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Abstract

Deeply Virtual Compton Scattering (DVCS) is an exclusive process that produces
a real photon when a lepton scatters from a quark inside a nucleon or a nucleus.
Measurement of the DVCS cross section enables the study of the Generalized Parton
Distributions (GPD), which plays a central role in understanding the QCD dynamics
inside a hadron. Thus, the quark and gluon origin of the nucleon spin and mass
can be probed and three-dimensional images of the target nucleon or nucleus can be
realized. This thesis presents a cross section analysis of DVCS from the proton in the
presence of its background, Bethe-Heitler (BH) process.

The CEBAF Large Acceptance Spectrometer for operation at 12 GeV beam en-
ergy (CLAS12) collaboration has taken electron-proton scattering data in fall 2018
using a liquid hydrogen target and the 10.6 GeV polarized electron beam from the
Continuous Electron Beam Accelerator Facility (CEBAF). The CLAS12 detector is
a nearly hermetic fixed-target detector, located in Hall B, Jefferson Lab at Newport
News, Virginia.

The experimentally determined BH-DVCS cross section is in good agreement with
a phenomenological-model based theoretical prediction. The kinematic dependence
of the cross section is reported over a wide range. The short-term plan to utilize the
results presented here for a thorough tomography study and the long-term plan for
GPD studies at future facilities such as the Electron-Ion Collider (EIC) are discussed.
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Title: Professor of Physics
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Chapter 1

Introduction

This work focuses on the cross section measurements of electron-proton Deeply Vir-

tual Compton Scattering (DVCS) with a liquid hydrogen target and the CLAS12

detector. A proton is the lightest stable QCD bound state consisting of quarks and

gluons. The three-dimensional imaging of the proton via the Generalized Parton Dis-

tribution (GPD) formalism has been proposed to understand the spatial distributions

of the proton’s constituents. The DVCS is the cleanest such process that has access

to the Generalized Parton Distributions. In this chapter, we discuss the theoretical

background and history regarding the measurement.

1.1 Overview of Proton Structure

The proton is a physical object consisting of quarks and gluons and as the lightest

baryon, is the only free, stable hadron whose decay has never been observed. The cur-

rent knowledge describes the proton as a composite particle, with some macroscopic

properties such as the mass 𝑚𝑝 938.272081± 0.000006 MeV/c2, the charge radius

𝑟𝑐ℎ,𝑝=0.8409±0.0004 fm, spin 𝑠=1/2, and the magnetic moment 𝜇𝑝 = 2.7928473446±
0.00000000082 𝜇𝑁 , where 𝜇𝑁 is the nucleon magneton [1]. Inside the hydrogen atom,

the proton size is only ∼ 10−5 of the entire atom size ∼1 Å [2]. This is because the

atom is an electromagnetic bound state and the proton is a strong interaction bound

state.
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The most successful theoretical framework to explain the strong interaction is gen-

erally within Quantum Field Theory (QFT), and more specifically Quantum Chro-

modynamics (QCD) [3]. Mathematically, the QFT lagrangian density is constructed

from the fermionic field and the gauge bosonic field. The strong interaction is well

modeled by the quarks that are the fermionic fields with spin-1/2, and the spin-1

gluons that are the 𝑆𝑈(3) gauge bosons. The 𝑆𝑈(3) color charge on the quarks and

gluons within the Yang-Mills theory [4] is the basis for QCD. Together with other

discovered gauge bosons for the electroweak interaction [5–7] and the Higgs mecha-

nism [8], the Standard Model (SM) explains all experimental results in the laboratory

in nuclear and particle physics. Investigating the dynamics inside bound objects like

the proton is one of the major ways to understand QCD.

In studying subatomic structure, experimental observation plays an essential role.

The historical events that brought breakthroughs include the atomic nucleus discovery

[9, 10], the proton discovery [11], the neutron discovery [12], the confirmation that

the proton itself is not a point-like particle [13], the theoretical development of quark

model [14, 15] and color charge [16, 17] based on hadron spectroscopy, the scaling

behavior [18] through the SLAC-MIT experiment, the detection of gluons at PETRA

[19], and confirmation of the asymptotic freedom [20, 21] at HERA [22, 23]. We will

revisit the details of some of these important experiments in the remainder of this

chapter.

Scattering experiments have been a widely used tool to probe the structure of

subatomic targets [24]. Generally, quantum mechanics or the QFT predicts the de-

pendence of the target structure on the scattering amplitude. Therefore, it is possible

to reconstruct the structure from the scattering amplitude, or from the experimentally

accessible physical quantities, cross sections and decay rates. Historically, the appli-

cation of scattering experiments to the sub-atomic structure study originated with

the Geiger-Marsden experiment that discovered the existence of the atomic nucleus

inside the gold atom [9, 10].

The electromagnetic structure of the proton as a whole can be studied via the

electron-proton elastic scattering cross section [13]. The differential cross section 𝑑𝜎
𝑑Ω
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when the fixed-target proton is replaced with a spin 1/2, point-like particle is given

as

𝑑𝜎

𝑑Ω
=(

𝑑𝜎

𝑑Ω
)𝑀𝑜𝑡𝑡.

𝐸𝑒′

𝐸𝑏𝑒𝑎𝑚

(1 + 2𝜏 tan2 𝜃

2
) (1.1)

(
𝑑𝜎

𝑑Ω
)𝑀𝑜𝑡𝑡. =

𝛼2

4𝐸2
𝑏𝑒𝑎𝑚 sin4(𝜃/2)

cos2
𝜃

2
(1.2)

𝐸𝑒′

𝐸𝑏𝑒𝑎𝑚

=
1

1 + 𝐸𝑏𝑒𝑎𝑚/𝑚𝑝(1 − cos 𝜃)
(1.3)

in the presence of the proton recoil. Here, the Mott cross section ( 𝑑𝜎
𝑑Ω

)𝑀𝑜𝑡𝑡. is the

special case when the recoil can be neglected, and expressed with the fine-structure

constant 𝛼 ∼ 1
137

[2], the electron beam energy 𝐸𝑏𝑒𝑎𝑚, the scattered electron energy 𝐸𝑒′

and polar angle in lab frame 𝜃. The space-like momentum transfer 𝑄2 = −𝑞2 where 𝑞

is the virtual photon four-vector 𝑝𝑒′ − 𝑝𝑏𝑒𝑎𝑚, with 𝑝𝑏𝑒𝑎𝑚, 𝑝𝑒′ , the 4-momentum of the

beam electron and the scattered electron 𝑒′. The parameter 𝜏 ≡ 𝑄2

4𝑚2
𝑝

quantifies the

modification from the recoil.

’

’
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Fig. 1. (Color online) Parameterization of G p
E /G D (left) and G p

M/µp G D (right) from the global fit of proton cross-section and polarization data (solid curves). The red shaded 
band indicates the total uncertainty, including the fit uncertainty from the error matrix and additional systematic uncertainties described in the text and shown in Fig. 3. 
The dashed curves are the parameterizations of the total uncertainty bands (provided in the Supplemental Material). The blue circles are taken from the 2007 global analysis 
of Ref. [27] to provide a comparison to direct LT separations from a previous global analysis and to indicate the kinematic coverage of the world data. The new fit yields 
systematically larger values for G p

M up to Q 2 ≈ 1 GeV2 because the Mainz data [36], not included in the fit of [27], yields larger values of G p
M below 1 GeV2, and so increases 

the normalization of the world data relative to the fit of [27].

Fig. 2. (Color online) Parameterization of µp G p
E /G p

M from the global fit of proton 
data. The error bands are the same as in Fig. 1 and the magenta squares are the 
direct extractions from polarization measurements.

increasing the number of parameters does not reduce the num-
ber of degrees of freedom, even though it does provide additional 
flexibility for the fit. Parameterizations of the fit central values and 
uncertainties for all form factors are provided in the Supplemental 
Material [102].

Fig. 1 shows the results of the fit for G p
E and G p

M normalized to 
the dipole form factor, G D = (1 + Q 2/!2)−2 with !2 = 0.71 GeV2. 
Points from a previous global analysis [27] of direct longitudinal-
transverse (LT) separations for G p

E and G p
M are also shown for 

comparison. Fig. 2 shows the fit and uncertainties for µp G p
E/G p

M
along with the direct extractions of µp G p

E/G p
M from polarization 

measurements.

5.1. Form factors

Fig. 3 shows the uncertainties for G p
E and G p

M coming from 
the covariance matrix of the fit, the systematic contributions ac-
counting for the tension between different data sets, and the un-
certainty associated with the TPE corrections at high Q 2. Since 
the systematic contributions come from comparing two different 

fits (e.g., with and without the additional high-Q 2 TPE correc-
tion), the estimated corrections vanish whenever the two fits cross. 
Such dips are artificial, and do not indicate a real reduction in 
the uncertainties. For the TPE uncertainty, these dips occur only 
in regions where other contributions dominate the uncertainties. 
For the original data tension uncertainty (green dotted line labeled 
“ORG”), these dips yield an underestimate of the uncertainty for 
Q 2 values near 1 GeV2, and it is necessary to provide a better es-
timate of the uncertainty in this region. At high Q 2, the Mainz 
data only impact the fit through small normalization effects, and 
the green dotted line is driven by statistical fluctuations. Because 
of these issues, we replace the dotted green line by a power law 
falloff after the first maximum (at around Q 2 ≈ 0.3 GeV2). This 
fills in the artificial dips in the direct comparison of the fits, and 
avoids letting the uncertainty grow at high Q 2 due to lack of data 
to constrain the fits. The blue dotted line shows our final data ten-
sion error using the ad hoc parameterization at higher Q 2.

