 1/[2(1 + 1/2%)]] = ay taken simply for symmetry, and AFE is
a shift due to the momentum dependence of the nucleus-nucleon potential, taken equal to
0.03 GeV. In other words, we symmetrically cut on one side and the other of the quasielastic
ridge w = Q?/2m,+ AFE (histograms (f) in figures 4-21 to 4-24). The cut in (4.18) is roughly
equivalent to 0.7 < zp < 1.6, where zp is the Bjorken variable. Figures 4-25 to 4-28 show
the quasielastic spectra defined with (4.18). At step 4 in table 4.3 a cut on the missing
energy

En < 0.1 GeV (4.19)

is added to condition (4.18). This cut is not shown in figures 4-25 to 4-28.

The effect of fiducial cuts on our data sample was studied. The fiducial cuts reduce
the statistics to almost half (see appendix B), while no visible improvement in the data
selection is obtained. Therefore, fiducial cuts were not used in the present measurement of
the beam helicity asymmetry.

We need to make a note that no radiative corrections were applied to our data since the

statistics are low and we integrate over a large missing energy range (rather than separating

the s and p shells in 12C ).
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Figure 4-21: Accessible spectra for *He(e, e'p) at 2.261 GeV beam energy: (a) missing energy FE,,,
(b) missing energy vs. missing momentum p,,, (¢) polar angle 6,, versus missing energy E,, (d)
polar angle 6, versus missing momentum p,, (e) invariant mass W for the (e, e’'p) reaction and (f)
Q? versus w distribution.
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Figure 4-22: Accessible spectra for *He(e, e'p) at 4.461 GeV beam energy: (a) missing energy FE,,,
(b) missing energy vs. missing momentum p,,, (¢) polar angle 6,, versus missing energy E,, (d)
polar angle 6, versus missing momentum p,, (e) invariant mass W for the (e, e’'p) reaction and (f)

Q? versus w distribution.
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Figure 4-23: Accessible spectra for 2C(e,e'p) at 2.261 GeV beam energy: (a) missing energy E,,,
(b) missing energy vs. missing momentum p,,, (¢) polar angle 6,, versus missing energy E,, (d)
polar angle 6, versus missing momentum p,, (e) invariant mass W for the (e, e’'p) reaction and (f)
Q? versus w distribution.
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Figure 4-24: Accessible spectra for 2C(e,e'p) at 4.461 GeV beam energy: (a) missing energy E,,,
(b) missing energy vs. missing momentum p,,, (¢) polar angle 6,, versus missing energy E,, (d)
polar angle 6, versus missing momentum p,, (e) invariant mass W for the (e, e’'p) reaction and (f)
Q? versus w distribution.
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Figure 4-25: Quasielastic spectra for *He(e, e'p) at 2.261 GeV, obtained with eq.(4.18): (a) missing
energy E,,, (b) missing energy vs. missing momentum p,,, (c) polar angle 8,, versus missing energy
E,,, (d) polar angle 6, versus missing momentum p,,, (¢) invariant mass W for the (e, e'p) reaction
and (f) Q2 versus w cut. The E,, cut (4.19) in not shown. Compare to figure 4-21.
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Figure 4-26: Quasielastic spectra for *He(e, e'p) at 4.461 GeV, obtained with eq.(4.18): (a) missing
energy E,,, (b) missing energy vs. missing momentum p,,, (c) polar angle 8,, versus missing energy
E,,, (d) polar angle 6, versus missing momentum p,,, (e) invariant mass W for the (e, e'p) reaction
and (f) Q2 versus w cut. The E,, cut (4.19) in not shown. Compare to figure 4-22.
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Figure 4-27: Quasielastic spectra for 2C(e, e'p) at 2.261 GeV, obtained with eq.(4.18): (a) missing
energy E,,, (b) missing energy vs. missing momentum p,,, (c) polar angle 8,, versus missing energy
E,,, (d) polar angle 6, versus missing momentum p,,, (e) invariant mass W for the (e, e'p) reaction
and (f) Q2 versus w cut. The E,, cut (4.19) in not shown. Compare to figure 4-23.



Counts
i a) QE spectrum
7000~ @ lp
| for 2C(e,e‘p) at
6000~ Epean= 4461 GeV

5000

4000

3000

2000

1000

0 02 04 06 08 1 1.2
Epm (GeV)

8,4 (deg)

14[- |
12

10

Counts

P
o

4500

4000

3500

3000

2500

2000

1500

1000

500

Qe PRI RS S ST ST NS U NN

0.4 0.6 0.8 1 12 14 1.6
W (GeV)

Eq (GeV)

0 0.1 0.2 0.3 0.4 0.5
pm (GeVic)

—_
o
-

[ee]
LI L L L L L L IO

0 0.1 0.2 0.3 0.4 0.5
pm (GeVic)

Q% (Gevic)
35

—_
=
=

2.5

1.5

N
LA L L L L L L L L

PSS S NI SR T N S ST R S N M SRR |
0.5 1 15 2 25
w (GeV)

o

102

Figure 4-28: Quasielastic spectra for 2C(e, e'p) at 4.461 GeV, obtained with eq.(4.18): (a) missing
energy E,,, (b) missing energy vs. missing momentum p,,, (c) polar angle 8,, versus missing energy
E,,, (d) polar angle 6, versus missing momentum p,,, (e) invariant mass W for the (e, e'p) reaction
and (f) Q2 versus w cut. The E,, cut (4.19) in not shown. Compare to figure 4-24.
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4.11 STATISTICAL AND SYSTEMATIC UNCERTAINTIES

In the asymmetry measurement most of the systematic uncertainties related to the experi-
mental setup are divided out. The only contributions are from the statistical errors on the
number of counts and the uncertainty in the measurement of beam polarization.

To measure the helicity beam asymmetry defined in equation (4.17), we calculate for
each AwAQ?Ab,,A¢,, bin the ratio

N+—AQN_

Ap = —F—+—
™ Nt 4+ AgN-

(4.20)

where Nt and N~ are, respectively, the number of (e, €'p) events with positive and negative
helicity within the chosen kinematic bin and Ag is the beam charge asymmetry (BCA)
correction defined in section 4.9. Taking into account that our measured asymmetries are
typically below 0.05, one can confidently approximate N™ ~ N~ ~ N/2 and then the total
statistical error can be expressed as:

(1-472) Ag
N (1 -I-AQ)2

(0Am)? = (4.21)

540\
s (29)

As described in section 4.9, the beam charge asymmetry Ag is calculated using inclusive
(e, ') yields, typically with 3—4 orders of magnitude higher statistics than N. The error on
Ag is in general much less than one percent while Ag is a number very close to 1. Then its

contribution can be neglected and one remains with

§Am = /(1 — AZ)/N (4.22)

which is dominated by the 1/N dependence.
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The formulas above were obtained assuming that the yields N* and N~ obey a Poisson
distribution. This is true in practice although it was argued that the two yields should be
described by a binomial distribution [85]. We count the h = +1 and h = —1 events sepa-
rately, with no constraints imposed on the sum N = N* + N—. However, the two methods

to calculate the statistical errors converge towards the same result when the asymmetry is

. §ABmom 1 A2
A Saress ~ T, T (4.23)

Since the measured asymmetries are always below 0.05, the ratio in eq. (4.23) is somewhere

very small:

between 0.9975 and 1.
To account for the partial polarization of the incident beam, the measured asymmetry

Ay, is scaled by the beam polarization Pp to obtain the true asymmetry A’ .

LT — p_ (4.24)

The total error in the measurement of A’ . is composed of the statistical error on A, and

the uncertainty introduced by the polarization measurement:

(5Am>2 (5PB ) 2
- _I_ —
A, Pg

The beam polarization was measured to be 0.63 with a relative error of approximately 5%

1/2

AL = | ALl (4.25)

(appendix C). The statistical error on A, is never better than 20%.
Equation (4.25) refers to the error on A’ for a chosen A¢,, bin. However, it is not
these quantities that are reported, but the result obtained by fitting the A’ versus ¢,

dependence.



105

Following equation (2.16), one would have to fit the Az versus ¢,, dependence with a

three-parameter function:

AILT(¢pq) = arpgsin ¢pq/(1 + arT €os ¢pg + arr cos 2¢pq) (4.26)

Q. = Unfn/(ULfL + ’UTfT) k=TT, LT, LT (4.27)

where ap1,ar and apr are then relative strengths with respect to the direct part: vy fr +
or fr.

When the asymmetry signal is weak, the effect of the cosine terms in the denominator
of (4.26) is unnoticeable. There are cases, though, where the deformation of the sinusoid
is visible with the naked eye, as illustrated in Fig.4-29. This figure shows a comparison
between fits made with the three parameter function from (4.26) and a one-parameter

function

ILT(¢pq) = Asin ¢y (4.28)

The fitting algorithm used is MINUIT embedded in the Root package [102].

In graph (a) from figure 4-29, the fit result for A7 is —0.023+£0.005. For (b), the value
of A7+ can be calculated from the fit parameters as Apz (¢py = 90°) = arr/(1—arr). The
value obtained is —0.023 £ 0.025, i.e. within 1-2 % difference but with a much larger error
bar. Graphs (c) and (d) show another case. The (c) fit gives A}, = —0.017 £ 0.0035 and
from (d) one obtains A ;. = —0.015+£0.0059. The two values are within 12 % difference but
with error bars of 20% and 40%, respectively. The parameters that are in the denominator
of (4.26) prove rather difficult to fit: apr was obtained with a 47% uncertainty while
darr ~ 200%.

Based on these and other cases studied, we concluded that the contribution of the
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arr and apr terms to the asymmetry amplitude fit can be neglected and the simpler
parameterization from eq.(4.28) can be used. The statistical error is minimized while the

systematic error introduced by this approximation is negligible.
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Figure 4-29: Polar angle dependence of the A ,.: comparison between fits done with a sinusoid (a,c)

and with the function from equation (4.26) (b,d).



CHAPTER 5

RESULTS AND DISCUSSION

In this chapter we present the results of our measurements. We compare the quasielastic
data with theoretical calculations based on the models introduced in chapter 2. We then
dedicate a section to the study of A’ ;. variation across a wide missing energy range. The
chapter closes with conclusions and an outlook.

The measured asymmetries are compared with three theoretical models. The traditional
comparison with DWIA employs calculations provided by J. Kelly [88, 53]. The other two
sets of calculations - OMEA and RMSGA - are based on codes provided by the Gent
group [24, 44, 51]. All three models were reviewed in chapter 2. For the OMEA and
RMSGA, bound-state wavefunctions (bswf) are calculated within the context of a mean-
field approximation to the o — w model [90, 91]. With the DWIA, the NLSH bound-state
wavefunction [92] was used. Both DWIA and OMEA carbon calculations are based on the
EDAIC optical potential of Cooper et al. [48]. In all calculations, the I'..2 hadronic current
operator (2.21) and the Coulomb gauge (2.22) were used. Except in the DWIA, the electron
distortion has been neglected, since its effect for nuclei as light as the *He and 12C is very

small.
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5.1 RESULTS

Measurements in the quasielastic region are summarized in tables 5.3 to 5.6 and the cor-
responding plots are presented in figures 5-4 to 5-12. At 2.2 GeV beam energy, the four-
momentum range investigated spans from 0.35 to 1.80 GeV?/c? and at 4.4 GeV from 0.80
to 2.40 GeV2/c?. Each of these intervals is divided in four Q? bins, according to table 5.1.

The 2C quasielastic data is accompanied by OMEA calculations at all kinematics and
by RMSGA calculations at high @2, where the latter model is applicable. The “*He data is
compared with RMSGA and DWIA. The theory curves are obtained by interpolating points
calculated by formula (5.9). The interpolation function used is a cubic splines. The error
bars shown on the data points are purely statistical, as they are on all the graphs presented
henceforth. The systematic error to be added in quadrature is of a few percent (see section
4.11).

Tables 5.3 to 5.6 can be used to study the variation of A}, with missing momentum.
Figures 5-8 to 5-12 show these dependencies.

The missing energy dependence of A’ ;. is explored up to 1 GeV. The data are tabulated
in tables 5.7 and 5.8 and presented in figures 5-13 and 5-14.

The measured asymmetries are of the order of a few percent but the experimental points
fall close to the predictions of theory; higher statistics and a larger acceptance range would

be required to really constrain the models.

5.1.1 POLAR ANGLE DEPENDENCE

To make a connection with the previous experiments [25, 26], the first variation studied is
that of A}, with the polar angle. As a reminder, the polar angle 6,, was defined as the

angle between the direction of ¢ and the momentum p of the ejected proton, measured in
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the laboratory frame (see figure 2-2). Increasing polar angle is accompanied by increasing
missing momentum.

Figure 5-4 presents the *He data at 2.2 GeV beam energy. The Q? interval was split
in four bins, each 0.360 GeV?/c? wide. The figure contains four plots, according to this
division. DWIA calculations! accompany the data for in all four Q2 bins. The RMSGA
curves are drawn only for the ¢ > 1 GeV/c regions, since the RMSGA parameters (appendix
D.1) can not be safely extrapolated at lower momentum transfers.

The data are characterized by small statistical errors at small angles, where the asym-
metries should vanish with the phase-space anyway. The errors increase with the angle,
since the statistics are poorer at higher 6.

The asymmetry is positive at lower angles, has a maximum and then decreases towards
negative values at high 6, The maximum is located at 24° on plot (a) and migrates towards
lower angles with increasing Q2.

Qualitatively, both models reproduce the features of the data. Quantitatively, the DWIA
overestimates while RMSGA underestimates the features. We must mention that a com-
parison of the models with the data at high 6,, must be viewed in the light of the discussion
from subsection 2.7.1 where we have seen that at high 6,4, corresponding here to large
missing momentum, multi-nucleon contributions become dominant.

The 4.4 GeV helium data are presented in figure 5-5 and listed in table 5.4. The statistics
are lower for this data set, compared with the 2.2 GeV set. Though less visible, the same
evolution of A’ ;. is present here: located at about 15° in plot (a), the maximum travels to
lower angles with increasing Q. The large statistical uncertainties do not allow for a good

comparison between the two models in this case.