The black dashed line is the combination of the various sources 
of uncertainty detailed above, and the solid green line is a param-
eterization of this uncertainty, providing a simple closed form that 
provides a good approximation at all Q 2 values. The parameteriza-
tions reproduce the complete uncertainty estimates with typical 
(RMS) deviations of ∼2% except for G p

E in the Q 2 region from 
roughly 0.3–3 GeV2. In this region, the total uncertainty is dom-
inated by our ad hoc extension of the data tension uncertainty to 
higher Q 2, and as this is the least rigorous part of the uncertainty 
extraction, we allow for larger deviations (typically a factor of 2–3) 
in this region.

Fig. 4 shows the fits to Gn
E and Gn

M , along with the data points 
used in the fitting procedure. In this case, the uncertainties come 
from the error matrix of the fit and represent the full uncertain-
ties on the form factors; tensions between different data sets have 
been accounted for in selecting the data for the fit (as discussed 
earlier in Sec. 3.2). Calculations of the TPE corrections for the neu-
tron [8,94] yield smaller corrections than in the case of the proton, 
and we assume that the radiative correction uncertainties already 
applied to the data are sufficient for the kinematics of existing 
data.

Figure 1-1: The tree-level Feynman diagram for elastic scattering (left) and the elastic
FFs extracted from the cross-section measurements (middle, right). The FF plots with
global fits were taken from [25], which used the data of previous experiments.

Because the proton is a composite particle of finite size, the momentum and spa-

tial distributions of the constituent particles must modify the cross-section. Quantum

Electrodynamics (QED) dominates the interaction between the electron and the pro-

ton and forces the interaction vertex to have the following form with the Pauli Form
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Factor (FF) 𝐹1 and the Dirac FF 𝐹2 [3].

Γ𝜇 =𝐹1𝛾
𝜇 +

𝑖

2𝑚𝑝

𝐹2𝑞𝜈𝜎
𝜇𝜈 (1.4)

𝜎𝜇𝜈 =
𝑖

2
[𝛾𝜇, 𝛾𝜈 ], (1.5)

where [𝑎, 𝑏] = 𝑎𝑏− 𝑏𝑎 is the commutator.

The experimentally preferred form of the FFs are the so-called Sachs FF, the

electric FF 𝐺𝐸 and the magnetic FF 𝐺𝑀 [26] defined as

𝐺𝐸(𝑄2) = 𝐹1(𝑄
2) − 𝜏𝐹2(𝑄

2) (1.6)

𝐺𝑀(𝑄2) = 𝐹1(𝑄
2) + 𝐹2(𝑄

2). (1.7)

The differential cross section 𝑑𝜎
𝑑Ω

is then given as

𝑑𝜎

𝑑Ω
= (

𝑑𝜎

𝑑Ω
)𝑀𝑜𝑡𝑡.

𝐸𝑒′

𝐸𝑏𝑒𝑎𝑚

[︂
𝐺𝐸 + 𝜏𝐺𝑀

1 + 𝜏
+ 2𝜏𝐺2

𝑀 tan2(𝜃/2)

]︂
. (1.8)

Eqn. 1.8 is known as the Rosenbluth formula [27]. The Rosenbluth separation is a well

established technique to determine the elastic FFs by fitting the Rosenbluth formula

to eqn. 1.1 at different 𝑄2 and 𝜃. Note that one can achieve 1.1 by replacing 𝐺𝐸

and 𝐺𝑀 with 1 at eqn. 1.8. The electromagnetic FFs extracted using cross section

measurements are in good agreement with the dipole FF 𝐺𝐷(𝑄2) at low 𝑄2 [28].

𝐺𝐸(𝑄2) ∼ 𝐺𝑀(𝑄2)

𝜇𝑝

∼ 𝐺𝐷(𝑄2) = (1 +
𝑄2

0.71 (GeV/c)2
)−2. (1.9)

At sufficiently high 𝑄2 > 1 (GeV/c)2, not only the measured 𝐺𝐸 and 𝐺𝑀 deviate

signifcantly from 𝐺𝐷 (Fig. 1-1), but also more importantly, the measured 𝐺𝐸/𝐺𝑀

ratio values from the traditional Rosenbluth separation show a large discrepancy with

the data from the relatively recent polarization measurements [29]. The discrepancy

has stimulated great interested in the contribution of Two-Photon Exchange (TPE)

[30–32] that could explain the discrepancy. The Bethe-Heitler (BH) cross sections in

this thesis were calculated with the global fit of 𝐺𝐸 and 𝐺𝑀 from the supplementary
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material of [25] that considered the TPE corrections. The momentum transfer in

elastic scattering 𝑄2 is equivalent to the absolute value of the Mandelstam variable

|𝑡| at the virtual Compton scattering. The kinematic reach of 𝑡 is limited to |𝑡| <
1.7 GeV2 in this thesis, which does not result in a significant uncertatinty by using

𝐺𝐸, 𝐺𝑀 for this analysis.

The proton as a bound state of point-like particles can be studied via inelastic

scattering. The modification of the cross section is parameterized by the structure

function 𝐹1 and 𝐹2 [33, 34]. Bjorken scaling predicts 𝐹1 and 𝐹2 are function of only

𝑥𝐵 ≡ 𝑄2

2𝑝𝑝′ ·𝑞
1, the momentum fraction of the struck quark in the Breit frame. Likewise

on the lepton side of the Feynman diagram, the four momenta 𝑝𝑝 and 𝑝𝑝′ denote

the initial and final state proton four momenta. With Lorentz invariant parameter

𝜈 =
𝑝𝑝′ ·𝑞
𝑚𝑝

, the differential cross section 𝑑𝜎
𝑑Ω𝑑𝐸𝑒′

is given as

𝑑𝜎

𝑑Ω𝑑𝐸𝑒′
=

4𝛼2𝐸2
𝑒′

𝑄4
cos2

𝜃

2

[︂
𝐹2

𝜈
cos2

𝜃

2
+

2𝐹1

𝑚𝑝

sin2 𝜃

2

]︂
(1.10)

at sufficiently large 𝑄2 > 1 (GeV/c)2 and 𝑊 > 2 GeV (DIS region), where the invari-

ant mass 𝑊 ≡ (𝑝𝑝′ + 𝑞)2. Another important consideration for scaling is the Lorentz

invariant variable 𝑦 ≡ 𝑝𝑝′ ·𝑞
𝑝𝑝′ ·𝑝𝑝

, known as the inelasticity. For fixed-target experiments,

it is useful to express the variables with experimentally accessible quantities as follows:

𝑥𝐵 =
𝑄2

2𝑚𝑝𝜈
(1.11)

𝑄2 =4𝐸𝑏𝑒𝑎𝑚𝐸𝑒′ sin2(𝜃/2) (1.12)

𝜈 =𝐸𝑏𝑒𝑎𝑚 − 𝐸𝑒′ (1.13)

𝑦 =
𝜈

𝐸𝑏𝑒𝑎𝑚

(1.14)

𝑝𝑝 =(𝑀, 0, 0, 0) (1.15)

𝑝𝑏𝑒𝑎𝑚 =(𝐸𝑏𝑒𝑎𝑚, 0, 0, 𝐸𝑏𝑒𝑎𝑚). (1.16)

The mass of the electron was neglected in eqns. 1.12 and 1.16. From the observed

1The DIS convention is to denote the Bjorken x as 𝑥, but we will reserve 𝑥 for another usage in
the DVCS.
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behavior that 𝐹2 shows a flat distribution in 𝑄2, it was confirmed that the Bjorken

scaling 𝐹2(𝑥𝐵) is effective [18, 35], and further that the proton consists of point-

like particles [36]; this motivated the parton model [37]. The suppression of the

longitudinal contribution to the DIS cross section 𝜎𝐿 implies the validity of the Callan-

Gross relation 𝐹2(𝑥𝐵) = 2𝑥𝐵𝐹1(𝑥𝐵) in the DIS regime [38]. This further supports

the interpretation that the partons have spin 1/2 as the quark model states [14, 15].

The DIS data taken at HERA [22, 23] show the rise of 𝐹2 at low 𝑥𝐵 with increasing

𝑄2, consistent with asymptotic freedom, namely that the QCD coupling constant 𝛼𝑆

becomes sufficiently small at high energy scales [20, 21]. This motivates the scale

factorization of the hard contribution that can be calculated by using perturbative

QCD (pQCD), and the soft part that can be determined by experiment. Employing

the factorization theorem [39], one can evolve the structure function with the QCD

evolution equation (DGLAP [40–42]) to other 𝑄2 regions.

’

Figure 1-2: The tree-level, schematic Feynman diagram of DIS (left) and the structure
function 𝐹2 extracted from previous experiments (middle, right). The 𝐹2 plot was
taken from [1], which used the data of the previous experiments.

The parton model connects the structure function 𝐹2 to the Parton Distribution
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Function (PDF) 𝑞𝑖(𝑥𝐵), the probability density to find the parton in the interval (𝑥𝐵,

𝑥𝐵 + 𝑑𝑥𝐵)

𝐹2(𝑥𝐵) = 𝑥𝐵
∑︁

𝑖

𝑒2𝑖 𝑞𝑖(𝑥𝐵), (1.17)

where 𝑒𝑖 is the electric charge of each quarks 𝑖 (𝑒𝑖 = 2/3 for up quarks, and -1/3

for down quarks). From the definition of 𝑥𝐵, the PDF can be interpreted as the

distribution of proton longitudinal momentum. Therefore, the integral and moments

in 𝑥𝐵 of the PDFs describe the contribution to the proton structure from each quark

flavor. In particular, the spin quantum number constrains the spin contribution from

the substructure,

1

2
=

1

2

∑︁

𝑖

∆𝑞𝑖 + ∆𝑔 + 𝐿𝑞 + 𝐿𝑔, (1.18)

where 1
2

∑︀
𝑖

∆𝑞𝑖 = 1
2
(𝑞↑𝑖 − 𝑞↓𝑖 ) is the quark spin contribution, ∆𝑔 is the gluon con-

tribution, and 𝐿𝑞, 𝐿𝑔 are the quark and gluon Orbital Angular Momentum (OAM)

contributions, respectively. The spin-dependent structure function [43] defined as

𝑔1(𝑥𝐵) = 1
2
𝑒2𝑖 ∆𝑞𝑖(𝑥𝐵) for the spin dependent DIS experiments is the spin-dependent

equivalent of the unpolarized momentum PDFs and plays an essential role in the spin

sum rules such as the Bjorken sum rule [44, 45] and the Ellis-Jaffe sum rule [46]. The

Bjorken sum rule relates the proton and neutron spin structure functions via isospin

invariance as follows:

Γ𝑝
1 − Γ𝑛

2 =

∫︁ 1

0

𝑑𝑥 [𝑔𝑝1(𝑥𝐵) − 𝑔𝑛2 (𝑥𝐵)] =
1

6

𝑔𝐴
𝑔𝑉

(1.19)

with the transverse spin-dependent structure function 𝑔2 [47], and the vector and

axial weak coupling constants 𝑔𝑉 and 𝑔𝐴. With the Conserved Vector Current (CVC)

and Partially Conserved Axial Current (PCAC) hypothesis, we follow the convention

𝑔𝑉 = 1, and take the measured 𝑔𝐴 from neutron beta decay [1]. The Ellis-Jaffe sum

rule was derived with tighter assumptions of light flavor symmetry (𝑆𝑈(3)𝑓 ), and an
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unpolarized strange sea for the separate nucleons,

Γ𝑝, 𝑛
1 = ± 1

12
(𝐹 +𝐷) +

5

36
(3𝐹 −𝐷), (1.20)

where 𝐷 and 𝐹 are 𝑆𝑈(3)𝑓 couplings. The EMC experiment [48] reported that

the Ellis-Jaffe sum rule was violated. This implies that the proton spin cannot be

reproduced only by the quarks inside the proton, which was termed the so-called

proton spin crisis [49, 50].

The spin content of the nucleon can be decomposed in the following way [33, 51,

52].

1

2
= ∆𝐿𝑞 +

1

2
Σ + ∆𝐿𝑔 + Γ , (1.21)

where Σ and Γ are the contributions of the quarks and gluons, and 𝐿𝑞 and 𝐿𝑔 are the

Orbital Angular Momentum (OAM) contributions of the quarks and gluons. The mea-

surements from various experimental programs have consistently found that Σ ∼0.3

[53, 54]. The STAR [55, 56] and PHENIX [57, 58] data imply that the gluon contri-

bution Γ is significant [59].

1.2 Generalized Parton Distribution and Deeply Vir-

tual Compton Scattering

The concept of Generalized Parton Distributions (GPD) [60] was developed using

a mathematical approach to determine correlated information on momentum and

spatial phase space [61–63] in the 1990s.

The optical theorem [3] identifies the imaginary part of the forward scattering

with a sum of all possible intermediate state contributions, i.e., branch cut diagrams

[64]. The specific example can be found in the DIS-Forward Compton Scattering case

(Fig. 1-3). The cross section for DIS is connected to the imaginary part of the forward

limit amplitude of the DIS. The reaction associated with the forward limit is called
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the double DVCS process, where two photons are all virtual.

It is conventional to use the light-cone coordinate system to formally treat the

QCD scale factorization [65] regarding the FF, PDF, and GPD. Before we discuss

the mathematical details, we borrow the diagrammatic representation of [66] (Fig. 1-

4). The matrix elements related to proton-photon (or virtual photon) interactions

are related to each other. The four-momenta 𝑥 and 𝑦 are defined in the light-cone

coordinate system, and one can choose replace 0, 𝑦 → −𝑧/2, 𝑧/2 without loss of

generality [67]. Now, the PDFs are formally expressed using Fourier transformations

as follows:

𝑞(𝑥) =
𝑝+𝑝
2

∫︁
𝑑𝑧−

2𝜋
𝑒𝑖𝑥𝑝

+
𝑝 𝑧− < 𝑝𝑝|𝜓𝑞(−

1

2
𝑧)𝛾+𝜓𝑞(

1

2
𝑧)|𝑝𝑝 > |𝑧+=0,z=0 (1.22)

∆𝑞(𝑥) =
𝑝+𝑝
2

∫︁
𝑑𝑧−

2𝜋
𝑒𝑖𝑥𝑝

+
𝑝 𝑧− < 𝑝𝑝|𝜓𝑞(−

1

2
𝑧)𝛾+𝛾5𝜓𝑞(

1

2
𝑧)|𝑝𝑝 > |𝑧+=0,z=0 . (1.23)

To reduce the ambiguity, we fix the choice of the light-cone basis, 𝑛± = (𝑛0±𝑛3)/
√

2.

In general there is also a Wilson line (path ordered exponential of gauge fields), which

runs between the two fermion fields. It is suppressed here.

*
*

’

*

Im

Figure 1-3: The representation of the optical theorem of the DIS and the Forward
Compton Scattering in Feynman diagrams. The DIS cross section (left) is connected
to the imaginary part of the forward Compton scattering, which is the forward limit
amplitude.

The matrix element for the Fermi and Dirac FF can be formally expressed as

well in momentum space. The Fourier transform is not required here because the
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a b c

Figure 1-4: Illustration of the matrix elements (a) non-local forward (b) local nonfor-
ward, and (c) nonlocal nonforward cases. The (a), (b), and (c) are related to the DIS,
Elastic Scattering, and the DVCS respectively. The original image was from [66].

operators are local.

< 𝑝𝑝|𝜓𝑞(0)𝛾+𝜓𝑞(0)|𝑝𝑝 >=𝐹 𝑞
1 (|𝑡|)�̄�(𝑝𝑝′)𝛾

+𝑁(𝑝𝑝) + 𝐹 𝑞
2 (|𝑡|)�̄�(𝑝𝑝′)𝑖𝜎

+𝜈 ∆𝜈

2𝑚𝑁

𝑁(𝑝𝑝)

(1.24)

< 𝑝𝑝|𝜓𝑞(0)𝛾+𝛾5𝜓𝑞(0)|𝑝𝑝 >=𝐺𝑞
𝐴(|𝑡|)�̄�(𝑝𝑝′)𝛾

+𝛾5𝑁(𝑝𝑝) +𝐺𝑞
𝑃 (|𝑡|)�̄�(𝑝𝑝′)𝛾

5 ∆+

2𝑚𝑁

𝑁(𝑝𝑝).

(1.25)

The relations hold for both nucleons whose wave function is 𝑁 and the mass is 𝑚𝑁 .

The superscript 𝑞 of the FF are the light quark flavor (𝑢, 𝑑, 𝑠) to denote each quark’s

contribution. As mentioned in Section 1.1, now 𝑡 replaces 𝑄2. The new terms, 𝐺𝐴

and 𝐺𝑃 , are the axial and the induced pseudoscalar form factors, respectively.

Finally, the non-local, off-forward matrix element were defined as follows [61–63].