'the DWIA calculation is presented with a sign opposite to that of its author
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The set presented in figure 5-6 is the 12C at 2.2 GeV, which can be said is our best data
set. Higher statistics enable a more accurate comparison between measurement and theory.
The data exhibits negative asymmetries at low 6, and then intersects zero several times.
The main feature is the strong positive maximum, similar with what we have seen on the
“He data.

Since the CLAS missing energy resolution is around 100 MeV, we are unable to separate
the s- and p-shells in the 12C data, as one could deduce from comparing spectra from
sections 2.7.1 and 4.10. This separation would require a resolution of better than 10 MeV.
In these conditions, the calculations correspond to a mixture of s and p contributions, in
the assumption of fully occupied shells. The interplay between the two shells is important,
since they contribute with opposite signs, as illustrated in figure 5-3. However, the data
and theory both show that the p-shell contribution is larger.

The OMEA shows very good agreement with the data. With regard to the position of
the maximum, the agreement improves with Q?. With regard to its value, the match is
even better. The RMSGA shows a maximum of about the same magnitude with the data
and the OMEA but it overshoots its position on the lower Q? plots. On (d), it would be
hard to give a verdict.

The asymmetries for the 4.4 GeV '2C data set are plotted in figure 5-7 and listed in
table 5.6. A comparison between the two models is made difficult by the large statistical

uncertainties.

5.1.2 MISSING MOMENTUM DEPENDENCE

Data from tables 5.3 to 5.6 can also be used to illustrate the missing momentum dependence

of A’ ;. Figures 5-8 to 5-12 show the corresponding plots. The procedure employed to draw
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the theoretical curves remains the one described in section 5.2.

The pp, dependence of A’ 1 is easier to interpret. The interference maximum discussed
in the previous section is stationary in p,, coordinates, located at about 0.300 GeV/c.

Some comments about the range of validity of our models would be appropriate here.
The DWIA and OMEA are based on optical potentials. These optical potentials are ob-
tained from fits to data up to energies of 1.05 GeV. Above this energy range, we use a
completely untested extrapolation of a phenomenological optical potential well beyond its
region of applicability. Besides, at large missing momenta above 0.300 GeV/c it is very
likely that more complicated reaction mechanisms (channel coupling, two-nucleon knock-
out, etc.) come into play. Therefore, a comparison of the theory with the data above 0.3
GeV/c missing momentum must be viewed in this context. This observation applies to
the 6,, dependencies shown in the previous section and it explains why conclusions for the
region above 15° were avoided.

The features discussed in section 5.1.1 are more visible in missing momentum. Although
the maximum is at the limit of applicability of the model, it is interesting how the DWIA
predicts the steep inversion on plot (b) from figure 5-8.

Regarding the '2C 2.2 GeV data, a trend that can be clearly seen on the plots in
figure 5-11 is that the agreement between RMSGA and OMEA improves with Q2. This is
not unexpected, since the domain of validity for RMSGA is for four-momentum transfers
of 1 GeV?/c? and above. OMEA is designed to bridge the low and high Q? regimes.

Comparing the carbon and helium data sets, two important observations can be made.
Both sets feature the strong interference maximum of approximately +5% at 0.3 GeV/c
in missing momentum. The difference is that, while *He steadily rises from zero values

at p,m = 0 GeV/c, the 12C descends towards negative asymmetry values at low missing
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momentum and crosses zero before reaching the maximum. The theory explains this effect
as due to the '2C p-shell contribution. As it was illustrated in figure 5-3, the contributions
of the s and p shells are of opposite sign.

The 4.4 GeV sets for both targets are compromised by large statistical errors.

5.1.3 MISSING ENERGY DEPENDENCE

The missing energy dependence of A’ ;. was studied for an E,, range spanning up to 1 GeV.
The plots are shown in figures 5-13 and 5-14 and listed in tables 5.7 and 5.8. Theoretical
calculations were not performed here, therefore the following plots contain experimental
data only.

The missing momentum range was split in two bins: bin 1 is from 0.0 to 0.200 GeV/c
and bin 2 from 0.200 to 0.450 GeV/c. The whole E, range was split in 10 equal bins 0.100
GeV wide, numbered from 0 to 9.

Figure 5-13 shows A’ versus E,, for “He . The very first point on all the plots cor-
responds to the valence knockout kinematics, investigated in the previous two sections. In
agreement with what we observed, this lowest E,, data point shows positive asymmetries
for He and a negative asymmetry in the case of 12C (figure 5-14).

One common feature of the two data sets, *He and '?C, is the positive maximum situated
around 0.250 GeV in E,,, probably corresponding to the A (1232) resonance (see spectra
from figures 4-21 and 4-22).

The presence of the carbon p-shell can be again seen on figure 5-14.a. While the helium
data (Fig. 5-13.a) shows a positive asymmetry for the first missing energy bin, the carbon
exhibits a negative asymmetry at low missing energy. From the previous subsection, we

know that the negative asymmetries in the first £, bin in the 2C are to be atributed to
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Q? Ep = 2.261 GeV Ep = 4.461 GeV
bin 12mn Q?na:c 3nm %na:c
1 0.350 0.712 0.800 1.200
2 0.712 1.075 1.200 1.600
3 1.075 1.438 1.600 2.000
4 1.438 1.800 2.000 2.400

Table 5.1: Table explaining the @? binning of the data used in tables 5.3 to 5.6 (Q? is in GeV?/c?).
Please refer to figures 4-21 to 4-24.

the p-shell contribution.

5.2 COMPARISON WITH THE THEORY

Given the large acceptance of our spectrometer, the detector acceptances do not cancel
out in the asymmetry ratio in a trivial manner. This section explains how the theoretical
asymmetries are constructed in order to enable a realistic comparison between theory and
measurement.

The overall data binning scheme chosen for this report is presented in table 5.1. The
quasielastic event selection described by equation (4.18) selects a finite region around the
w = Q%/2m, ridge (see figures 4-25 to 4-28). Within this region, bin widths of Af,, = 3°
and AQ? ~ 0.362 — 0.400 Gev?/c? were used. These values were chosen as a compromise
between being large enough for statistical precision and small enough to reveal changes in
the physics.

For each of the four AwAQ?Af,, bins described in table 5.1, we can define the asym-

metry (4.20), which can be expressed in terms of cross-section as:

 Jawagras, Lo (w,Q,0p)e(w, Q,0pg)dwdQ*dbp,
waAQQAem Lod(w, Q,0pq)e(w, Q, bpq) dwdQ?dbp,

Am(wOaQOagpq,O) (51)
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where £ is the luminosity, € is the detector efficiency and the integral is carried over the
chosen AwAQ?Ab,, bin. By o" and ¢® we denoted the polarized and unpolarized parts
of the total differential cross-section, respectively. The subscript “m” suggests that these
are measured values. The measured cross-section is differential in w, Q? and Opg- The ¢y
dependence was lost when the asymmetry at ¢,, = 90° is extracted by means of the fit
described in section 4.11.

The polarized and unpolarized parts of the total differential cross-section are given by:
ot =0t -0 =0t +o" (5.2)

according to equation (2.13). In chapter 2 we denoted these quantities by A and X but we
use this new notation here in order to avoid confusion with the summation sign.
The value A, is assigned to the kinematic coordinates wy, Qo,0pq,0 defined as the aver-

ages:

waAQ2A0 2%, (W, Q, Opg) €(w, Q, O dwdQ?dby — (%)
waAQ2A9pq 0, (W, Q, Opg)e(w, Q, Opg) dwdQ?dfpg AwAQ A,

(5.3)

g =

where 2 is each of the w, (), 0,4 variables.

We must note that, based on definition (4.20), a different quantity could be constructed:

_ —AgQN, K-> dwdQ?de
A AL S Y. F s ; Opg) — L 5.4
(wo, Qo 0pq0) = 3 Z N+ AgN, / 1w, Q, pq)AwAQQAepq (5.4)
where N is the number of counts in the sub-bin £ and Z,le N = N. In this case the
detector efficiencies cancel out completely but the statistical error increases with K. The

integration methods (5.1) and (5.4) would be perfectly equivalent in the case when the sum
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(5.4) has only one term (K = 1), i.e. the integration range is so small that:

CL‘()—}—A.:L‘/Q

/ A(z) e(z) de = A(z,)e(xo) Az (5.5)
20— Az/2
where z is the set of variables w, @, 0, and dz = dwdQ?d6,, is an infinitesimal volume in
the phase-space. This would be practically the case in a fixed-geometry experiment that
would use a small acceptance detector, as in the previous OOPS experiments [25, 26].

However, formula (5.1) has several advantages in that it emerges naturally from the
analysis method and it minimizes the statistical error. Therefore, in this thesis, the reported
asymmetries are constructed according to equation (5.1).

An ideal comparison with the theory would require performing the integrals in (5.1) with
the cross-sections o and 09, replaced by the theoretical ones: o and 09, respectively. For
practical purposes, given that theoretical calculations are time consuming, it is convenient
to reduce the calculations to the smallest set possible.

If the integrals in (5.1) could be split in K pieces, each small enough to be approximated

by its average value of asymmetry, this would be written as

=

zlwaAQme Tk op (W, Q,0pg)er(w, Q,0p) dwdQ*dby,
Am(WO’ QOa Hpq,O) ;{ (5.6)
z Jinwnq2 a0,k T (s Qs pg)er(w, Q, bpg) dwdQ2db,q

where [AwAQ?Ab,,], denotes the k-th subinterval such that their sum gives the original

integration range from (5.1)

K
D [AwAQ* Al ]k = AwAQ® Ab,
k=1
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We approximate each integral in the sums with

/ 02 (0, Q, B )b (00, @, B )drd Q2 (5.7)
(AwAQ2 A, )k

~ 0% (W, Qi Opg k) €k Wy Qs Opg ) [DWAQ? Ay i

where o stands for 0 or h and the wg, Qk, 0,¢,x are the average kinematic coordinates of the
subinterval calculated as in (5.3). Combining (5.6) and (5.7) and factorizing each term of

the sum into an asymmetry and a weighting factor:

K L 0 )
a o, € [AwAQAL
Am(wOa Qo, gpq,O) = E ( Bnk> = mkk [ Q Pq]k _
" kz_:l a?nk k [AMAQQAOPq]k

K
k=1

where the first term in the square bracket is equated to A,,x and the second to the weighting
factor wy,.

Previous comparisons of the models employed in our calculations show that they success-
fully reproduce unpolarized cross-sections for *He , 12C and '°0 data [45]. The measured
asymmetry (5.1), corrected for beam polarization as in (4.24), can be compared with a

quantity constructed by replacing the A,,; with their calculated counterparts:

K
Ay(w0, Qo,0pg0) = Y Atk (wr, Qs Opg k) wi (5.9)
k=1

while keeping the experimental weighting factors wy. This way, the detector acceptances
are incorporated into the wy. The weights are straightforward to calculate as ratios of

experimental yields wy = Ny /N where N =, Nj.
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K | Grid Size | i | j 2 . (GeVZ/c?) 2z (GeVE/D) | ay az | wg(0)
1 1x1 00 0.712 1.075 0.172 | 0.200 | 1.000
4 2%x2 010 0.712 0.894 0.172 | 0.000 | 0.238
01 0.894 1.075 0.172 | 0.000 | 0.183
110 0.712 0.894 0.000 | 0.200 | 0.354
1)1 0.894 1.075 0.000 | 0.200 | 0.225
9 3x3 010 0.712 0.833 0.172 | 0.060 | 0.099
01 0.833 0.954 0.172 | 0.060 | 0.081
0] 2 0.954 1.075 0.172 | 0.060 | 0.066
110 0.712 0.833 0.060 | 0.063 | 0.144
1)1 0.833 0.954 0.060 | 0.063 | 0.129
12 0.954 1.075 0.060 | 0.063 | 0.100
210 0.712 0.833 0.063 | 0.200 | 0.167
2|1 0.833 0.954 0.063 | 0.200 | 0.132
2|2 0.954 1.075 0.063 | 0.200 | 0.085
16 4x4 010 0.712 0.803 0.172 | 0.089 | 0.053
01 0.803 0.894 0.172 | 0.089 | 0.046
0] 2 0.894 0.984 0.172 | 0.089 | 0.037
03 0.984 1.075 0.172 | 0.089 | 0.031
110 0.712 0.803 0.089 | 0.000 | 0.072
1)1 0.803 0.894 0.089 | 0.000 | 0.067
12 0.894 0.984 0.089 | 0.000 | 0.063
113 0.984 1.075 0.089 | 0.000 | 0.053
210 0.712 0.803 0.000 | 0.096 | 0.093
2|1 0.803 0.894 0.000 | 0.096 | 0.086
2|2 0.894 0.984 0.000 | 0.096 | 0.069
213 0.984 1.075 0.000 | 0.096 | 0.054
310 0.712 0.803 0.096 | 0.200 | 0.094
3|1 0.803 0.894 0.096 | 0.200 | 0.081
3|2 0.894 0.984 0.096 | 0.200 | 0.058
313 0.984 1.075 0.096 | 0.200 | 0.044

Table 5.2: Division table for the convergence study. The @? bin chosen is bin A2 from table 5.1.
Coefficients a; and ay are the ones that enter in equation (4.18). The weighting factors wy listed
on the last column are for bin A°0 in 6,, (corresponding to 0° < 6,, < 3°). The convergence plots
corresponding to this data sub-sample are shown in figure 5-1.
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Figure 5-1: Convergence test on 12C at 2.261 GeV, @? bin AN°2. The theory calculation is done
with OMEA, and the calculated points are linked by straight lines. Please refer to table 5.2.