𝑃+
𝑝

∫︁
𝑑𝑧−

2𝜋
𝑒𝑖𝑥𝑃

+
𝑝 𝑧− < 𝑝𝑝′ |𝜓𝑞(−

1

2
𝑧)𝛾+𝜓𝑞(

1

2
𝑧)|𝑝𝑝 > |𝑧+=0,z=0 =

𝐻𝑞(𝑥, 𝜉, |𝑡|)�̄�(𝑝𝑝′)𝛾
+𝑁(𝑝𝑝) + 𝐸𝑞(𝑥, 𝜉, |𝑡|)�̄�(𝑝𝑝′)𝑖𝜎

+𝜈 ∆𝜈

2𝑚𝑁

𝑁(𝑝𝑝) (1.26)

𝑃+
𝑝

∫︁
𝑑𝑧−

2𝜋
𝑒𝑖𝑥𝑃

+
𝑝 𝑧− < 𝑝𝑝′|𝜓𝑞(−

1

2
𝑧)𝛾+𝛾5𝜓𝑞(

1

2
𝑧)|𝑝𝑝 > |𝑧+=0,z=0 =

�̃�𝑞(𝑥, 𝜉, |𝑡|)�̄�(𝑝𝑝′)𝛾
+𝛾5𝑁(𝑝𝑝) + �̃�𝑞(𝑥, 𝜉, |𝑡|)�̄�(𝑝𝑝′)𝛾

5 ∆+

2𝑚𝑁

𝑁(𝑝𝑝), (1.27)

where 𝑃𝑝 = 𝑝𝑝 + 𝑝𝑝′ , ∆ = 𝑝𝑝′ − 𝑝𝑝 and 𝐻,𝐸, �̃�, �̃� are the generalized parton distribu-

tions. Again, there is a Wilson line between the quark fields, which is not shown. The

generalized Bjorken variable 𝜉 is a Lorentz invariant term defined as 𝜉 ≡ − 𝑞2

𝑞·𝑃 ∼ 𝑥𝐵

2−𝑥𝐵
,

where 𝑃 ≡ 𝑝𝑝 + 𝑝𝑝′ . Another variable 𝑥 originates as a dummy variable to simplify
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the light-cone correlation functions [62]. The physical interpretation is that 𝑥 + 𝜉

and 𝑥 − 𝜉 are the longitudinal parton momentum fractions with respect to 𝑃 [68]

and integrated over in the scattering amplitude (Fig. 1-6). The GPDs 𝐻 and 𝐸 are

the quark helicity averaged and thus unpolarized GPDs. The other two terms �̃�

and �̃� are quark helicity dependent and called polarized GPDs. At the nucleon level

however, 𝐸 and �̃� are associated with the nucleon spin flip, and 𝐻 and �̃� are the

nucleon spin conserving terms [69].

One can interpret the GPD as the generalization of FFs and PDFs (eqn. 1.28–1.33).

The effective operators determining the GPD are non-forward and non-local whereas

those determining the FF are non-forward but local and determining the PDFs are

non-local but forward [69]. The concept of a GPD is connected to the transverse

spatial distributions in the impact parameter space [70] as well (eqn. 1.34). In short,

the GPD is central to one main branch of tomography from the full phase space density

distributions (Fig. 1-5). Related to the quark spin contributions, the GPD is expected

to play a role in reconciling the theoretical and experimental quark contributions in

the proton spin crisis. The equations that represent the characteristics of the GPDs

are as follows:

∫︁ −1

−1
𝑑𝑥𝐻(𝑥, 𝜉, |𝑡|) =𝐹1(|𝑡|) (1.28)

∫︁ −1

−1
𝑑𝑥𝐸(𝑥, 𝜉, |𝑡|) =𝐹2(|𝑡|) (1.29)

∫︁ −1

−1
𝑑𝑥�̃�(𝑥, 𝜉, |𝑡|) =𝐺𝐴(|𝑡|) (1.30)

∫︁ −1

−1
𝑑𝑥�̃�(𝑥, 𝜉, |𝑡|) =𝐺𝑃 (|𝑡|) (1.31)

𝐻𝑞(𝑥, 0, 0) =𝑞(𝑥) (1.32)

�̃�𝑞(𝑥, 0, 0) =∆𝑞(𝑥) (1.33)

𝑞(𝑥,b⊥) =

∫︁
𝑑2Δ

(2𝜋)2
𝐻𝑞(𝑥,−∆2

⊥)𝑒−𝑖b⊥·Δ⊥ (1.34)

𝐽𝑞 =
1

2

∫︁ +1

−1
𝑑𝑥 𝑥[𝐻𝑞(𝑥, 𝜉, |𝑡| = 0) + 𝐸𝑞(𝑥, 𝜉, |𝑡| = 0)]. (1.35)
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The eqn. 1.35 is often referred to as the Ji sum rule. The GPDs can be probed by QCD

processes like DVCS [62, 71]. The principle of a QCD scattering experiment is that

the scale factorization allows separation of the information on the structure function.

The cross section is considered to be factorizable when it can be expressed as a product

of hard, collinear, and soft contributions [65]. There is the special kinematics region

that the factorization is valid. In the Bjorken limit, namely 𝑄2 ≫ 𝑚2
𝑝 and |𝑡| ≪ 𝑄2,

the factorization for the DVCS was proved rigorously [63, 71–74]. The experimental

results discussed in Section 1.3 has been supporting the idea that the factorization

can be applied for the 𝑄2 around a few (GeV/c)2 level.
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Abstract. We review the status of our understanding of nucleon structure based on the modelling of differ-
ent kinds of parton distributions. We use the concept of generalized transverse-momentum–dependent
parton distributions and Wigner distributions, which combine the features of transverse-momentum–
dependent parton distributions and generalized parton distributions. We revisit various quark models
which account for different aspects of these parton distributions. We then identify applications of these
distributions to gain a simple interpretation of key properties of the quark and gluon dynamics in the
nucleon.

1 Introduction

The nucleon as a strongly interacting many-body system
of quarks and gluons offers such a rich phenomenology
that models are crucial tools to unravel the many facets of
its non-perturbative structure. Although models oversim-
plify the complexity of QCD dynamics and are constructed
to mimic certain selected aspects of the underlying theory,
they are almost unavoidable when studying the partonic
structure of the nucleon and often turned out to be crucial
to open the way to many theoretical advances.

Recently, a new type of distribution functions, known
as generalized transverse-momentum–dependent parton
distributions (GTMDs), has emerged as key quantities
to study the parton structure of the nucleon [1–3]. They
parametrize the unintegrated off-diagonal quark-quark
correlator, depending on the three-momentum k of the
quark and on the four-momentum ∆ which is transferred
by the probe to the hadron. They have a direct connection
with the Wigner distributions of the parton-hadron sys-
tem, which represent the quantum-mechanical analogues
of classical phase-space distributions. Wigner distribu-
tions provide five-dimensional (two position and three mo-
mentum coordinates) images of the nucleon as seen in the
infinite-momentum frame [4–6]. As such they contain the
full correlations between the quark transverse position and
three-momentum.

! Contribution to the Topical Issue on “The 3-D Structure
of the Nucleon” edited by Mauro Anselmino, Michel Guidal,
Patrizia Rossi.

a e-mail: pasquini@pv.infn.it

FF(∆)

GTMD(x,"k⊥, ∆)

GPD(x, ∆)TMD(x,"k⊥)

PDF(x)TMSD("k⊥)

TMFF

Charge

∆ = 0∫
dx

∫
d2k⊥

("k⊥, ∆)

Fig. 1. Representation of the projections of the GTMDs into
parton distributions and form factors.

In specific limits or after specific integrations of GT-
MDs, one can build up a natural interpretation of mea-
sured observables known as generalized parton distribu-
tions (GPDs) and transverse-momentum–dependent par-
ton distributions (TMDs). Further limits/integrations
reduce them to collinear parton distribution functions
(PDFs) and form factors (FFs) (see fig. 1 for a pictorial
representation of the different links to GTMDs [7]).

The aim of this work is to review the most re-
cent developments in modelling the GTMDs, Wigner

Figure 1-5: The entire tomography program that includes the GPD, FF, and PDFs.
The figure was imported from the original publication [75].

DVCS is deeply inelastic electroproduction of a real photon in the lepton scattering

process from the struck quark inside the hadron. In this thesis, we use the electron

as the lepton and the proton as the hadron. The DVCS as a reaction of 𝑒𝑝 → 𝑒′𝑝′𝛾

shares identical initial and final states with the BH process (Fig. 1-7). Therefore, the

total scattering amplitude is the coherent summation of BH and DVCS [76, 77]. The
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Exclusive Processes and Generalized Parton Distributions

Generalized parton distributions (GPDs) can be extracted from suitable exclusive scat-
tering processes in e+p collisions. Examples are deeply virtual Compton scattering (DVCS:
�⇤+p ! �+p) and the production of a vector meson (�⇤+p ! V +p). The virtual photon
is provided by the electron beam, as usual in deep inelastic scattering processes (see the
Sidebar on page 18). GDPs depend on three kinematical variables and a resolution scale:

• x + ⇠ and x � ⇠ are longitudinal par-
ton momentum fractions with respect
to the average proton momentum (p +
p0)/2 before and after the scattering, as
shown in Figure 2.18.