To enable such a comparison, one had to find the smallest integer K for which all the k
sub-bins in (5.6) are sufficiently small such that the approximation (5.7) holds. To do this,
we carried out a convergence study based on the theory codes. Sample bins were chosen and
the quantity (5.9) was calculated for several values of K. The dependency chosen for the
study is that of A’ versus polar angle. The convergence study was done on several data
sub-samples. The procedure is illustrated in table 5.2 and figure 5-1 for the case of '?C at
2.261 GeV, kinematic bin N'°2 (see table 5.1). The table shows the bin subdivision in 2 X 2,
3 x 3 and 4 x 4 grids. Figure 5-1 shows the corresponding calculations, accompanied by the
data. There is a significant difference between the calculation at the weighted center of the
bin and the first sampling sum (K = 4, 2x2 grid). But the calculations corresponding to the

sums with K > 1 converge rapidly. Our conclusion was that a 2 x 2 grid is sufficient. Similar
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Figure 5-2: Convergence test: other cases. The theory calculation is done with OMEA (a,b) and
with RMSGA (c,d)®. The calculated points are interpolated with Splines.

tests on other data sub-samples, shown in figure 5-2, are consistent with this conclusion.
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Figure 5-3: Illustration of the opposite sign contributions of the s- and p-shells in '2C . The calcu-
lations are done with (a) unweighted OMEA and (b) theory weighted DWIA. The calculated points
are interpolated with cubic Splines.
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Bin Opq q w Q? Pm Em LT LT AL
(n) (°)  (S&Y) (Gev) (SeV)* (GeV) (Gev) | DWIA RMSGA | (meas) (stat)
1 1.97 0.811 0.329 0.549 0.063 0.021 0.0014 n/a | -0.0007 0.0043
2 4.55 0.807 0.326 0.545 0.088  0.022 0.0035 n/a | 0.0052 0.0029
3 744 0.799 0.319 0.537 0.121  0.023 0.0069 n/a | 0.0034 0.0030
4 10.38 0.789  0.311 0.526 0.157  0.025 0.0121 n/a | 0.0091 0.0037
5 13.35 0.780  0.303 0.516 0.193 0.028 0.0204 n/a | 0.0110 0.0049
6 16.34 0.773  0.297 0.509 0.230 0.032 0.0333 n/a | 0.0109 0.0068
7 1936 0.773  0.297  0.510 0.268  0.039 | 0.0533 n/a | 0.0156 0.0093
8 2240 0.781  0.303 0.518 0.309  0.045 0.0763 n/a | 0.0085 0.0120
9 2543 0.790 0.309 0.529 0.350 0.051 0.0746 n/a | -0.0261 0.0143
1 1.94 1.062 0.507 0.870 0.072  0.020 0.0019 n/a | 0.0052 0.0053
2 448 1.056 0.501 0.864 0.106 0.021 0.0052 n/a | 0.0054 0.0040
3 7.34 1.045 0.488 0.853 0.152  0.023 0.0114 n/a | 0.0034 0.0048
4 10.29 1.033 0475 0.842 0.200  0.027 | 0.0232 n/a | 0.0046 0.0072
5 13.29 1.030 0471 0.839 0.252  0.033 0.0463 n/a | 0.0213 0.0113
6 16.37 1.037  0.479 0.847 0.307  0.043 0.0855 n/a | 0.0414 0.0157
7 19.44 1.044 0.484 0.855 0.361  0.049 0.0582 n/a | -0.0298 0.0186
8 2245 1.043 0.482 0.856 0.410 0.054 | -0.0895 n/a | -0.0166 0.0203
9 25.44 1.037 0.472 0.853 0.456  0.056 | -0.1318 n/a | -0.0116 0.0230
1 1.91 1318 0.706 1.239 0.080 0.018 0.0022 0.0000 0.0060 0.0079
2 439 1.311 0.697 1.233 0.124  0.020 | 0.0063 0.0001 | 0.0058 0.0068
3 724 1301 0.685 1.224 0.183 0.023 0.0157 0.0003 0.0229 0.0101
4 10.24  1.296 0.678 1.220 0.248 0.030 0.0383 0.0009 0.0329 0.0178
5 13.36 1.305 0.691 1.225 0.318  0.041 0.0686 0.0024 0.0205 0.0273
6 16.43 1.307 0.691 1.230 0.384 0.049 | -0.0961 -0.0128 | -0.0079 0.0312
7 19.43 1.300 0.678 1.229 0.445 0.052 | -0.1467 -0.0156 | -0.0465 0.0351
8 22.42  1.285 0.656 1.221 0.501  0.056 | -0.1324 -0.0092 | -0.0486 0.0412
9 25.38 1.279  0.647 1.218 0.559  0.059 | -0.1049 -0.0032 | -0.0588 0.0496
1 1.88  1.557  0.906 1.605 0.087  0.018 0.0023 -0.0001 0.0003 0.0120
2 431 1.546 0.890 1.598 0.140 0.019 0.0072 -0.0003 0.0236 0.0116
3 717 1.535 0.874 1.590 0.211  0.025 0.0214 -0.0018 | -0.0058 0.0208
4 10.28 1.538 0.878 1.594 0.294 0.036 0.0541 -0.0272 | -0.0031 0.0391
5 13.42 1.545 0.887 1.600 0.375  0.047 | -0.0949 -0.0298 | -0.0361  0.0502
6 16.43 1.538 0.876 1.597 0.449 0.051 | -0.1064 -0.0244 | -0.0690 0.0581
7 19.39 1.515 0.838 1.592 0.517 0.054 | -0.0832 -0.0063 | -0.0115 0.0705
8 22.36 1.506 0.826 1.585 0.585 0.056 | -0.0549 -0.0056 | -0.0667 0.0974
9 25.43 1.503 0.819 1.589 0.657  0.060 | -0.0054 -0.0019 0.2554 0.1294

Table 5.3: Summary table for “He at 2.262 GeV. The four sections correspond to the four Q2 intervals
(see table 5.1). Bins are determined by the conditions 4.18 and 4.19 on w, Q? and E,, combined with
the condition 3(n — 1) < €py < 3n where 3° is the ,, bin width and n is an integer between 1 and
9. Values on columns 2-4 and 6-7 are weighted averages within the (Q?, 6,,) bin. The calculations
were done as described in section 5.2.
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Bin Opq a w Q° Pm Em L LT dALT
(n) () (S&Y) (ev) (SeV)* (GeV)  (Gev) | DWIA RMSGA | (meas) (stat)
1 1.94 1.253 0.656 1.139 0.092 -0.016 0.0010 0.0000 0.0141  0.0164
2 447 1.246 0.644 1.137 0.131 -0.021 0.0029 0.0001 0.0088 0.0128
3 733 1234 0.626 1.131 0.184 -0.028 0.0072 0.0002 0.0176  0.0166
4 10.30 1.224 0.615 1.119 0.243 -0.025 0.0171 0.0007 | -0.0203 0.0245
5 13.40 1.220 0.619 1.106 0.304 -0.013 0.0387 0.0050 0.0423 0.0334
6 16.45 1.214 0.611 1.100 0.362  -0.002 0.0315 0.0025 0.0433 0.0397
7 19.40 1.209 0.603 1.097 0.418  0.000 | -0.0595 -0.0050 | -0.0093 0.0465
8 22.39 1.201  0.586 1.099 0.472 0.004 | -0.0726 -0.0060 0.0601 0.0582
9 25.45 1.200 0.588 1.094 0.529 0.008 | -0.0631 -0.0018 0.0449 0.0740
1 190 1414 0.784 1.386 0.083 0.012 0.0011 0.0000 | -0.0006 0.0101
2 437 1406 0.774 1.379 0.130 0.013 0.0037 -0.0000 | -0.0061 0.0088
3 722 1394 0.758 1.368 0.194 0.016 0.0094 -0.0001 0.0076  0.0135
4 10.24 1390 0.753 1.364 0.265 0.024 0.0225 -0.0018 0.0246 0.0243
5 13.39 1402 0.770 1.374 0.341 0.037 0.0240 -0.0092 0.0052 0.0351
6 16.41  1.397 0.760 1.374 0.408 0.043 | -0.0702 -0.0113 0.0224 0.0418
7 1939 1383 0.739 1.366 0.471 0.047 | -0.0704 -0.0077 | 0.0194 0.0524
8 2241 1369 0.717 1.360 0.533 0.051 | -0.0599 -0.0030 | -0.1397 0.0662
9 25.40  1.357  0.700 1.352 0.593 0.055 | -0.0447 -0.0034 | -0.0241 0.0845
1 1.87 1.669 1.001 1.785 0.091 0.014 0.0014 -0.0001 0.0146 0.0145
2 4.28 1.660 0.990 1.777 0.148 0.017 0.0045 -0.0004 | -0.0113 0.0143
3 7.16 1.655 0.983 1.773 0.226 0.022 0.0145 -0.0024 | 0.0028 0.0267
4 10.30 1.666  0.998 1.779 0.318 0.038 0.0326 -0.0253 | -0.0342 0.0484
5 13.45 1.667 0.999 1.780 0.404 0.044 | -0.0482 -0.0182 0.0073  0.0636
6 16.43 1.643 0.962 1.774 0.478 0.048 | -0.0398 -0.0084 | -0.0121 0.0778
7 19.30  1.622  0.930 1.767 0.549 0.0563 | -0.0283 -0.0027 | 0.0250 0.1018
8 22.30 1.609  0.909 1.763 0.626 0.052 | -0.0082 -0.0038 | -0.0372  0.1538
9 2540 1.615 0.923 1.756 0.705 0.056 0.0330 0.0027 | -0.0044 0.2307
1 1.83 1926 1.230 2.195 0.099 0.014 0.0018 -0.0002 | -0.0182 0.0222
2 419 1912 1.211 2.187 0.164 0.016 0.0062 -0.0010 | -0.0157 0.0249
3 713 1.904  1.200 2.184 0.257 0.025 0.0245 -0.0115 0.0389 0.0549
4 10.29 1.924 1.225 2.202 0.363 0.039 | -0.0409 -0.0265 0.0452  0.0995
5 13.38 1.897 1.188 2.188 0.456 0.041 | -0.0458 -0.0156 | -0.1490 0.1192
6 16.29 1.872 1.148 2.186 0.539 0.047 | -0.0315 -0.0038 | -0.0724 0.1600
7 19.27  1.832 1.091 2.168 0.621 0.053 | -0.0073 -0.0049 0.1206 0.2300
8 22.15 1.846 1.095 2.208 0.722 0.060 0.0451 0.0053 0.1337 0.3836
9 25.73 1.866  1.149 2.160 0.823 0.040 | -0.0510 0.0046 | -0.2014 0.5515

Table 5.4: Summary table for “He at 4.462 GeV. The four sections correspond to the four Q2 intervals
(see table 5.1). Bins are determined by the conditions 4.18 and 4.19 on w, Q? and E,, combined with
the condition 3(n — 1) < €py < 3n where 3° is the ,, bin width and n is an integer between 1 and
9. Values on columns 2-4 and 6-7 are weighted averages within the (Q?, 6,,) bin. The calculations
were done as described in section 5.2.
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Bin Opq a w Q° Pm Em LT LT AL
(n) (°)  (S&Y) (Gev) (GeV)* (GeV)  (Gev) | OMEA RMSGA | (meas) (stat)
1 1.99 0.822 0.342 0.559 0.072  0.030 | -0.0105 n/a | -0.0136 0.0073
2 466 0.819 0.338 0.557 0.095 0.028 | -0.0172 n/a | -0.0129  0.0042
3 7.52 0.812 0.330 0.550 0.126  0.026 | -0.0176 n/a | -0.0260 0.0036
4 10.44 0.801 0.319 0.540 0.161  0.026 | -0.0149 n/a | -0.0186 0.0038
5 13.38 0.790 0.309 0.528 0.196 0.028 | -0.0094 n/a | -0.0148 0.0047
6 16.34 0.780  0.300 0.518 0.231  0.032 0.0005 n/a | -0.0115 0.0063
7 1933 0.775  0.296  0.513 0.267  0.039 | 0.0175 n/a | 0.0098 0.0089
8 22.36  0.777  0.297 0.515 0.306  0.047 0.0268 n/a | -0.0112 0.0126
9 25.40 0.786  0.305 0.525 0.347  0.054 0.0098 n/a | 0.0224 0.0167
1 1.99 1.068 0.515 0.876 0.082 0.029 | -0.0155 -0.0077 | -0.0159 0.0081
2 4.60 1.063 0.508 0.872 0.113 0.026 | -0.0239 -0.0126 | -0.0231 0.0049
3 743 1.052  0.495 0.862 0.155  0.026 | -0.0235 -0.0158 | -0.0267 0.0049
4 10.32 1.039 0.479 0.850 0.201  0.028 | -0.0175 -0.0203 | -0.0204 0.0065
5 13.29 1.029  0.468 0.841 0.250  0.033 | -0.0001 -0.0251 | -0.0231  0.0098
6 16.32  1.031  0.470 0.843 0.302  0.043 0.0296 -0.0102 0.0013  0.0149
7 19.39 1.039 0478 0.851 0.357  0.053 | -0.0007 0.0126 0.0027 0.0198
8 2241 1.041 0.478 0.854 0.407  0.059 | -0.0423 0.0300 | -0.0320 0.0238
9 25.42 1.035 0.471 0.849 0.454 0.061 | -0.0521 0.0337 | -0.0070  0.0286
1 1.99 1326 0.716 1.246 0.092 0.027 | -0.0195 -0.0160 | -0.0309 0.0116
2 4.52 1317 0.704 1.240 0.131  0.024 | -0.0286 -0.0241 | -0.0264 0.0077
3 731 1303 0.685 1.229 0.184 0.024 | -0.0266 -0.0310 | -0.0227  0.0093
4 10.23 1.294 0.674 1.221 0.245 0.029 | -0.0060 -0.0406 0.0060 0.0154
5 13.29 1.298 0.680 1.223 0.313  0.042 0.0432 0.0228 0.0464 0.0254
6 16.40 1.304 0.686 1.229 0.381  0.0563 | -0.0267 0.0384 | -0.0042 0.0341
7 19.37 1.294 0.670 1.226 0.441  0.057 | -0.0591 0.0328 0.0117  0.0409
8 2237 1.281 0.650 1.218 0.497  0.060 | -0.0633 0.0148 | -0.0857 0.0518
9 25.38 1.275  0.640 1.217 0.555  0.063 | -0.0469 -0.0057 | 0.0245 0.0669
1 1.97 1.561  0.909 1.610 0.098 0.026 | -0.0224 -0.0212 | -0.0310 0.0166
2 4.45 1.550 0.894 1.604 0.146  0.023 | -0.0304 -0.0305 | -0.0198 0.0122
3 7.21  1.533 0.871 1.590 0.211  0.025 | -0.0228 -0.0423 | -0.0144 0.0179
4 10.22  1.528  0.863 1.589 0.288  0.035 0.0302 -0.0066 0.0101  0.0347
5 13.37 1538 0.878 1.596 0.371  0.049 | -0.0071 0.0450 0.0306 0.0523
6 16.40  1.527  0.860 1.594 0.444  0.055 | -0.0608 0.0228 | -0.0165 0.0675
7 19.39 1.512 0.841 1.580 0.513 0.060 | -0.0675 0.0016 | -0.0350 0.0890
8 22.31 1.501 0.813 1.591 0.580 0.062 | -0.0234 -0.0254 | 0.0163 0.1271
9 25.40 1492 0.804 1.579 0.649  0.066 0.0089 -0.0357 | 0.1536 0.1758