Whereas x is integrated over in the
scattering amplitude, ⇠ is fixed by the
process kinematics. For DVCS one has
⇠ = xB/(2 � xB) in terms of the usual
Bjorken variable xB = Q2/(2p · q). For
the production of a meson with mass
MV one finds instead ⇠ = xV /(2� xV )
with xV = (Q2 + M2

V )/(2p · q).

• The crucial kinematic variable for par-
ton imaging is the transverse momen-
tum transfer �T = p0T � pT to the
proton. It is related to the invariant
square t = (p0 � p)2 of the momentum
transfer by t = �(�2

T + 4⇠2M2)/(1 �
⇠2), where M is the proton mass.

• The resolution scale is given by Q2

in DVCS and light meson production,
whereas for the production of a heavy
meson such as the J/ it is M2

J/ +Q2.

Even for unpolarized partons, one has a nontrivial spin structure, parameterized by two
functions for each parton type. H(x, ⇠, t) is relevant for the case where the helicity of the
proton is the same before and after the scattering, whereas E(x, ⇠, t) describes a proton
helicity flip. For equal proton four-momenta, p = p0, the distributions H(x, 0, 0) reduce to
the familiar quark, anti-quark and gluon densities measured in inclusive processes, whereas
the forward limit E(x, 0, 0) is unknown.

Weighting with the fractional quark charges eq and integrating over x, one obtains a
relation with the electromagnetic Dirac and Pauli form factors of the proton:

X

q

eq

Z
dx Hq(x, ⇠, t) = F p

1 (t) ,
X

q

eq

Z
dx Eq(x, ⇠, t) = F p

2 (t) (2.14)

and an analogous relation to the neutron form factors. At small t the Pauli form factors
of the proton and the neutron are both large, so that the distributions E for up and down
quarks cannot be small everywhere.

x + ⇠ x � ⇠

p p0

x + ⇠ x � ⇠

p p0

�⇤ �⇤� V

Figure 2.18: Graphs for deeply virtual Compton scattering (left) and for exclusive vector
meson production (right) in terms of generalized parton distributions, which are represented by
the lower blobs. The upper filled oval in the right figure represents the meson wave function.
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Figure 1-6: The graphical descriptions for physical meaning of 𝑥 and 𝜉 for the DVCS
(left) and the DVMP (right). This figure was imported from the original publication
[68]

G P D

*

’

’

’

’

’

’

*

’

’

1

2

(a) (b) (c)

Figure 1-7: The Feynman diagrams of the (a) DVCS process, (b) BH processes and
(c) DV𝜋0P process.

differential cross section is expressed as follows2.

𝑑5𝜎

𝑑𝑥𝐵𝑑𝑄2𝑑|𝑡|𝑑𝜑𝑑𝜙 =Γ × |𝒯BH + 𝒯DVCS|2 = Γ × (|𝒯DVCS|2 + |𝒯BH|2 + ℐ) (1.36)

Γ =
𝛼3

16𝜋2(𝑠−𝑀2)2𝑥𝐵
√

1 + 𝜖2
(1.37)

𝑠−𝑀2 =
𝑄2

𝑥𝐵𝑦
∼ 2𝑀𝐸𝑏𝑒𝑎𝑚, (1.38)

where Γ is the virtual photon flux, 𝜖 ≡ 2𝑥𝐵
𝑚𝑝

𝑄
. The variable 𝜑 is the angle between

the lepton scattering plane and the hadronic scattering plane in the Trento convention

(Fig. 1-8). The last variable 𝜙 is related to the target polarization, and integrated out

to 2𝜋 for this experiment. The scattering amplitudes of BH 𝒯BH and DVCS 𝒯DVCS are

propotional to FF and Compton Form Factors (CFF) respectively. The interference

term ℐ is trivially defined as 𝒯 *BH𝒯DVCS + (h.c.). Each contribution can be expressed

2One can perform the change of variables to achieve the 𝑑𝑥𝐵𝑑𝑄
2-based differential cross section

from 𝑑Ω𝑑𝐸𝑒′ using the relations eqns. 1.11–1.13. For details, see the problem 8.3 of [34], for example.

31



as a Fourier series in 𝜑,

|𝒯BH|2 =
1

𝑥2𝐵𝑦
2(1 + 𝜖2)2𝑡𝒫1(𝜑)𝒫2(𝜑)

2∑︁

𝑛=0

(𝑐BH
𝑛 cos(𝑛𝜑) + 𝑠BH

𝑛 sin(𝑛𝜑)) (1.39)

|𝒯DVCS|2 =
1

𝑦2𝑄2

2∑︁

𝑛=0

(𝑐DVCS
𝑛 cos(𝑛𝜑) + 𝑠DVCS

𝑛 sin(𝑛𝜑)) (1.40)

ℐ =
1

𝑥𝐵𝑦3𝑡𝒫1(𝜑)𝒫2(𝜑)

3∑︁

𝑛=0

(𝑐ℐ𝑛 cos(𝑛𝜑) + 𝑠ℐ𝑛 sin(𝑛𝜑)), (1.41)

where 𝑠0 = 0 and the expansion order limits are determined by the approximate twist

level, equivalent to the spin dimension of the operator [78]. The BMK approximation

takes the twist-3 approximation [76].

The lepton propagators 𝒫1 and 𝒫2 have the following dependence on the particle

kinematics,

𝒫1(𝜑) =(𝑝𝑏𝑒𝑎𝑚 − 𝑝𝛾)2 (1.42)

𝒫2(𝜑) =(𝑝𝑏𝑒𝑎𝑚 − ∆)2, (1.43)

where 𝑝𝛾 is the 4-momentum of the outgoing photon 𝛾.

e e0

�

p0

�

Figure 1-8: A schematic drawing of the particle kinematics of DVCS and BH scat-
tering in the lab frame. The planes in grey and blue colors are the lepton scattering
plane and the hadronic scattering plane, respectively.

The CFF is defined as the convolutional integral of the GPD terms. Convention-
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ally, the CFF terms are divided into the real and imaginary parts [69]:

𝐻Re(𝜉, 𝑡) ≡𝒫
∫︁ 1

0

𝑑𝑥[𝐻(𝑥, 𝜉, 𝑡) −𝐻(−𝑥, 𝜉, 𝑡)]𝐶+(𝑥, 𝜉) (1.44)

�̃�Re(𝜉, 𝑡) ≡𝒫
∫︁ 1

0

𝑑𝑥[𝐻(𝑥, 𝜉, 𝑡) +𝐻(−𝑥, 𝜉, 𝑡)]𝐶−(𝑥, 𝜉) (1.45)

𝐻Im(𝜉, 𝑡) ≡𝐻(𝜉, 𝜉, 𝑡) −𝐻(−𝜉, 𝜉, 𝑡) (1.46)

�̃�Im(𝜉, 𝑡) ≡𝐻(𝜉, 𝜉, 𝑡) +𝐻(−𝜉, 𝜉, 𝑡) (1.47)

𝐶± =
1

𝑥− 𝜉
± 1

𝑥+ 𝜉
. (1.48)

The eqns. 1.44–1.47 hold for 𝐸 terms as well. These GPD terms 𝐻,𝐸, �̃�, �̃� are twist-

two quark GPDs that are governing the DVCS observables. One can further study

the subleading order contributions of the transversity GPDs [79], gluon transversity

GPDs, and twist-three GPDs [76]. The transversity was defined within the context

of the transverse spin structure functions [47, 80, 81]. The quark transversity GPDs

are more senstive to the Deeply Virtual Meson Production (DVMP) observables,

and beyond the scope of this thesis. The contributions of twist-three and gluon

transversity GPDs are discussed in many references [76, 77, 82].

A global fit to determine CFFs was an immediate research priority after the GPD

was invented. The CFF models should satisfy the polynomial relation for GPDs:

∫︁ 1

−1
𝑑𝑥𝑥𝑛𝐻(𝑥, 𝜉, 𝑡) = 𝑎0 + 𝑎2𝜉

2 + ...+ 𝑎2⌈𝑛/2⌉𝜉
2⌈𝑛/2⌉, (1.49)

where 2⌈𝑛/2⌉ is a mapping to 𝑛 for even 𝑛 and 𝑛+ 1 for odd 𝑛.

An early GPD parametrization was based on the Double Distribution (DD) ansatz

[83, 84]; here the GPD is parametrized by decorrelating ∆ and 𝑝𝑝. For given 𝑡,

GPD𝑞(𝑥, 𝜉) =

∫︁ 1

−1
𝑑𝛽

∫︁ 1−|𝛽|

−1+|𝛽|
𝑑𝛼𝛿(𝑥− 𝛽 − 𝜉𝛼)ℎ(𝛽, 𝛼)𝑞(𝛽) (1.50)

ℎ(𝛽, 𝛼) =
Γ(2𝑏+ 2)

22𝑏+1Γ2(2𝑏+ 1)

[(1 − |𝛽|)2 − 𝛼2]𝑏

(1 − |𝛽|)2𝑏+1
, (1.51)

with a free parameter 𝑏, and the Γ in eqn. 1.51 is the Euler gamma function defined as
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Γ(𝑧) =
∫︀ ∫︀
0
𝑡𝑧−1𝑒−𝑡𝑑𝑡. Although the DD elegantly satisfies the polynomiality condition

(eqn. 1.49), this idea neglected the last order 𝑎𝑛+1𝜉
𝑛+1 when 𝑛 is odd. The problem

was resolved by introducing the 𝐷-term 𝐷(𝑥/𝜉, 𝑡) [85] as follows.