Table 5.5: Summary table for 12C at 2.262 GeV. The four sections correspond to the four Q? intervals
(see table 5.1). Bins are determined by the conditions 4.18 and 4.19 on w, Q? and E,, combined with
the condition 3(n — 1) < €py < 3n where 3° is the ,, bin width and n is an integer between 1 and
9. Values on columns 2-4 and 6-7 are weighted averages within the (Q?, 6,,) bin. The calculations
were done as described in section 5.2.
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Bin Opq q w Q’ Pm Em L LT dALT
(n) () (S8Y) (@ev) (SeV)® (SeV)  (Gev) | OMEA RMSGA | (meas) (stat)
1 1.98 1.194 0.598 1.068 0.103  -0.033 | -0.0091 -0.0053 | -0.0460 0.0202
2 455 1.189 0.591 1.064 0.136  -0.033 | -0.0130 -0.0080 | -0.0444 0.0132
3 739 1177 0.574 1.055 0.181  -0.034 | -0.0123 -0.0100 0.0169 0.0142
4 10.32  1.164 0.558 1.043 0.232  -0.033 | -0.0077 -0.0127 | -0.0189 0.0196
5 13.32  1.157  0.553 1.031 0.288  -0.026 0.0081 -0.0069 | -0.0060 0.0284
6 16.38 1.163  0.563 1.036 0.347  -0.004 0.0012 0.0126 | -0.0197 0.0382
7 19.43 1.166 0.566 1.039 0.404 0.013 | -0.0235 0.0193 0.0145 0.0494
8 2240 1.160 0.552 1.040 0.456 0.022 | -0.0301 0.0170 | -0.0424 0.0640
9 2541  1.157  0.547 1.039 0.509 0.031 | -0.0306 0.0096 0.0789 0.0812
1 1.98 1414 0.775 1.400 0.100 -0.013 | -0.0109 -0.0094 | -0.0433 0.0169
2 451 1.405 0.762 1.394 0.141  -0.014 | -0.0150 -0.0133 | -0.0123 0.0116
3 7.30 1.388  0.740 1.380 0.197 -0.015 | -0.0131 -0.0163 0.0099 0.0147
4 10.26  1.377 0.727 1.369 0.263 -0.008 0.0019 -0.0148 0.0140 0.0242
5 13.36  1.390 0.747 1.375 0.337 0.013 0.0115 0.0197 0.0221 0.0374
6 16.40 1.387 0.741 1.375 0.405 0.028 | -0.0272 0.0211 0.0725  0.0485
7 19.40 1374 0.718 1.371 0.467 0.036 | -0.0353 0.0107 | -0.0446 0.0644
8 2243 1359 0.693 1.367 0.528 0.038 | -0.0307 0.0002 | -0.0746 0.0837
9 25.34 1.352  0.683 1.360 0.587 0.047 | -0.0115 -0.0129 | -0.0092 0.1076
1 196 1.669 0.995 1.796 0.106 -0.003 | -0.0122 -0.0117 | -0.0125 0.0220
2 444 1.654 0.973 1.787 0.156  -0.004 | -0.0158 -0.0161 0.0217 0.0167
3 7.20 1.635 0.947 1.777 0.224 -0.002 | -0.0093 -0.0221 | -0.0178 0.0255
4 10.28 1.646 0.966 1.778 0.311 0.015 0.0268 0.0133 0.0371  0.0473
5 13.40 1.650 0.969 1.783 0.397 0.030 | -0.0153 0.0190 0.1114  0.0661
6 16.37 1.626 0.931 1.778 0.472 0.039 | -0.0371 0.0060 | -0.0266 0.0881
7 19.34 1.612 0.904 1.783 0.544 0.046 | -0.0283 -0.0084 0.0486 0.1219
8 22.24 1.602 0.894 1.767 0.618 0.049 | -0.0002 -0.0204 0.1582 0.2125
9 25.28 1.593 0.881 1.762 0.689 0.054 0.0122 -0.0027 | -0.1582 0.2794
1 1.96 1.924 1.222 2.209 0.112  -0.000 | -0.0142 -0.0133 | -0.0007 0.0307
2 434 1903 1.19%4 2.197 0.171  -0.002 | -0.0148 -0.0183 0.0004 0.0260
3 712  1.887 1.173 2.186 0.254 0.004 0.0065 -0.0267 | -0.0705 0.0469
4 10.27 1.897 1.186 2.194 0.356 0.024 0.0203 0.0207 0.0265 0.0926
5 13.40 1.881 1.157 2.199 0.450 0.034 | -0.0266 0.0059 | -0.0918 0.1210
6 16.29 1.866 1.141 2.182 0.535 0.041 | -0.0384 -0.0098 0.1531 0.1712
7 19.29 1.8556  1.123 2.179 0.622 0.051 0.0023 -0.0245 | -0.5146 0.3384
8 22.15 1.821 1.065 2.181 0.693 0.052 0.0148 0.0034 | -0.0936 0.4809
9 25.31  1.787 1.012 2.170 0.773 0.063 0.0269 0.0183 | -0.6516 0.8393

Table 5.6: Summary table for 12C at 4.462 GeV. The four sections correspond to the four Q? intervals
(see table 5.1). Bins are determined by the conditions 4.18 and 4.19 on w, Q? and E,, combined with
the condition 3(n — 1) < €py < 3n where 3° is the ,, bin width and n is an integer between 1 and
9. Values on columns 2-4 and 6-7 are weighted averages within the (Q?, 6,,) bin. The calculations
were done as described in section 5.2.
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Figure 5-4: Dependence of A%, versus 6, for “He(e,e'p) at 2.262 GeV. Measurements were done
with an angle bin width of Af,, = 3°, for four @* bins along the quasielastic ridge. The @? bins
are set as follows: a) 0.350 < Q2 (GeV?/c?) < 0.712, b) 0.712 < @? (GeV?/c?) < 1.075, c¢) 1.075
< @Q? (GeV?/c?) < 1.438 and d) 1.438 < @? (GeV?/c?) < 1.800. There were no constrains on p,
or p'. The solid (dashed) curves correspond to RMSGA (DWIA) calculations used as described in
section 5.2. The data are listed in table 5.3. Errors shown are statistical.
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Figure 5-5: Dependence of A%, versus 6, for “He(e,e'p) at 4.462 GeV. Measurements were done
with an angle bin width of Af,, = 3°, for four @* bins along the quasielastic ridge. The @? bins
are set as follows: a) 0.800 < Q2 (GeV?/c?) < 1.200, b) 1.200 < @? (GeV?/c?) < 1.600, c) 1.600
< @Q? (GeV?/c?) < 2.000 and d) 2.000 < Q* (GeV?/c?) < 2.400. There were no constrains on p,
or p'. The solid (dashed) curves correspond to RMSGA (DWIA) calculations used as described in
section 5.2. The data are listed in table 5.4. Errors shown are statistical.
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Figure 5-6: Dependence of A} versus 6,, for 12C(e,e'p) at 2.262 GeV. Measurements were done
with an angle bin width of Af,, = 3°, for four @* bins along the quasielastic ridge. The @? bins
are set as follows: a) 0.350 < Q2 (GeV?/c?) < 0.712, b) 0.712 < @? (GeV?/c?) < 1.075, c¢) 1.075
< Q? (GeV?/c?) < 1.438 and d) 1.438 < @? (GeV?/c?) < 1.800. There were no constrains on p,
or p'. The solid (dotted) curves correspond to RMSGA (OMEA) calculations used as described in
section 5.2. The data are listed in table 5.5. Errors shown are statistical.
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Figure 5-7: Dependence of A}, versus 6, for 12C(e,e'p) at 4.462 GeV. Measurements were done
with an angle bin width of Af,, = 3°, for four @* bins along the quasielastic ridge. The @? bins
are set as follows: a) 0.800 < Q2 (GeV?/c?) < 1.200, b) 1.200 < @? (GeV?/c?) < 1.600, c) 1.600
< @Q? (GeV?/c?) < 2.000 and d) 2.000 < Q* (GeV?/c?) < 2.400. There were no constrains on p,
or p'. The solid (dotted) curves correspond to RMSGA (OMEA) calculations used as described in
section 5.2. The data are listed in table 5.6. Errors shown are statistical.
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Figure 5-8: Dependence of A’ versus missing momentum p,, for *He(e, e'p) at 2.262 GeV, in four
@? bins along the quasielastic ridge. The @ bins are set as follows: a) 0.350 < Q? (GeV?/c?) <
0.712, b) 0.712 < @? (GeV?/c?) < 1.075, ¢) 1.075 < @Q? (GeV?/c?) < 1.438 and d) 1.438 < Q?
(GeV?/c?) < 1.800. The solid (dashed) curves correspond to RMSGA (DWIA) calculations used as
described in section 5.2. The data used are listed in table 5.3. Errors shown are statistical.
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Figure 5-9: Dependence of A’ versus missing momentum p,, for *He(e, e'p) at 4.462 GeV, in four
Q? bins along the quasielastic ridge. The Q2 bins are set as follows: a) 0.800 < Q? (GeV?/c?) <
1.200, b) 1.200 < Q2 (GeV?2/c2) < 1.600, c) 1.600 < Q2 (GeV?/c?) < 2.000 and d) 2.000 < Q2
(GeV?/c?) < 2.400. The solid (dashed) curves correspond to RMSGA (DWIA) calculations used as
described in section 5.2. The data used are listed in table 5.4. Errors shown are statistical.
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Figure 5-10: Consistency test between 2.262 and 4.462 GeV *He data: Q2 bin n from 4.462 GeV
(figure 5-9) is overlapped with bin n — 1 from 2.262 GeV “He (figure 5-8), where n = 2,3,4,
corresponding (in this order) to graphs (a), (b) and (c).
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Figure 5-11: Dependence of A versus missing momentum p,, for 12C(e, e'p) at 2.262 GeV, in four
Q? bins along the quasielastic ridge. The Q2 bins are set as follows: a) 0.350 < Q% (GeV?/c?) <
0.712, b) 0.712 < @?* (GeV?/c?) < 1.075, ¢) 1.075 < Q? (GeV?/c?) < 1.438 and d) 1.438 < Q?
(GeV?/c?) < 1.800. The solid (dotted) curves correspond to RMSGA (OMEA) calculations used as
described in section 5.2. The data used are listed in table 5.5. Errors shown are statistical.
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Figure 5-12: Dependence of A%, versus missing momentum p,, for 2C(e, e'p) at 4.462 GeV, in four
@Q? bins along the quasielastic ridge. The Q2 bins are set as follows: a) 0.800 < Q? (GeV?/c?) <
1.200, b) 1.200 < Q2 (GeV2/c?) < 1.600, ) 1.600 < Q® (GeV2/c?) < 2.000 and d) 2.000 < Q>
(GeV?/c?) < 2.400. The solid (dotted) curves correspond to RMSGA (OMEA) calculations used as
described in section 5.2. The data used are listed in table 5.6. Errors shown are statistical.
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Eyearm | Pm  FEm q w Opq Pm E,, Al r 0AL -
(GeV) | bin bin | (GeV/c) (GeV) (deg) (GeV/ec) (GeV)

2.262 0 0 0.995 0.457  5.388 0.119 -0.009 0.00221 0.00408
2.262 0 1 0.904 0.401  6.127 0.118 0.026  0.00549 0.00129
2.262 0 2 1.012 0.590 6.635 0.136 0.150  0.01690 0.00511
2.262 0 3 1.088 0.734  6.711 0.148 0.243 0.05843 0.00522
2.262 0 4 1.215 0.914 5.911 0.152 0.341  0.01410 0.00885
2.262 0 5 1.373 1.127  4.821 0.148 0.443 -0.00103 0.01506
2.262 0 6 1.519 1.316  3.947 0.152 0.542 -0.00211 0.02482
2262 | 0 7 1.657 1.491  3.081 0.166 0.632  0.00930 0.05339
2.262 0 8 1.780 1.654  2.517 0.185 0.716  0.40018 0.32036
2.262 1 0 1.035 0.557 10.728 0.263 -0.011 -0.00871 0.00797
2.262 1 1 0.935 0.448 14.118 0.277 0.038 0.00405 0.00224
2.262 1 2 0.992 0.551 15.853 0.306 0.147  0.00543 0.00464
2.262 1 3 1.072 0.690 14.339 0.300 0.254  0.03714 0.00370
2.262 1 4 1.134 0.781 14.141 0.334 0.348  0.02829 0.00336
2.262 1 5 1.230 0.912 12.798 0.361 0.444 0.02584 0.00424
2262 | 1 6 1.356 1.084 10.587  0.365 0.544  0.02755 0.00630
2262 | 1 7 1.483 1.253  8.211 0.368 0.645 0.00891 0.00853
2.262 1 8 1.623 1.431 6.808 0.386 0.739  0.03252 0.01403
2.262 1 9 1.758 1.604  5.513 0.407 0.833  0.03077 0.03302
4.462 0 0 1.388 0.740  3.844 0.121 -0.027 -0.00511 0.00714
4.462 0 1 1.486 0.858  3.643 0.119 0.031  0.00297 0.00561
4.462 0 2 1.510 0.978  4.403 0.138 0.148 0.01746 0.01491
4.462 0 3 1.667 1.208 4.299 0.150 0.244 0.02766 0.01683
4.462 0 4 1.830 1.441  3.884 0.151 0.344 0.02356 0.02462
4.462 0 5 2.019 1.693  3.389 0.150 0.444 -0.05970 0.03644
4.462 0 6 2.237 1.963  2.850 0.152 0.544  0.08877 0.05184
4.462 0 7 2.485 2.258  2.295 0.159 0.637 -0.01154 0.09568
4.462 0 8 2.842 2.662 1.527 0.166 0.736  0.13265 0.23462
4.462 1 0 1.406 0.808  8.882 0.280 -0.034 0.02113 0.01182
4.462 1 1 1.512 0.924 9.255 0.292 0.042 0.01202 0.00856
4.462 1 2 1.488 0.951 10.349 0.304 0.151  0.03348 0.01292
4.462 1 3 1.591 1.106  9.544 0.305 0.253  0.02014 0.01017
4.462 1 4 1.659 1.201  9.489 0.334 0.348  0.00768  0.00934
4.462 1 5 1.750 1.328 8.761 0.357 0.446  0.03448 0.01081
4.462 1 6 1.890 1.521  7.316 0.360 0.546  0.01538 0.01437
4.462 1 7 2.056 1.736  5.780 0.366 0.646 -0.00693 0.01815
4.462 1 8 2.279 2.006  4.642 0.377 0.744  0.00047 0.02558
4.462 1 9 2.562 2.334  3.716 0.391 0.838 -0.01120 0.04181

Table 5.7: Missing energy dependence of A’ for “He .
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Eyearm | Pm  FEm q w Opq Pm E,, Al r 0AL -
(GeV) | bin bin | (GeV/c) (GeV) (deg) (GeV/ec) (GeV)

2.262 0 0 0.968 0.428  6.751 0.138 -0.009 -0.03021 0.00468
2.262 0 1 0.920 0.416  6.916 0.134 0.031 -0.01700 0.00156
2.262 0 2 1.014 0.588  6.704 0.140 0.146  0.00324 0.00517
2.262 0 3 1.097 0.740  6.393 0.144 0.244 0.03644 0.00578
2.262 0 4 1.216 0.910 5.806 0.151 0.342  0.03527 0.00900
2.262 0 5 1.362 1.108  4.858 0.150 0.441 -0.00297 0.01552
2.262 0 6 1.507 1.298  3.983 0.156 0.541  0.08073 0.02747
2.262 0 7 1.652 1.481 3.194 0.169 0.632 -0.01903 0.06585
2.262 0 8 1.806 1.672 2.482 0.182 0.715  0.17451 0.34245
2.262 1 0 0.999 0.502 11.241 0.255 -0.010 -0.01659 0.00703
2.262 1 1 0.937 0.438 13.732 0.271 0.040 -0.00152 0.00217
2.262 1 2 0.985 0.531 16.093 0.312 0.145 -0.00817 0.00380
2.262 1 3 1.063 0.668 14.856 0.312 0.251  0.02215 0.00395
2.262 1 4 1.128 0.767 14.152 0.333 0.348  0.02558 0.00385
2.262 1 5 1.218 0.892 12.764 0.355 0.445 0.02202 0.00462
2.262 1 6 1.334 1.050 10.851 0.366 0.544 0.02910 0.00645
2.262 1 7 1.460 1.218  8.663 0.372 0.644 0.02154 0.00916
2.262 1 8 1.589 1.385 7.104 0.389 0.740  0.02648 0.01471
2.262 1 9 1.728 1.561  5.890 0.408 0.833  0.00208 0.03384
4.462 0 0 1.336 0.677  4.611 0.135 -0.039 -0.02496 0.00676
4.462 0 1 1.483 0.860  4.172 0.133 0.034 0.00472 0.00933
4.462 0 2 1.509 0.982 4.441 0.141 0.147  0.00281 0.01689
4.462 0 3 1.652 1.191 4.296 0.149 0.245 -0.01741 0.02088
4.462 0 4 1.828 1434  3.873 0.150 0.344 0.04090 0.02946
4.462 0 5 2.024 1.691  3.337 0.150 0.443 -0.03272 0.04223
4.462 0 6 2.244 1.963 2.819 0.153 0.5643 0.06169 0.06575
4.462 0 7 2.496 2.261 2.336 0.161 0.634 0.13542 0.12191
4.462 0 8 2.751 2.564  1.705 0.172 0.730  0.43852 0.27658
4.462 1 0 1.368 0.750  8.802 0.270 -0.041 -0.00806 0.00903
4.462 1 1 1.477 0.878  9.928 0.298 0.043 0.00834 0.01019
4.462 1 2 1.493 0.948 10.422 0.306 0.151  0.02031 0.01290
4.462 1 3 1.568 1.069  9.966 0.313 0.251  0.01281 0.01162
4462 | 1 4 1.638 1.170  9.658 0.335 0.348  0.00693 0.01150
4.462 1 5 1.735 1.306  8.840 0.353 0.447 0.02756 0.01339
4.462 1 6 1.879 1.499  7.472 0.360 0.546 0.01108 0.01701
4.462 1 7 2.045 1.711  6.019 0.368 0.645 -0.01593 0.02168
4.462 1 8 2.252 1.965 4.874 0.379 0.744 -0.00565 0.02987
4.462 1 9 2.517 2.275  3.854 0.392 0.839 -0.02951 0.04993

Table 5.8: Missing energy dependence of A’ ;. for '2C .
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Figure 5-13: Al r versus E,, for helium. The two missing momentum bins are defined as follows:
1) 0.0 < pm < 0.2 and 2) 0.2 < py,, < 0.45 with p,, in GeV/c. No radiative corrections were applied.
Errors shown are purely statistical.



0.1

0.05

0.1

0.05

A’LT

-0.05

-0.1

iy

- a) ’C, 2.261 GeV, p,, bin

L L | L |
0 02 04 06
E, (GeV)

0.8

i)

" c) °C, 4.461 GeV, p, bin 1
L |

n 1 n 1
0 0.2 0.4 0.6
E, (GeV)

0.8

0.1

0.05

0.1

0.05

EEREY

L b)*C, 2.261 GeV, p,, bin 2

L L | L | L
0 02 04 06 08
E, (GeV)

- d) *’c, 4.461 GeV, p,_ bin 2

HHU}

n n 1 n 1 n
0 0.2 0.4 0.6 0.8
E, (GeV)

138

Figure 5-14: A, versus E,, for carbon. The two missing momentum bins are defined as follows:
1) 0.0 < pm < 0.2 and 2) 0.2 < py,, < 0.45 with py, in GeV/c. No radiative corrections were applied.
Errors shown are purely statistical.
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5.3 SUMMARY

We have measured the A’ ;. asymmetry in quasielastic reactions on 12C and *He in order to
determine the contribution of final state interactions in the one-proton knockout reaction.
The A, asymmetry arises as a result of the interference between the direct knock-out and
the rescattering through FSI and therefore it is the most sensitive tool for their disentan-
glement,.

Our measurements covered an unprecedented kinematic range, making use of the ex-
cellent capabilities of CLAS. The measurements covered a four-momentum range up to 2.4
GeV?/c2. The data acquired during the E2A were 310 million (M) triggers for *He at 2.2
GeV beam energy and 442 M, 323 M, 346 M for '2C at 4.4 GeV, “He at 2.2 GeV, 2C at
4.4 GeV, respectively. After event reconstruction, the statistics were 113 M events for *He
at 2.2 GeV beam energy and 102 M, 98 M and 66 M for *He at 4.4 GeV, 2C at 2.2 GeV
and 4.4 GeV, respectively. In the quasielastic regime the statistics used were 2.7 M for 2.2
GeV “He and 0.3 M for 4.4 GeV helium, while for carbon they were 2.7 M and 0.25 M for
2.2 and 4.4 GeV beam energy, respectively.

To compare with theory, a total of 810 points were calculated for helium and 1100
for carbon. Our calculations were based on three models. The distorted wave impulse
approximation (DWIA) [88, 53] and the optical potential in eikonal approximation (OMEA)
model are based on optical potentials and their range of validity spans up to 0.300 GeV/c
in missing momentum and up to 1 GeV?/c? in Q2. The relativistic multiple scattering
Glauber approximation (RMSGA) is a high-Q? approximation valid for Q% > 1 GeV?/c2.
The comparison of the theory with the data must be viewed in this context.

Let us summarize our findings:
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1. Overall, the measured asymmetries in the quasielastic region were below 5%, typically

in the range of 0-3% for data with good statistical uncertainties.

2. Large acceptance spectrometers like CLAS can extract good asymmetries as long as

sufficient statistics are available

3. While areas of disagreement were observed, all models showed qualitative agreement
with experiment. However, a detailed comparison with theory for >C would require

separation of major shells, since they contribute with opposite sign to the asymmetry

4. Within the range of validity of the models and summing over the final states, we see
no compelling evidence for exotic processes that would significantly modify the LT’

interference.

Depending on the data set and the kinematics investigated, the measurements we made
were characterized by statistical errors in the range of acceptable to large but with corre-
sponding small systematic errors. This observation is an important point in assessing the

potential of the technique for future measurements.

5.4 QOUTLOOK

In general, the inherent accuracy of the helicity asymmetry measurements and their insensi-
tivity to mechanisms other than FSI make them a promising tool for evaluating rescattering
effects consistently beyond the mean-field approach.

This survey demonstrates the feasibility of CLAS for these type of studies. Improvements
in the event acquisition rate make it possible now to run at 4.4 kHz, compared with 2.2

kHz at the time of our experiment.
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Appendix A

ELECTRON MOMENTUM CORRECTIONS FOR 4.4 GEV
DATA

Our lack of knowledge regarding the details of magnetic field mapping in the CLAS
detector will influence the exactness of our measurements of the momentum vector. What
one can do, using as a reference some well known process, is to introduce a function that
will correct the momentum as a function of its orientation (one choice).

For this, it is handy to use a simple and well known interaction: elastic scattering of
e~ on H. This analysis presented in this material is done on E1 Hs data at 4.4 GeV, at a
torus current of 2250 A. From the whole invariant mass spectrum, we select the W range
from 0.80 to 1.05 GeV, which corresponds to the elastic peak (see Fig.A-2). We discard
data with @ < 16°. This selection leaves us with approximately 5% of the total number of
events in the rootDST file. We make the assumption that the corrections derived in the
elastic region will hold for the whole spectrum.

A.1 METHOD

In general there is no consensus on the expression that the correction function should
have. It clearly will depend on the absolute value p of the momentum of the electron as
well as on its angles § and ¢, and we expect variations from sector to sector. The generic
expression is then:

Pcorr = f(p7 0,9, 3) (Al)

where peorr will be the 'real’ value, and s indicates the sector.

Since the main uncertainties are due to the distribution of the torus field and angles
mainly defined by DC geometry, we assume that the angles are measured correctly and the
value of the momentum needs to be corrected. This is to say that eq.(A.1) may be written
as:

Deorr =P - X(e, é, 3) (A2)

The geometry of the detector implies a certain correlation between the range of ¢ angle
and the 6 of a detected particle. At large 6 values, the ¢ range is large and most of the
particles are far from the edges of the fiducial region, while at small 8, where the ¢ range is
quite small, the influence of the vicinity of the coils is more significant (see figures A-3 and
A-4). But the amount of this effect will be almost completely eliminated by the fiducial
cuts.

In a good approximation, then, we can assume that the correction function y from
eq.(A.2) can be factorized as:

X(ga é, S) = f2(9’3) : f1(¢73) (A3)
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Figure A-1: Trajectory of an electron in CLAS.

where f1 and fo are different functions for each sector s.

In this case, the procedure is simple: we correct the ¢ dependence, insert it into the
code, and with it derive the § correction functions. The overall correction function y will
be the product of the two.

A.2 CORRECTION FUNCTION

The correction functions are simply the ratio between the calculated modulus of the electron
momentum pq. and the measured one peyy, for each sector.

filei, s) = Peatc(04, 5) a=¢, ay="0 (A.4)
Pexp

For the elastic scattering of electron we can approximate successfully:

Ebeam
= A.
Peale 1+ Ebeam(l — Cos 0)/mp ( 5)

where Epeqrm, = 4.4 GeV is the beam energy (we assume that this is accurately measured),
and m,, is the mass of the proton. The formula (A.5) contains no ¢ terms, and therefore
we calculate f; based on the assumption of isotropy in ¢.

We plot then the ratio fi from (A.4) versus ¢ for each sector (please see the example in
Fig.A-5). Obtained two-dimensional histograms, like the one in Fig.A-5.a, are sliced along
¢, each slice fitted with a Gaussian and the mean values plotted again versus ¢. The graph
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in Fig.A-5.b shows the fit to the centroids of the Gaussians with a polynomial function.
Then polynomial function is used as a correction function fi(¢, s). In figure A.7(a) one can
see how the position and width of the elastic peak in W is changed (compare with Fig.A-2).
After the ¢ correction is done, the same procedure is repeated for parameterizing fo(6).
The algebraic functions that we found the most suitable (see figures A-5 and A-6) are:

f1(¢73) = P2(¢’3) (A6)
f2(0,s) = a5+ P(0,s)-e? (A.7)

where P; is a second degree polynomial and a, is a fit parameter. One notices that we
tried to limit ourselves to the simplest functions. The correction in ¢ is a parabola, and we
found that it fits very well the points in Fig.A-5.b within the region of interest. If at the
extremities it goes wrong, it does not affect the final result because these regions will be
cut out anyway when the fiducial cuts are applied.