𝐷(𝑥/𝜉, 𝑡) = (1 − (𝑥/𝜉)2)
∞∑︁

𝑘=0

𝑑2𝑘+1(𝑡)𝐶
3/2
2𝑘+1(𝑥/𝜉), (1.52)

where 𝐶3/2
2𝑘+1 is the Gegenbauer polynomial. Extracting the 𝐷-term components in

GPDs, and connecting to the pressure and shear distributions inside the proton is a

state-of-the-art research topic [86–88]. The models based on the DD ansatz include

the VGG model [89] and the GK model [90]. Another representation is to decompose

the GPDs in a partial-wave expansion [91]. The dual parametrization method was the

earliest partial-wave expansion approach. It has been called “dual” in that the GPDs

were representated as the infinite series of 𝑡-channel exchanges [92]. Later, the partial-

wave idea was further generalized with the Mellin-Barnes integral representation [93,

94]. The details of the three types of GPD paramterization can be found in the review

papers [69, 95, 96]. These three models are mathematically related and the dual

parametrization method is equivalent to the Mellin-Barnes integral representation

[97].

A phenomenological problem has been known that the DD ansatz is not ideal for

fitting data sets with different 𝜉 [96, 98]. The Mellin-Barnes representation provides

the useful global GPD fitting procedure [95]. The KM15 model arises from the global

fitting of the data sets from the ZEUS [99, 100], H1 [101, 102], HERMES [103–105],

CLAS [106–109], and Hall A [110, 111] experiments and demonstrates that the CFF

model is quite consistent with the world data. It is released publicly [112].

1.3 Status of Experiments

The common approaches in the experimental study of the DVCS process can be

roughly categorized into four areas. I. The BH coefficients of polarized target ex-

periments and the DVCS and Interference term coefficients (eqns. 1.39–1.41) have
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the lepton helicity and the nucleon spin dependences [76]. II. The polarized beam

of the same lepton and the polarized target have access to the differences of cross

sections that each helicity state generates. The former is often called the Beam Spin

Asymmetry (BSA), and the latter is called the Target Spin Asymmetry (TSA). III.

Measurement of absolute cross section measurement allows for direct comparison with

the theoretical predictions. IV. Lastly, performing the experiment with the same en-

vironment, but with the corresponding antiparticle lepton beam, changes the sign

of eqn. 1.41, which is called the Beam Charge Asymmetry (BCA). For example, the

experiments at HERA performed measurements of the BSA with lepton beams of

both signs.

Here we summarize the major experiments have been performed in the facilities

for lepton-hadron scattering and collision since the GPD was established in the 1990s.

The facilities include the HERA collider and the HERMES fixed-target experiment at

DESY, the COMPASS experiment at CERN, and the halls A and B at CEBAF, Jef-

ferson Lab. At HERA, experiments used the polarized electron and positron beams

and released several results including the BCA at H1 [101], 𝑡-dependence of the cross

section at H1 [113] and 𝑄2,𝑊, and 𝑡-dependence at ZEUS [99]. The HERMES ex-

periment released the BSA [114], BCA [115], and TSA with target polarized longitu-

dinally [104] and transversely [105]. The COMPASS experiment used the polarized

muon beam to acesss the 𝑡-dependence [116]. The Jefferson Lab measurements in-

clude the TSA [117], BSA [108], and cross section [107] measurements from CLAS

and the cross section from Hall A [110, 111]. The earlier Hall A result [110] supported

the scale separation for the GPDs at intermediate 𝑄2 by performing the scaling test

in a model independent way. The Hall A collaboration recently published measure-

ments of the neutron DVCS cross section [118]. Reference [119] sorted the performed

experiment and accessible GPD variables from the measured observables.

The proposed experiments at Jefferson Lab include the positron beam experiments

to measure the BCA at CLAS [120] and Hall C [121, 122], and the polarized target

experiments to measure the TSA at CLAS [123–125].

Each method has different sensitivity to the GPD terms. The sensitivities are sub-
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ject to the experiment’s resolution and acceptances. We leave the reader to consider

several efforts to sort the sensitivity to each of the DVCS observables [119, 126–128].

As discussed in Section 1.2, the polarized target is useful to investigate the nucleon

spin flip or the quark helicity dependent terms. The conventional notation to denote

the relevant asymmetry is 𝐴; 𝐴𝐶 for the beam-charge asymmetry, 𝐴𝑋𝑌 , where 𝑋 and

𝑌 are beam helicity and target spin. These are written as 𝑈 , 𝐿, and 𝑇 to represent

unpolarized, longitudinal, and transverse respectively. The collected data are about

𝐴𝐶 , 𝐴𝑈𝐿, 𝐴𝑈𝑇 , 𝐴𝐿𝐿, 𝐴𝐿𝑇 , and 𝐴𝐿𝑈 . The COMPASS measured the charge-spin sum

asymmetry with the unpolarized target 𝐴𝐶𝑆,𝑈 and the transversely polarized target

𝐴𝐶𝑆,𝑇 . There are two ways of defining cross sections with the polarized beam: the

unpolarized cross section 𝑑𝜎𝑢𝑛𝑝. and the polarized cross section 𝑑𝜎𝑝𝑜𝑙..

𝑑𝜎𝑢𝑛𝑝. =
1

2
(𝑑𝜎→ + 𝑑𝜎←) (1.53)

𝑑𝜎𝑝𝑜𝑙. =
1

2
(𝑑𝜎→ − 𝑑𝜎←) (1.54)

This thesis aims at the determination of the precise BH-DVCS differential cross

section as a primary goal, focusing on 𝑑𝜎𝑢𝑛𝑝.. The interference term gives access to the

linear combinations of twist two GPD terms �̃�,𝐻,𝐸: 𝐹1𝐻 + 𝜉(𝐹1 +𝐹2)�̃� + |𝑡|
4𝑚2

𝑝
𝐹2𝐸

and −𝜉(𝐹1 + 𝐹2)
{︁
𝜉(𝐻 + 𝐸) + �̃�

}︁
. The Fourier coefficients for the cosine terms

take the real parts and the sine terms take the imaginary parts of the CFFs at the

interference term [76]. The pure DVCS term is proportional to the bilinear form of

CFFs and is expected to be relatively flat over 𝜑. At the fixed-target kinematics, the

scales of two terms are both generally sizeable (Fig. 1-9 from [77]). The differences

in their phase dependence allow the generalized Rosenbluth separation, which will be

discussed in Chapter 5.

We will then discuss connecting to the global fitting in Chapter 5. The latest

release of the cross section measurement at Hall A spectrometer [129] implies that

the experimental data agree reasonably well with the KM15 model [95]. Extracting

the twist-three contribution from the experimental data is an important task for

the nucleon structure study [77, 130], but this thesis concentrates on the twist-two
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Figure 1-9: The theoretical predictions on the interference and pure DVCS contri-
butions to the unpolarized cross sections at Jefferson Lab experiments. The original
image was from [77]. The top and middle plots were drawn with the Hall A data with
beam energies of 5.75 GeV [111] and 11.5 GeV [129] respectively. The bottom plot
is the projected results at 𝐸𝑏𝑒𝑎𝑚=24 GeV. The figure of merit at 𝑦 axes 𝜎𝑈𝑈 are the
total cross section 𝑑𝜎𝑢𝑛𝑝..

contribution [131].

In the few decades since the GPD was first proposed, measurement of the GPDs

has become a principal approach to proton tomography. At the moment when this

thesis is being written, the future facility where the DVCS and GPD research takes

place most comprehensively is undisputedly the Electron-Ion Collider (EIC) [68, 132].

The kinematic coverage of this work and the past CLAS measurement [107] is over-

layed on that of EIC and other past experiments in Fig. 1-10. The plot demonstrates

that this work will provide the CFF fitting in large acceptance with the multidimen-

sional binning, and a prediction to be tested at the EIC by future experiments.
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Figure 1-10: The kinematic reach in the𝑄2-𝑥𝐵 plane of various experiments performed
until 2012. The original image was from [68]. The overlaid black and blue curves
indicate the coverage of this work and the CLAS result [107].
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Chapter 2

Experiment

In this chapter, we describe the details of the experimental apparatus. Understanding

the performance of the experimental apparatus during data taking is an essential

aspect of the analysis. As we stated in Chapter 1, the experiment was performed

in the Run Group A (RG-A) period in fall 2018 at Hall B Jefferson Lab, with the

liquid hydrogen target. The protons in the target interact with the continuous wave

electron beam of energy 10.6 GeV and requested beam currents delivered from the

CEBAF. The CEBAF Large Acceptance Spectrometer for operation at 12 GeV beam

energy (CLAS12) detector inside the Hall-B of the accelerator hall is a hermetic

system that effectively detects the particles in the final state from the deep exclusive

processes. The triggered events are recorded and saved in specified data formats that

are consecutively processed by the analysis chain.