The correction in @ is a little more complicated (eq.A.7). At larger 6 angles f2(0)
reaches a plateau. Therefore, we insert the offset a; and the inverse exponential function
e~%, with which we force the polynomial into a flat horizontal curve in this region (that will
be approximately above 25°, as seen in figure A-6.b). Since we are not interested in what
happens below 8 = 16°, the continuation of the functions in this region is not guaranteed
to hold.

As one may have noticed, not all the details of these plots have been fitted. What we
intended to correct is the general trend and this is successfully accomplished with both 6
and ¢.

The number of the resulting parameters is 6 x (4+3) = 42. The parameters of correction
functions go into the file EMCP_4GeV.par that is read by SetMomCorrParameters()
included in the TE2AnaTool package.

In Fig.A.7(b) you can see the final aspect of the elastic peak in W (the peak, ideally,
should be centered at 0.9382 GeV/c?, corresponding to the mass of proton mp). Assuming
that the resolution scales with the magnetic field, one expects from other such calibrations
(e.g. E1 experiment) that a resolution between 19.6 and 24.0 MeV/c? is feasible. We get
here an overall o = 20.3 MeV /c?.

A look at the energy spectra of the electrons in Fig.A-8 shows good agreement with the
conclusions drawn in [103]. As we see in this figure, the shape of the distribution is not
changed much by the momentum corrections, except the high energy/small 6 region. This
is due to the extremities of the fit curves as discussed above. Once we discard data below
0 = 16°, the unphysical points vanish and the curve agrees with the one dictated by the
fiducial cuts (see [ref.2]).

A.3 SUMMARY

We made the important assumption that the correction function can be factorized in a
¢- and a f-dependent part. We chose to correct the modulus rather than the orientation
of the electron momentum vector. First the ¢ dependence is corrected, then included into
the code, then used to derive the #-dependent correction. The corrected momentum vector
preserves the angles from the EVNT bank but has the modulus modified by formula (A.2).
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More detailed information about the procedure as well as for the codes used to derive
these results, the reader is advised to consult the extensive documentation available on web
in [105].
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Figure A-2: The elastic peak in W before applying any corrections. All sectors together.
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(b)

Figure A-3: Plots of the correction f; versus the angle ¢ for different 6 intervals: 16° < 6 < 20° (a),
20° < 6 < 25° (b).
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(b)

Figure A-4: Plots of the correction f; versus the angle ¢ for two other 6 intervals: theta > 25° (a)
and 6 < 16° (b).
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Figure A-5: Plots of the correction f; versus the angle ¢ for § > 16°: a 2D Histogram (left) is sliced
and fitted (right). Only sector 3 is shown. For the other five plots, please see [105]
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Figure A-7: The elastic peak in W (a) after ¢-corrections were applied. All sectors. The width
decreases to 21 MeV and the mean value shifts to 0.936 MeV/c?.(b) when all corrections are done:
the peak is now even sharper.
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Appendix B
ELECTRON FIDUCIAL CUTS FOR 4.4 GEV DATA

B.1 INTRODUCTION

In electron scattering experiments with CLAS, the recorded event is accepted for physics
analysis if the scattered electron is identified. For electron identification, in most cases,
valid signals in all four detectors are required. Electron detection efficiency around the
mid plane in each sector is reproducible in the GEANT (GSIM) simulations. Due to the
complicated readout structures of EC and CC, detection and reconstruction efficiencies are
not well understood in the regions close to the torus coils, and close to the dead channels
of detector elements. In order to minimize systematic uncertainties in the physics analysis
it is important to accept events in the fiducial region of the detector, where efficiencies are
understood.

Fiducial cuts for electrons in ep scattering experiments were derived earlier by V.Burkert
et. al. [80] for the CLAS/E1 runs. These cuts define a region in the production (6, ¢)
space for a given momentum, where detection efficiency is almost constant on ¢ and can
be reproduced in simulations. Although these functions should, in principle, scale with
momentum and the magnetic field, it is not always possible to use the same function due
to different run conditions (bad channels, target position, trigger, etc.).

Data taken at beam energy E, = 4.4 GeV during the CLAS/E2 run do not have
Cerenkov counters in the Level 1 trigger of the CLAS DAQ. The main motivation for
excluding CC from the trigger is that a lot of E2-related physics proposals are focused
around the kinematics of quasi-elastic, dip and A production regions, starting from mo-
mentum transfer % as low as possible. Scattered electron momentum in these conditions
is generally above the pion threshold in CC, and e/7 rejection relies on forward electromag-
netic calorimeters only. Excluding CC cut from electron identification makes the fiducial
region very different from the previously defined region for E1. In this report we describe
the procedure for electron selection and determination of the fiducial volume of the detector
without Cerenkov counters.

To derive the fiducial cuts shown here, “He data has been used. Due to different position
along the beamline, when applied to solid target data, these cuts will be a bit too tight.

B.2 Our METHOD

We define a “cut” as a two-dimensional doubly-curved surface passing through the three-
dimensional (p, 8, ¢) space, enveloping the region that satisfies certain selection criteria. In
our case, as we stated above, the criterion would be “uniform acceptance”. We define apriori
our “uniform acceptance” plateau as the region contained between the steep rise and the
sudden drop on a counts vs. ¢ histogram drawn at given p and 6”.
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To determine the equation of the cut surface, we do the following;:

1. select "good” electrons with cuts on the forward electromagnetic calorimeter (EC)

2. select the flat acceptance regions for small bins of momenta in the 6 and ¢ space.

3. fit the final coefficients with smooth functions of (p, § and ¢).

As a note to the reader: frequent references in this text point towards the web-based
documentation ([103] and [104]). The website contains complete documentation, programs
and all the graphics to illustrate the procedure. Some file names are given in the text in the
event that the reader would like to customize our codes and procedure for his(hers) fiducial
cuts.

B.3 STEP ONE: FORWARD CALORIMETER CUT

As was mentioned above only forward EC information will be used for electron identi-
fication. Since the ratio of the deposited energy in EC to the momentum of the particle
measured in DC (Eg¢/p) is the main tool for 7 /e rejection, we will define the fiducial region
as a region where the electron distribution is constant on ¢ after the cut on deposited energy.
Consequently, regions where due to shower leakage measured energy is less than it should
be are eliminated. (There are other cuts that will be used for final electron selection, like
energy depositions in the inner and outer parts of EC, or the width of a shower. These
quantities remain stable in the fiducial region defined above.)

The scintillators in the forward electromagnetic calorimeter are grouped in three planes,
denoted as U, V and W. The scintillator bars in the U plane have an orientation perpen-
dicular to the beam axis, while the scintillators in the V and W planes are rotated by 120°.
In Fig.B.1(a) the distribution of electrons on the calorimeter sides is shown. This defines
a natural system of coordinates that is the most convenient to use for defining geometrical
cuts.

It is useful to study the variation of the ratio Egc/p versus calorimeter coordinates.
Such a plot is shown in Fig.B.1(b), with p > 0.9 GeV. Plots for certain energy subranges
are available for reference in [103].

As a first step electrons with Egc/p > 0.2 will be selected (see Fig.B.1(b)). In Fig.B-3
a magnified plot of the above mentioned distribution is shown. For clarity, only electrons
with momentum p > 3.0 GeV are kept here, given that electrons with momentum in this
range are detected mainly at forward angles, and are more sensitive to our uvw cut.

It is seen that in the regions v > 371 and w > 407, the ratio Fg¢/p drops dramatically.
This is due to the electron shower leakage out of the sides of the calorimeter. Similar plots
had been made for individual sectors and they are available in [103]. Cuts on the edges
u > 20cm,v < 371 cmand w < 407 cm were applied to select events with Egc/p > 0.2
GeV. (It was concluded that using different cuts for each sector was not necessary.) Figure
B-4 shows such a cut (u > 20,v < 371,w < 407 and Egc/p > 0.2).

We have studied the behavior of the Ej,/Eg,; ratio versus the EC coordinates (with
Ein, Eoyt being the energy loss in the inner and the outer parts of the EC, respectively).
But, as it can be found in [103], these quantities do not depend on the position on EC, after
the above cuts.
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Our final criteria for the preparatory cuts would then be:
u>20,v < 371, w < 407, Egc/p > 0.2 (B.1)

Figure B-5 illustrates how this uvw cut reflects onto the energy spectrum of the electrons
that we detect.

The conditions in equation (B.1) are imposed on the data used to derive the fiducial
cut, to select a set of well identified electrons. They will not explicitly show in the final
cut, which is purely geometrical. Also, in the physics analysis, data below 0.9 GeV and 16°
in @ will be discarded, since this is below the trigger threshold and is clearly outside of the
acceptance region of CLAS.

B.4 StTEP Two0O: FINDING THE UNIFORM ACCEPTANCE REGION

After we have selected “good” electrons, as described in the previous section, we proceed
to study the dependence of the detector acceptance on angles and energy.

Figure B-6 shows some typical (¢,0) plots after the forward calorimeter cut has been
applied.

The energy range was divided in small bins and then for each energy bin and for each
sector two-dimensional distribution of events in 6 and ¢ plane is studied. In figure B-7 a
number of such distributions are presented. Regions with black points were cut out with
cuts described above. The energy bin width is set to 100MeV. The energy bin n is defined
as the range between 0.1 x n and 0.1 x (n + 1) GeV.

The histograms in Fig.B-6 exhibit a well contoured semicircular region, surrounded by a
fuzzy region. We want to select this solid area of the histogram, which is the flat acceptance
region, and discard the blurred area surrounding it. For this, we will fit its contour with a
function ¢(0, E,,, s), where E,, is the energy bin, s the sector and € the angle.

Of course, before this, one needs to accurately define what means “flat”. For this
purpose, what we do is slice these two-dimensional plots in theta bins! of 1°, and fit these
histograms with a trapezoidal function.

The function used is:

pa(z —p2)/(po —p2) if p2 <z <po

D4 if po<z<p
= . B.2
Y pa(z —p3)/(pr —p3) if p1 <z <p3 (B.2)
0 if 2<ps or z>p3

Some typical trapezoids (fitted 6-slices) are shown in Fig.B-8. More can be found in
[103]. Now, on these plots, the top horizontal side of the trapezoid is our “flat” acceptance
region.

We found the procedure to give us reliable results in over 90% of the fits. The procedure
is automatic and the code used (concat.cc) can be found in [104]. The few bad fits
that occurred were not corrected manually, because the results (parameters) of these first

'bin n is from n degrees (°) to (n + 1) degrees
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generation fits are fitted as a function of 6 afterwards. This way, both statistical and
procedural errors are automatically minimized.

The coordinates of the edges of the top of the trapezoid, for each energy bin and sector
are written to a file named fiducial 00.dat. This is a text file organized on six columns,
each row containing the following: a version stamp, the energy bin number, 6 bin, sector
number, py and p;, where parameters pg and p; are the coordinates of the edges of the top
of the trapezoid (see Fig.B-8).

We use another code (fcfit.cc[104]) to fit these points with a function ¢ = ¢(6, E,,, s),
for every energy bin and sector. The procedure is completely automatic.

The function ¢ = ¢(0, E,,, s) that most accurately describes the contours in Fig.B-6 is
[83]:

— —1o)a -1y g
= {0 ezin

where the coefficients a,b,t; contain the dependency on E, and s. The actual angle ¢ is
obtained by scaling this formula for each sector:

fo,1(0, By, s) = 60(s — 1) F #(0) (B.4)

where the sign + stays for the upper branch (with coefficients aq, b1, %9, t1) and the *—’ sign
is for the lower (described by ay, by, to,t1).

A plot illustrating this step is in Fig.B-9. These second generation set of parameters
are saved into the file fiducial 01.dat, which is organized as follows: each row contains a
version stamp, energy bin number, the limits ¢y and ¢; and the ag, by, a1, b1 curvature and
width parameters for the lower and upper halves, respectively (please see equations (B.3)
and (B.4) and Fig.B-9).

B.5 STEP THREE: SMOOTH IT

What is new in the present procedure of deriving the fiducial cuts is that we did not
limit ourselves to obtaining a set of empirical values but we tried to find a systematics that
would give us a consistent set of parameters.

We have obtained 62 different 4-parameter functions ¢ = ¢(0, s), one for each sector
and energy bin considered. Next, we want to fit the coefficients of these functions in order
to obtain a smooth function ¢ = fo1(0, E, s) that is to be included in our TE2AnaTool
package for current use in analysis. For this, we have another code, fc2fit.cc [104], that
reads the output tables of the previous step to produce the final parameter file.

We remind the reader that the function in equation (B.3) is used to define the acceptable
angular range (¢, @) for the detected electron. In the present approach, we did not require
that the accepted region is symmetric with respect to the mid-plane of the sector, so we
have two sets of parameters a, b for each energy bin and sector (upper and lower halves in
Fig.B-9).

One believes that the first two parameters, ¢y and ¢1, should reflect the geometry of the
detection system. The parameters a and b are related to the range in ¢ that is acceptable
for defined values of 0, i.e. to the geometry of our detector. Thus, we expect that the
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variation of these coefficients with the energy E must be smooth. In figure B-10, one finds
evidence that these dependencies can be described by smooth functions.

The fitting procedure that gives us the final set of parameters tg,%1,a9,b9,a1 and by
is completely automatic. To describe the energy dependence of ¢y and t; we use a power
function:

ti == CliECZi 1 = 0, 1 (B.5)

and for the other four parameters a polynomial function of degree five:

5
P5(B) = cnB" (B.6)
n=0

However, in the final version of the code, there is a switch that one can use to set always
the lower limit for ¢; at 45°, which is actually the hardware limit on € in the EC for straight
tracks.

The third generation parameters all go into a file named: fiducial 02.par, that
is read at initialization by the routine SetFiducialCutParameters(), included in the
TE2AnaTool package. This file is organized on eight columns: first is a tag, second is the
sector number, and the next six are the coefficients of the functions in equations (B.5)? and
(B.6).

Figure B-11 shows the overall result of the fiducial cut as made by using the final version
of the routine. Please notice the narrowing in the forward region.

In some sectors (see Fig.B-11), we notice some small gaps. These are better corrected for
in a separate procedure that eliminates faulty scintillators and bad DC regions, therefore,
the present version of fiducial cuts procedure does not contain this feature. Figure B-12
shows some energy bins after the fiducial cut.