2.1 CLAS12 DVCS Experiment

The CLAS12 DVCS Experiment in RG-A is an officially approved project (E12-06-

119) by the Physics Review Committee (PAC) of the Jefferson Lab [133] that aims to

measure the CFF with the extracted BSA and the cross section at RG-A beamtime.

This work focuses on the cross section measurement only. In fall 2018, two sets

of experiments have been performed with opposite toroidal magnetic field directions

keeping the other detector settings the same. The toroidal magnet bends the scattered
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trigger electron inward or outward along the beam direction. In convention, the torus

polarity associated with the inwardly bending electrons is called the negative, -1,

-100%, or inbending polarity. The opposite is called the positive, +1, +100%, or

outbending polarity. Both experiments took data with the beam energy of 10.6 GeV,

and the beam current of about 50 nA. The effects due to the variation in the beam

current during the run periods will be taken into account at the end of the analysis.

The CLAS collaboration performed other CLAS12 experiments with different tar-

gets like liquid deuterium, and various beam energies. The description in this thesis

will be focused on the RG-A fall 2018.

2.2 Accelerators

The Continuous Electron Beam Accelerator Facility (CEBAF), after its energy up-

grade to 12 GeV, is able to deliver Continuous Wave (CW) electron beam that is

bunched at 499 MHz to Hall-B. The electron beam is accelerated when it passes

through the Linear Accelerator (LINAC) part of the CEBAF (Fig. 2-1. 5 pass beam

was delivered to Hall-B with an energy of 10.6 GeV.

For any fixed-target experiment using coincidence particle detection, higher duty

cycle of the beam reduces the false coincidence rate. Thanks to the CW electron

beam from the CEBAF, the duty factor is almost 100% which allows measurement

of the DVCS cross section that requires the coincidence detection of electron, proton,

and photon.

The Radio Frequency (RF) signal with a period of 2.004 ns identifies the time of

the scattered electron at the vertex. This time is generally called the vertex time,

and the electron vertex time is defined as the start time of the event. The beam was

delivered in every other RF bucket, and so bunched at a period of 4.008 ns.

Lastly, the electron beam was polarized, the polarization degree of which was de-

termined by the Møller polarimeter upstream of the CLAS12 detector. The measured

electron beam polarization was 86.9% during the RG-A data taking in fall 2018.
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Figure 2-1: A schematic drawing of the CEBAF accelerator. The original image was
imported from [134].

2.3 Detectors and Reconstruction Principle

The CLAS12 detector is designed for fixed-target experiments with the CEBAF elec-

tron beam in Hall-B [134]. The RG-A target system is constructed from a target

cell containing liquid hydrogen and an associated cryogenic system. The pure LH2

section is located from -5.5 cm to -0.5 cm in 𝑧 axis of the CLAS12 coordinate system,

where the beam is directed from -𝑧 to +𝑧 [135].

The CLAS12 detector consists of the Forward Detector (FD), the Central De-

tector (CD), and the Forward Tagger (FT). The FD consists of the High Threshold

Cherenkov Counter (HTCC) [136], the Low Threshold Cherenkov Counter (LTCC)

[137], the Ring Imaging Cherenkov detector (RICH) [138], the Forward Time-of-Flight

(FTOF) [139], the Drift Chamber (DC) [140], and the Electromagnetic Calorimeter

(ECAL) [141]. The ECAL has three layers of sampling calorimeters named as the

Pre-shower Calorimeter (PCAL), the EC-inner, and the EC-outer. The EC-inner and

EC-outer are two layers of the legacy Electromagnetic Calorimeter (EC) of the previ-

ous CLAS experiment [142]. Likewise, the FTOF has three layers—FTOF 1a, FTOF

1b, and FTOF 2. The LTCC and the RICH were not used in this measurement.

By forward, it means that the FD covers from 5∘ to 35∘ polar angle, except for the

41



Figure 2-2: A schematic drawing of CLAS12 detector. The original image was im-
ported from [134].

FTOF 2 that covers 35–45∘. Each detector in FD is divided into 6 sectors in azimuth

that each covers 60∘ with a counterclockwise numbering convention that the sector 1

corresponds to [-30∘, 30∘].

Outside the FD, a wider range of polar angles is covered by the CD. The CD

has the Central Vertex Tracker to reconstruct hadrons. The CVT is formed by the

Barrel Micromega Tracker (BMT) [143], and the Silicon Vertex Tracker (SVT) [144]

during the runs. The main part is the SVT, while the BMT is used to improve the

track reconstruction. The Central Neutron Detector (CND) [145] was installed but

not used in this measurement. Meanwhile, the Backward Angle Neutron Detector

(BAND) [146] and the Forward Micromegas Tracker (FMT) [143] were not installed.

Inside the FD, there is the FT [147] that covers 2.5–4.5∘, which is an independent

set of three detectors: the tracker (FT-Trk), the homogeneous calorimeter (FT-Cal),

and the hodoscope (FT-Hodo).

To determine the momentum of charged particles, each solenoid and torus magnet

surrounds the FD and the CD [148]. The peak magnetic fields in the solonoid and

the torus are 5 T and 3.58 T, respectively, with the line-integrated magnetic field

(
∫︀
𝐵𝑑𝑙 ) 7.0 T·m and 0.54–2.78 T·m, where the limits correspond to 40∘ and 5∘ polar
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angle coordinate, respectively. Both are super-conducting magnets that are cooled

by means of cryostats.

The ECAL is roughly 9 m distant from the target in the beamline direction and is

the farthest detector from the target. The Faraday Cup at the beam dump measures

the beam charge to an uncertainty of 0.48% [135, 149]. The Data Acquisition (DAQ)

[150] dead-time can be corrected by using a gate at the FC that closes when the

DAQ procedure is complete [135]. The total charge regardless of the gate is called

the ungated charge, and the charge collected during the gate on is the gated charge.

The ratio of the gated charge to the ungated charge is recorded as the DAQ live-time.

The complete listing of detector components can be found in Table. 2.1. The CLAS12

detector components relevant to the particle 4-momentum vector reconstruction are

grouped by their characteristics in Table. 2.2. The essential properties like threshold

and resolutions and the prominent material components are also listed.

An electron candidate 𝑒′ is defined as an associated signal of these FD signals: (1)

a track in DC, (2) photoelectrons in HTCC, (3) hits in FTOF, (4) energy deposited

over 60 MeV, and (5) the Sampling Fraction (SF) of Minimum Ionizing Particle’s

(MIPs). Here, the event start time is determined from the track information, and

corrected by the RF signal and the vertex location. The momentum of a charged

particle such as 𝑒′ and the proton 𝑝′ is reconstructed using the equation of motion

in a magnetic field. The polar angle difference during the trajectory ∆𝜃 is related to

the momentum 𝑝 and the charge 𝑞 of the particle, and the line-integrated magnetic

field along the trajectory curve,
∫︀
𝐵𝑑𝑙 as

𝑞

𝑝
=

∆𝜃

𝑐
∫︀
𝐵𝑑𝑙

. (2.1)

During one event, 𝑝′ is identified when there is a positively charged track in the DC

or the CVT, associated with FTOF or CTOF hits for the timing. The flight time

∆𝑡𝑝′ of 𝑝′ is determined as the difference of TOF hits and event start time. Along

with the path length 𝑙𝑝′ and the momentum 𝑝𝑝′ determined from the trajectory, the
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Table 2.1: The layout of CLAS12 detector subsystems and their usage in this exper-
iment.

Name Primary Usage (this work)

FD

HTCC 𝑒′ trigger, PID
LTCC not used
RICH not used
FTOF 𝑒′ trigger, 𝑝′ PID
DC 𝑒′ trigger, 𝑒′ and 𝑝′ momentum determination

ECAL 𝑒′ trigger, PID, 𝛾 energy determination

CD

CTOF 𝑝′ PID
CVT 𝑝′ momentum determination
CND not used
FMT not installed

BAND not installed

FT
FT-Cal 𝛾 energy determination

FT-Hodo 𝛾 PID
FT-Trk 𝛾 angle determination

Magnets Solenoid surrounds CD
Torus surrounds FD

Beamline Target 5 cm long LH2 target
FC luminosity determination

following relationship holds [151]:

𝛽𝑝′ ≡
𝑣𝑝′

𝑐
=

𝑙𝑝′

𝑐∆𝑡𝑝′
=

𝑝′

𝑝′2 +𝑀2
𝑝

. (2.2)

We take the common relativity notation for 𝛽 = 𝑣
𝑐

where 𝑣 is the velocity of the

particle and 𝑐 is the speed of light. Here, 𝜒 ≡ ∆𝑡/𝜎𝑇𝑂𝐹 with ∆𝑡 ≡ ∆𝑡𝑝′,expected(𝑝′) −
∆𝑡𝑝′,measured is assigned to the particle as the signed distance function from the the-

oretical value. The photon 𝛾 can be reconstructed in the ECAL in FD, and the

FT-Calorimeter in the FT. A photon will not produce charged tracks in the DC and

the FT-Hodo associated with the existing calorimeter hits. More efficiently, the neu-

tral hits are defined as the remaining calorimeter hits after all charged particles are

assigned. The energy deposition in ECAL is converted to the actual photon energy

using the SF. The homogeneous calorimeter FT-Cal takes the energy deposition as

the photon energy.