It is interesting to see the energy distribution of the scattered electron after these cuts.
Figure B-13 compares the shape of the distributions at various stages of our procedure. Let
us take a look at it: we lose quite a lot of data with the uvw cut, but, again, this is “bad”
data. The Egrc/p condition cuts out even more, but we see that it doesn’t bias the final
distribution.

We notice a disproportionate loss of high energy electrons that is explained by the
forward peaking of the high energy electrons, at angles where the CLAS acceptance is
small, not flat and hence cut out by the fiducial cuts. Therefore, we would need more
detailed methods for obtaining our acceptance function at energies above 3.5 GeV.

B.6 SUMMARY

We prepared the terrain with the forward calorimeter cut, eliminating by this the elec-
trons that were not properly detected. We split the angle-energy range in small bins and
find the contour of the region of interest, that is the constant acceptance plateau. We get
from this a set of curves. What is inside the contour passes as OK, what is out is discarded.

2obviously, only two of the rows corresponding to the power functions contain nonzero values
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Further, we wanted to eliminate the constraint of a fixed bin width, which is not very
convenient if we want to ensure flexibility of the analysis software. Hence, we fitted each
of the coefficients of these functions with a function depending only on energy and sec-
tor number. The parameters of the latter functions were saved in a file destined to the
CLAS_PARMS directory or the database.
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Figure B-1: Forward calorimeter cut
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Figure B-2: Ratio Egc/p plotted versus each of the three calorimeter coordinates. All p > 0.9
GeV are considered here. For specific subranges please see [103]. Dimensions on abscissa are in

centimeters.
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applied. One can easily notice the dramatic drop of the ratio Egc/p near the edges. Plots for each
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Figure B-5: Energy spectra of the electron before (1) and after (2) the forward calorimeter cut as
given by equation (B.1). E,; is in GeV.
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Figure B-8: Trapezoids fitted on histograms counts vs ¢ angle. We call the top “flat”. Some typical
examples. All the others can be found in [103].
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Figure B-11: Overall result of the cut. One can see that an asymmetrical shape resulted in some
sectors. The fuzzy edges are due to bin overlap.
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Appendix C
BEAM POLARIZATION AND HELICITY FOR E2A

To determine the beam polarization and the sign of the beam helicity one has to take into
consideration a chain of factors: the polarity determined by the Mgller runs, the half-wave
plate position, the helicity bit encoding and, in our case, the delayed reporting scheme. If
Mgller runs are not available for a certain data set, then the polarization can be inferred
by taking into account the beam polarization measured at the gun and the spin precession
through the accelerator.

Beam polarization in Hall B is measured with a Mgller polarimeter. In this device, the
polarization is determined from the asymmetry of the counting rates when the helicity of
the beam is reversed. About 20 minutes of measurement time or 3 M events are needed to
take data with a statistical error below 1%.

The Mgller data was analyzed online and the polarization data were saved in the runtime
logbook [107, 108] and are presented in figure 3-8 and section C.2.

For the analysis of the 2.261 and 4.461 GeV data sets we use the average value of
63+2%. We estimate that the polarization measured by the Mgller polarimeter is affected
by a systematic error of approximately 3% coming primarily from uncertainties in the
polarization of the Mgller target.

The four days of 1.162 GeV '2C data (runs 18284 to 18335) were not in the original
running plan for E2A [109] and no polarization measurement was conducted. To evaluate
the average beam polarization for this period, we took the average value of the polarization
for the rest of the run period, 63.0%, corrected it for precession (see subsection C.3) using the
data from table C.7, and obtained a polarization in Hall B equal to |(—0.28.) x 63.0| = 17.6
(%). We consider that such a value does not qualify for polarized beam measurements.

To summarize, we use Pyeqmn = (63 &2 4 3)% for the 2.261 and 4.461 GeV '2C and “He
data sets and we used the 1.161 GeV carbon data only for consistency checks.

We established with acceptable precision the absolute value of the beam polarization in
the hall. Before we proceed to determine the absolute spin orientation, let us briefly review
the beam characteristics.

The polarized electron source at CEBAF is an optically pumped strained GaAs crystal.
A 780nm laser is used to project circularly polarized light onto the crystal. The laser is
pulsed to the accelerator frequency of 0.5 GHz and the bunch-length is 50 ps. Left and
right circular polarization of the laser beam are obtained with a Pockels cell by applying
the voltage corresponding to the quarter wave retardation.

To eliminate possible bias, the helicity is flipped at a 30 Hz frequency and is phase
locked to the 60 Hz AC cycle. Helicity pulses are associated in pairs of opposite helicity.
The leading pulse helicity is chosen by a 24-bit pseudo-random number generator which
also sends a signal to the DAQ to be recorded in the raw data file, to be stored in bits 15
and 16 of the word latchl of TGBI bank [110].
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The helicity signal is encoded in the cooked data files in various ways. In ntuplelO,
used by the E1C group, it is encoded into the EVNTCLAS variable (see description in
subsection C.4) and in the analysis of the E2 RootDST-s, it is obtained with the use of
THelicity class functions. Due to special demands imposed by the HAPPEX [106] parity
violation experiment that was running in parallel in Hall A, the MCC' helicity signal was
delayed by 8 pairs and therefore the true helicity had to be determined at the level of data
analysis, as described in subsection C.5.

Another precaution that was taken was to insert periodically in the laser beam a A/2
plate, which reverses helicities and thus provides a useful systematic check. The half wave
plate position was saved in the EPICS database and is listed in subsection C.6.

The GetHelicity function returns h=+1 for bit16=1 and h=-1 for bit16=0 when the half
wave plate position is OUT [112] and vice versa when the plate is IN, according to table C.3.
What we have to establish is if indeed the reported h=+1 corresponds to positive beam
helicity and h=-1 to negative beam helicity in the hall.

Our difficulty comes from the fact that we did not have a hydrogen target for an un-
equivocal determination of the sign of the helicity. Therefore, the correspondence between
the helicity signal sent by the accelerator and the real helicity of the electron beam in the
hall has to be deduced using CLAS E1C and Hall A data.

The E1C run period was right before the E2A data taking and the E1 group performed
an absolute measurement of the sign of helicity.

For the benchmark run 16833, taken at 4.247 GeV on 02/19/1999, between
19:23 and 21:46 when the the half wave plate was OUT, the values of EVNT-
CLAS=1,11 or 21 in ntuplel0 corresponded to the negative beam helicity [94].

Now, following subsection C.4, EVNTCLAS=1,11 or 21 in ntuplel0 corresponds to
helicity bit16=0 or h=—1 and then negative beam helicity would indeed correspond to h=—
1 since the state was not altered by the A/2 plate.

This conclusion is valid for the E2A data if the delayed reporting electronics introduced
for HAPPEX did not alter the sign. To check this, Hall A data was used. Table C.1 shows
that the Hall A helicity sign remains unchanged from February through May 1999 and that
the absolute sign determined in Hall A is consistent with the Hall B benchmark (second
row in table C.1), given the spin precession.

Counsidering the Wien angles listed in table C.7 and the spin precession as described in
subsection C.3, the above correspondence applies to 2.261 GeV data as well, but must be
reversed for the 1.161 12C data set. These facts are all summarized in table C.1.

To summarize, we used online Mgller data from the electronic logbook to figure out the
beam polarization along the 2.261 and 4.461 GeV running. For the overall helicity sign,
several paths of investigation were used, all leading to the same result:

(1) If the spin precession from the polarized gun to the hall is calculated, the Hall A
helicity sign coincides with the Hall B sign

(2) A Mpller measurement with positive Helmholtz yielded negative polarization in the
hall when the A/2 plate was OUT and the sign calculated with (1) was negative

(3) Absolute measurement conducted by the E1C group gives a negative sign of helicity
where (1) and (2) gave negative polarization taking into account that the sign of helicity

!Machine Control Center, i.e. accelerator
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Date Wien Linac Hall A Hall B Comment

Ne 0w (°) (MeV)|Time WP passes hel cosf4|Time WP passes hel cosfp

102/12 20.3 420 |11:00 IN 2 - —1.00 E1C

2 (02/19 283 420 |19:00 OUT 2 + -1.00(19:23 OUT 5 - +1.00| K.J. [94]

3 104/16 81 550 (21:00 OUT 3 + -0.98120:35 OUT 4 - +1.00| E2A

4 105/03 7.8 550 (21:00 OUT 3 + -0.98|16:07 OUT 2 - +0.99

5 (05/16 3.8 550 (14:00 IN 3 - —0.99

6 05/18 3.8 550 (21:00 OUT 3 + -0.99(09:19 OUT 1 + -0.28

Table C.1: Overall helicity sign comparison table. Absolute sign is defined as the beam helicity sign
in the hall when bit16=0. Hall A values were provided by V. Chudakov [95]. Case N°6 had the
Wien angle optimized for maximum polarization in Halls A and C.

measured in Hall A is consistent along the period considered (E1C to E2A)

C.1 MOLLER POLARIMETRY

Mgller polarimeters are widely used for electron beam polarization measurements in the
GeV energy range. The Hall B beamline is equipped with one such device.

The Mgller polarimeter consists of polarized electron target, (a magnetized foil that is
moved onto the beam axis via a stepper) a set of Helmholtz coils to polarize the target, two
quadrupole magnets and a pair of two lead scintillating fiber detectors. The polarimeter is
remote controlled from the counting house.

The beam polarization is determined by measuring the asymmetry in the number of
counts in a given detector as the beam helicity is flipped:

Nt — N~

AP =N N

(C.1)

If the helicity correlated counts Ni are normalized to the integrated beam current, then
the beam polarization in the absence of background can be calculated with

Ap

Pp=— -
B~ PrA,,F(6,)

(C.2)

where

F(65) = cos 05 cos Or (1 + ﬁm tan @5 tan O cos ¢ cos (/JT>
zZZ

and 07, ¢ and O, ¢ are spherical angles of the target spin, respectively electron spin
about the beam axis, Pr is the target foil polarization and the asymmetries A;; are defined
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as functions of the center-of-mass scattering angle 6

(74 cos?0)sin 0
A = (3 4 cos? 6)? (C-3)
sin* @
A =—-A, =
e v (3 4 cos? 6)?

At the angle 6 = 90° the asymmetries Ag,, Ay, and A, are maximized. One can set the
polarimeter so that this situation occurs.

C.2 MoLLER Runs For E2A

The online Mgller polarization data is listed in table C.2. For the first five entries, two
values (P and P') were listed and the average was taken.

Where measurements with two target polarizations were done, they were combined
before being plotted in figure 3-8. The £ polarization runs are taken so that one can
correct for any beam charge asymmetry:

P+ Py

Pg 5

where P_ is the measured beam polarization with negative target polarization and P,
corresponds to a positive target run. This works because Aycasured = Amoller + Abeams
where A stands for asymmetry [96].

When the A/2 plate is OUT and the Mgller target polarization is positive, the beam
polarization in the hall was measured to be negative. This correspondence is consistent
along the 2.261 and 4.461 GeV runs, except for the cases marked with asterisk where most
probably the minus sign was mistakenly omitted by the person who logged the entry.

C.3 SPIN PRECESSION
Following reference [97], the spin precession from the injector to Hall B gives the total angle:
03 ZP[2’TLQB—TLB(1—2(,¥) —Oé] 7T+9W

where np is the number of recirculation passes, Oy is the Wien launching angle, P =
(E1/me)[(g—2)/2], E is the energy of a single linac (in MeV), o = 0.1125 is the ratio of the
injector energy to the linac energy, m, = 0.51099906 MeV /c? and [(g—2)/2] = 0.001159652.
The spin precession for Hall A is calculated similarly with the formula:

1 1
= 2 _ —2%—— ) —af1-— -
04 P[2nA na (1 @ 2'4> oz( 4.8)] T+ 0

Both linacs are assumed to operate at the same energy and therefore the number of passes
and the beam energy in any particular hall are related by

na,pc = (Eap,c/E — a)/2



Date | Run N° | Foil | Helmholtz | P (%) | P’(%) | 6P(%) | 6w ()
Epeam = 4.461 GeV (*He and '2C ) 7.9
A/2 plate is OUT
04/16 17892 1 + -59.5 60.9 1.7
17893 r + -60.8 63.4 1.7
17894 r - 62.0 65.7 1.7
17895 1 - 60.2 62.3 1.7
17898* 1 + 62.1 64.1 1.6
Apf offline: (63.40 +/- 0.81)%
A/2 plate is OUT
04/19 | 17943 ¥ 64.13
17944 - 60.60
17945 Apf offline: (64.1 +/- 1.2)%
Ebeam = 2.261 GeV (*He and 2C) 8.0
A/2 plate is IN
05/02 | 18110° | 1 | + [ 60.0 | [ 30
A/2 plate is OUT
05/08 | 18212* 1 + 66.5 3.0
18217 1 + -64.8 0.6
18218 1 - 64.2 0.8
05/10 18253 1 + -67.0 1.0
18254 1 - 67.7 1.0
Ebeam = 1.161 GeV (°He and 2C) 3.8
A/2 plate is OUT
No Mgller Done
Ebeam = 2.261 GeV (°He and 2C) 6.0
A/2 plate is OUT
05/19 | 18357 1 + -64.40
18358 r - 66.84
18359 r - 66.99
18360 r - 65.83
A/2 plate is IN
05/22 18396 r - 64.08 1.06
18397 r + -64.20 0.69
A/2 plate is OUT
05/23 | 18423 1 + -66
18424 1 - 62
Epeam = 4.461 GeV (°He and '2C ) 4.0
05/27 | 18478* 1 + 61.7
18479 1 - 61.6
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Table C.2: Mgller runs for the E2A run period from [107]. The target polarization is given by the
Helmholtz coil polarity. The Wien angle data from the accelerator logbook (table C.5) were added
here on the last column.
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C.4 NtTuPLE 10 HELICITY ENCODING

Helicity information comes in TGBI bank in the first word ”latchl1”. Bit 15 of the word is
a helicity clock and bit 16 is the helicity state. First bits contain information on L1 trigger
bits. Here it is what it was in the N-tuple during E2A and E1C:

EVNTCLAS = (HelicityInformation + 1) + 10 x (TriggerBit — 1)

Note that E2A ran with 3 trigger bits, but really only 2 where useful and that this encoding
scheme has been changed lately [93].

HelicityInformation = TGBIFirstWord/10000. This will be > 3 if bit16 is set to 1 and
will be < 1 if bit16=0, since 2'#=16384, 2'5=32768 and 2'%42'5=49152. So Helicityln-
formation can be = 0,1 if bit16=0, and 3,4 if bit16=1. To summarize, what we have for
EVNTCLAS is the following:

- (1,2),(11,12),(21,22) correspond to b16=0

- (4,5),(14,15),(24,25) correspond to bl16=1

C.5 DECODING OF THE DELAYED HELICITY SIGNAL

As mentioned earlier, the reported helicity information during our running period was
delayed by 8 cycles due to the stringent requirements of the HAPPEX parity violation
experiment. To retrieve the helicity state of a particular event, one would thus need to look
at an event that is 8 x 1/30 = 0.26 seconds later, or approximately 800 events. However,
this becomes more complicated when there are gaps in the data (due to beam trips etc.)
that may mean that there is no information available for those events.

An alternative method that was used in this data analysis is to predict the state of
the pseudo-random generator, and then use this predicted value. Since we know the exact
construction of the pseudo-random generator, we can simulate its behavior in software, and
thus predict its state perfectly accurately at any time, given the state it is in at some other
time.

The pseudo-random generator is built from a shift register and a NOT-XOR module.
The bits of the shift register at numbers 23, 22, 21 and 16 are fed into the NOT-XOR,
and the result of the NOT-XOR is the new bit that is shifted into the shift register at the

2T, T, T,

- < e »
i
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Figure C-1: Time structure of the polarized beam delivered by the accelerator. For E2A, 2Ty =
1/30 s. The shaded region shows a sign reversal produced by the random assignment function. (from
Anghinolfi et al. [84]).
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next clock cycle. This new bit is then either used directly of used inverted, depending on
the “LATCH1” signal, to set the voltage on the Pockels cell and flip the helicity of the
beam. The resulting train of bits is thus composed of helicity pairs: (0,1) or (1,0) in a
pseudo-random sequence.

To predict this sequence we need to find the state of the shift register at the start of
each run. This is done by looking at 24 consecutive clock cycles of the shift-register, and
recording the input, i.e. the helicity bit. This set then forms the input to the calculation
that can predict the state of the shift-register - and thus the helicity bit - at any time in
the past or future, by knowing how many clock cycles have passed.

The code that does this simulation was written in such a way that it is self-checking. It
starts with the status of the shift register at the beginning of the run. It then winds forward
to the state that the shift register should be in, if there was no delay in the reporting. Then
compares the predicted bit with the bit reported in the data, verifying that the prediction
is correct. For delayed reporting, this then verified that the result obtained 8 clock cycles
ago (approximately 800 events) was indeed correct. To calculate then what the bit actually
is for this event we just wind the register forward 8 more clock cycles.

C.6 HALF-wWAVE PLATE POSITION

The A\/2 plate positions for the E2A run period as reported in the electronic logbooks of
accelerator and Hall B is listed in table C.3. The E2A data acquisition started on April
16", at 17:09 and the last E2A run ended on May 27" at 21:54. Table table C.4 shows the

A/2 plate position in the period previous to E2A.

C.7 WIEN ANGLE TABLE

Wien angle values extracted from the MCC electronic logbook are listed in table C.5. The
spin precession is described in subsection C.3.



Date and Time State

11 Apr 1999  Sun 16:30:15 0
16 Apr 1999 Fri 22:30:14 1
16 Apr 1999 Fri 22:50:19 0
17 Apr 1999  Sat 09:50:14 1
19 Apr 1999 Mon 20:30:17 0
21 Apr 1999 Wed 22:30:33 1
23 Apr 1999 Fri 13:20:20 0
29 Apr 1999 Thu 16:09:57 1
29 Apr 1999 Thu 16:19:57 0
29 Apr 1999 Thu 18:59:56 1
3 May 1999 Mon 06:59:55 0
5 May 1999 Wed 07:20:19 1
7 May 1999 Fri 07:30:24 0
14 May 1999 Fri 02:20:22 1
17 May 1999 Mon 20:20:25 0
18 May 1999  Tue 14:30:20 1
18 May 1999  Tue 18:00:23 0
20 May 1999 Thu 00:10:25 1
22 May 1999  Sat 23:00:21 0
25 May 1999  Tue 14:20:20 1
10 Jun 1999 Thu 08:40:25 0
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Table C.3: Half-wave plate position during the E2A run period: 1 means IN, 0is OUT. From [93, 94].



Date and Time State

5 Jan 1999  Tue 16:44:57 0

6 Jan 1999 Wed 15:14:42 1
11 Jan 1999 Mon 10:30:50 0
14 Jan 1999 Thu 11:45:28 1
14 Jan 1999 Thu 13:30:21 0
23 Jan 1999  Sat 11:00:13 1
25 Jan 1999 Mon 11:00:20 0
28 Jan 1999 Thu 13:45:11 1
30 Jan 1999  Sat 10:00:10 0

6 Feb 1999  Sat 12:00:11 1

7 Feb 1999  Sun 12:45:10 0
10 Feb 1999 Wed 10:30:13 1
12 Feb 1999 Fri 18:00:10 0
15 Feb 1999 Mon 17:14:40 1
16 Feb 1999  Tue 09:30:15 0
16 Feb 1999  Tue 11:30:21 1
16 Feb 1999  Tue 18:30:10 0
19 Feb 1999 Fri 23:15:10 1
21 Feb 1999  Sun 16:45:12 0
24 Feb 1999 Wed 13:30:12 1
27 Feb 1999  Sat 00:30:12 0
23 Mar 1999  Tue 16:00:27 1
23 Mar 1999  Tue 17:00:24 0
24 Mar 1999 Wed 13:00:23 1
24 Mar 1999 Wed 13:10:30 0
28 Mar 1999  Sun 17:40:18 1
28 Mar 1999  Sun 23:00:11 0
29 Mar 1999 Mon 03:50:11 1
29 Mar 1999 Mon 13:20:19 0
29 Mar 1999 Mon 15:50:11 1
30 Mar 1999  Tue 09:40:12 0
10 Apr 1999  Sat 19:20:17 1
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Table C.4: Half-wave plate position for February-April 1999: 1 means IN, 0 is OUT. From [93, 94].
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Date | Wien angle Oy (°) Comments
02/17 28.1 E1C
02/18 30.0

03/25 37.1

03/29 2.5

04/01 8.0

04/14 7.9 E2A
04/26 8.0

04/28 7.6

05/13 6.0

05/18 3.8 12¢ ) 1.161 GeV
05/27 4.0

Table C.5: Wien angles from MCC electronic logbook.



Appendix D
MISCELLANEOUS

D.1 NUCLEON-NUCLEON SCATTERING PARAMETERS

Nucleon-nucleon scattering parameters a;%, Bpn and €,n (eq. 2.40) are shown in figures
D-1 and D-2.
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Figure D-1: Nucleon-nucleon scattering data: af)‘]’f, cross sections. Abscissa p' is the proton momen-
tum. From [24].
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Figure D-2: Nucleon-nucleon scattering data: (a) the slope parameters 3,5 and (b) the ratio of the
real to imaginary scattering amplitude €,n. Abscissa p' is the proton momentum. From [24].
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D.2 BLUEPRINT OF THE CLAS TARGET SYSTEM
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D.3 SHELL SCRIPT FOR TOF CALIBRATION

#!/usr/bin/tcsh -f

runs executables for gmean and attenuation length calibration
@ protopop 08/04/1999

This script follows exactly the procedure for the calibration of
geometrical mean and attenuation length, but it spares you the effort of
writing the configuration files, reformatting the outputs for the next
step, creating links etc., where errors are very likely to occur. tofs
uses the executables gmean_cooked, hscan_means, min_means_main,
tof_calib, hscan_atten, min_atten, adc_const. The script checks the
intermediate files and, if needed, prompts the user to make the
appropriate corrections. At the end, tofs puts the constants in a
standard file format and e-mails a report to the user. The execution
takes 1 to 2 hours

H OH OH OH H OH O OH OH O OHE H K H

if ($#argv == 0) then
echo "Usage: tofs run_number"
echo "e.g. tofs 12345 "

exit
endif
# INPUT FILES:
# needed: clas_Oxxxxx.A0O for tof_calib
# dstOxxxxx.Axx.BOx for gmean_cooked
#
# you can change this to full path of input files:
# e.g. set destination = ‘echo $2°¢ and delete the following if-s
echo non

set destination = "/work/clas/diskl/protopop/work/"
echo Will read from $destination.

ls $destination/cooked | grep $1.A00

ls $destination/data | grep $1.A00

# DEFINITIONS:

set cooked_file = ‘ls $destination/cooked | grep dst | grep $1.A00°
set raw_file = ‘ls $destination/data | grep clas_O | grep $1.A00°
set arch = "/calibration/p2p_delay_el/archive

# all EXECUTABLES should be in the current directory.
# needed: gmean_cooked



hscan_means
min_means_main
tof_calib
hscan_atten
min_atten
adc_const

# GMEAN_COOKED:

echo Doing calibration on geometric mean of MIP peak position:

echo Reading $cooked_file ...

gmean_cooked -n500000 -ogmean$l.hbook $destination/cooked/$cooked_file

rm hscan_input hscan_data min_input min_parm min_kumac min_output

# HSCAN_MEANS:

rm hscan_input

rm hscan_data

1n -s gmean$1l.hbook hscan_input
In -s gmean$l.dat hscan_data

1s
1s

-1gF hscan_input
-1gF hscan_data

hscan_means <<+

y

g
<+

# MIN_MEANS_MAIN:

rm

min_input

rm min_parm

rm min_kumac

1n -s gmean$l.dat min_input
1n -s gmean$1.parm min_parm
In -s min_means$1.kumac min_kumac
1n -s gmean$l.out min_output
# show

1s -1gF min_input

1s -1gF min_kumac

1s -1gF min_parm

1s -1gF min_output

min_means_main

# CLEANING:

rm

hscan_input
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rm hscan_data
rm min_input
rm min_parm
rm min_kumac
rm min_output

echo "GMEAN -> DONE"

echo ------———7—H—"---——"rm"--o-——-——————
echo Starting attenuation length calibration:
echo Reading $raw_file ...
set n =0
# LOOP OVER SECTORS
while ($n < 6)
Q n++

banner $n
tof_calib -n500000 -s$n -0$1s$n.hbook -A $destination/data/$raw_file

# tof_calib -n500000 -s$n -o$1s$n\_gmean.hbook -c -R $destination/$raw_file
#

# HSCAN:

#

# Files used:

#

# Histogram input file: hscan_input

# ASCII output file: hscan_data

# ASCII data file min_input output of hscan

# Fitted parameters min_parm used to update map file

# Minuit List Output min_output

# Kumac File to view results min_kumac PAW with file = hscan_input
#

# deletes, then defines new input and output links

#

rm hscan_input hscan_data min_input min_parm min_kumac
In -s $1s$n.hbook hscan_input

In -s $1s$n\_atten.dat hscan_data
In -s $1s$n\_atten.dat min_input
In -s $1s$n\_atten.parm min_parm
In -s $1s$n\_atten.kumac min_kumac
# show

1s -1gF hscan_input

1s -1gF hscan_data

1s -1gF min_input

1s -1gF min_kumac

1s -1gF min_parm



echo Now scanning ...
hscan_atten
#
# MINIMIZATION:

min_atten

cp min_kumac min$1s$n.kumac
end
# END LOOP

# CLEANING:

rm hscan_input
rm hscan_data
rm min_input
rm min_parm
rm min_kumac

echo --—-—————-———————————

echo Checking gmean$l.parm ...

set egm = ‘cat gmean$l.parm | grep \* | cut -d"*" -f1 | cut -d.

if ($egm > 0) then

echo Please correct error in gmean$1.parm:
cat gmean$l.parm | grep \*

xterm -e pico gmean$l.parm

else

echo File gmean$l.parm is OK.
endif

set m =0

echo Doing a check on the atten.parm files ..
#1s -al | grep _atten.parm
while ($m < 6)
Q m++
set lines = ‘wc -1 $1s$m\_atten.parm | cut -d"1" -f1°¢
if ($1lines < 48) then
echo "Error in" $1s$m\_atten.parm. Please correct it:
xterm -e pico $1s$m\_atten.parm
else
echo $1s$m\_atten.parm is OK
endif
end

echo ----—-———---———
echo Concatenating the parm files into atten$l.parm ...
cat $1sl_atten.parm >! atten$l.parm

set m =1

-f2¢
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while ($m < 6)
0 m++
cat $1s$m\_atten.parm >> atten$l.parm
end
# show
1s -al | grep atten$l.parm

echo "ATTEN -> DONE"

echo - —-—-—————-—————————— -
echo Now producing the file for map ...
# ADC_CONST:

cp gmean$l.parm gmean.parm

cp atten$l.parm atten.parm

sleep 3

adc_const

cp adc.4map adc$1l.4map

1s -al | grep adc$1l.4map

# this file has seven columns; use awk to put constants in the map
# CLEANING:

rm gmean.parm atten.parm adc.4map

echo Saving to archive ...
cp adc$1l.4map $arch/

cp atten$l.parm $arch/temp/
cp gmean$l.parm $arch/temp/
cd $arch

chmod a-w *.4map

1ls -al | grep adc$1l.4map

cd temp/

1s -al | grep $1.parm

echo "ADC_CONST -> DONE"

echo --—-—-——————————————————
echo "Now sending mail to user ..."
echo " " >! letter

echo "New sets of constants for the map are in:" >> letter
echo " " >> letter

echo $arch/adc$l.4map >> letter

echo " " >> letter

mail $user@jlab.org < letter

rm letter

echo "DONE"