44



Table 2.2: The properties of the relevant subdetectors for the DVCS analysis. The
properties relate mostly to the effective measurement uncertainties listed in each NIM
article [135, 136, 140, 141, 143, 144, 147, 152].

Name Coverage (∘) Nominal Property Material
HTCC 5–35 0.015< 𝑝 <4.9 GeV/c 𝐶𝑂2

FTOF 1B 5–35 60–110 ps (𝑡)
FTOF 1A 5–35 90–180 ps (𝑡) plastic
FTOF 2 35–45 170–180 ps (𝑡) scintillator
CTOF 35–125 80 ps (𝑡)

ECAL 5–35 10%/
√
𝐸 (𝐸) 𝑃𝑏 (absorber)

1.2 mrad (𝜃, 𝜑) plastic scintillator

FT-Cal 2.5–4.5
2%/

√
𝐸 ⊕ 1% (𝐸)

𝑃𝑏𝑊𝑂4 crystal1.5% (𝜃)
2∘ (𝜑)

DC 5–40
1% (𝑝) aluminium wire

1 mrad (𝜃) 90% 𝐴𝑟
1 mrad/sin 𝜃 (𝜑) 10% 𝐶𝑂2

CVT 35–125
5% (𝑝𝑡) SVT: 𝑆𝑖

10–20 mrad (𝜃) BMT: 90%𝐴𝑟+10%𝐶4𝐻10
5 mrad (𝜑)

FC - 0.48% (ℒ) 𝑃𝑏

2.4 Particle Identification

The individual Particle Identification (PID) is a requirement of the exclusive coinci-

dence measurement and our event selection. In this section, the details of the PID

with the related plots are presented. The first level PID is done with the Event

Builder (EB) service with COATJAVA library [151] that is associated with the parti-

cle reconstruction principles described in Section 2.3. The detector volume was also

considered in the EB service to exclude the fiducial region effectively. The cuts ex-

cluding the borders of the detector will be referred to as the fiducial cuts throughout

the thesis.

The PID cuts were further enforced at the post-processing offline stage of anal-

ysis to ensure high reconstruction quality. Most of them were developed within the

collaboration’s common effort to analyze the RG-A data. The RG-A PID cuts were

proven to be effective in various analysis channels [153–155]. Hence, we present the

survival rates of two non RG-A fiducial cuts only: the proton fiducial cut at CD and
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the photon fiducial cut at FT.

We present the plots of the PID variables in this section. The data sets used for

plotting have already exclusivity cut applied. The passed cut is the ‘DVCS Wagon’

to select events with electron 𝑒′, proton 𝑝′, photon 𝛾 candidates with a loose DVCS

exclusivity condition. The details of the DVCS wagon will be described in Section

2.5 and Chapter 3. This results in the PID cuts listed in this section to appear to

be redundant. However, the PID techniques have been developed with the inclusive

data sets and individual particles without the exclusivity condition. The well-defined

PID cuts are the necessary conditions for defining exclusivity sets. The additional

PID cuts defined after the exclusivity selection will be introduced in Section 5.2 with

tables describing the effect of the PID cuts on the exclusive 𝑒′𝑝′𝛾 and 𝑒′𝑝′𝛾𝛾 data sets.

2.4.1 Electron Identification

The identification of an electron originates with fact that the electron is a negatively

charged particle of mass of 510.9989461±0.0000031 keV/c2 [1]. The unique character-

istics of the high energy scattered electron defines the electron candidates as follows:

∙ The electron should follow a trajectory inside the drift chamber with a nega-

tively charged particle’s curvature. i.e., the electron should bend inwardly in

the inbending data set and outwardly in the outbending data set.

∙ The electron mass is light enough to allow the electron to pass the timing

detectors at the speed of light.

∙ The electron should leave the energy deposition of MIP at the calorimeter.

This means (1) the PCAL energy deposition (𝐸𝑑𝑒𝑝. PCAL) should be larger than

some limits (60 MeV), and (2) the SF ≡ 𝑝
𝐸𝑑𝑒𝑝.

is roughly constant. The de-

nominator of the SF is the total energy deposited in the ECAL system, i.e.,

𝐸𝑑𝑒𝑝. PCAL +𝐸𝑑𝑒𝑝. EC-inner +𝐸𝑑𝑒𝑝. EC-outer, where the subscripts denote the corre-

sponding ECAL layers.

∙ The electron should be differentiated from the 𝜋−’s by the hard threshold of

the number of photoelectrons (𝑛𝑝ℎ𝑒.) in HTCC at 2. This cut can effectively
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perform 𝑒/𝜋 separation from 𝑒-threshold 15 MeV/c to 𝜋-threshold 4.9 GeV/c.

The conditions above are fulfilled by the EB service that is applied to the raw

data [151]. For an effective discussion, we start from the EB selected electrons. For

the tighter electron selection, a further requirement should be added at the post-

processing stage.

∙ The electron SF is further limited to the narrower region. This cut is defined

as 3.5𝜎 curves of SF-𝑝𝑒′ that were fitted separately for each sector, for the

experimental data (Fig. 2-3) and for the simulation (Fig. 2-4).

∙ The calorimeter energy deposition threshold should be higher than the EB con-

dition to reduce the 𝜋− contamination. The cut was determined to be 70 MeV

(Fig. 2-9).

∙ The electron hits must exclude the DC and ECAL detector fringes. The DC

fiducial cuts are defined for all three layers of the DC separately for both po-

larities. The effect of the fiducial cut on the outmost layer is presented in

Figs. 2-5–2-6. The PCAL fiducial cuts are defined as 𝑙𝑉 , 𝑙𝑊 >9 cm (Fig. 2-8)

where 𝑙𝑈,𝑉,𝑊 are the readout distances defined over the three alternating stereo

readout planes 𝑈, 𝑉,𝑊 (Fig. 2-7).

∙ The reconstructed vertex location must be in the vicinity of the target loca-

tion. The nominal 𝑧 position of the scattered electron 𝑣𝑧𝑒′ is located within the

target that ranges from -5.5 cm to -0.5 cm in the CLAS12 coordinate system.

Accordingly, the 𝑣𝑧 cut is defined as (-13, 12) cm range for the inbending and

(-18, 10) cm range for the outbending (Fig. 2-10).

∙ The anti-pion cut must be reinforced by the ECAL energy deposition for the

electron with energy above 4.9 GeV. The effective cut is 𝐸𝑑𝑒𝑝. EC-inner/𝑝𝑒′ +

𝐸𝑑𝑒𝑝. PCAL/𝑝𝑒′ > 0.2 (Fig. 2-11), and applied for 𝑝𝑒′ >4.5 GeV.

The electron selection was further refined by removing some regions in (𝑙𝑈 , 𝑙𝑉 ,

𝑙𝑊 ) in PCAL that are not efficient in the experimental data set. This procedure is
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related to the effort to match the experimental data to the simulation data, and will

be introduced in Section 5.2.
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Figure 2-3: The 2D histograms of SF and 𝑝𝑒′ before the RG-A PID cuts. The black
dotted curves indicate the 3.5𝜎 ranges of 2D distributions for each sector defined with
the electron candidates in the inclusive data set. Note that the cuts exclude the tails
in the low SF region.
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Figure 2-4: The 2D histograms of SF and 𝑝𝑒′ of the electron candidate before the RG-
A PID cuts on the MC simulation data set. The black dotted curves indicate the 3.5𝜎
ranges of 2D distributions for each sector defined with the electron candidates in the
inclusive electron simulation. Note that there is no tail issue, unlike the experimental
data (Fig. 2-3)
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Figure 2-5: The 2D histograms of 𝑒′ hit positions 𝑦DC and 𝑥DC of the electron can-
didate (a) before the RG-A PID cuts, and (b) after the cuts for the inbending data
set.
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Figure 2-6: The 2D histograms of 𝑒′ hit positions 𝑦DC and 𝑥DC of the electron can-
didate (a) before the RG-A PID cuts and (b) after the cuts for the outbending data
set.

Figure 2-7: The definition of the readout planes 𝑈, 𝑉,𝑊 , and corresponding readout
distances 𝑙𝑈,𝑉,𝑊 . The original figures were imported from the ECAL NIM article [141].
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Figure 2-8: The 2d histograms of SF and (a) 𝑙𝑉 , (b) 𝑙𝑊 before the RG-A PID cuts.
The black dotted lines indicates the fiducial cuts 𝑙𝑉 , 𝑙𝑊 = 9 cm.
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Figure 2-9: The 2d histograms of energy depositions 𝐸𝑑𝑒𝑝. PCAL and 𝐸𝑑𝑒𝑝. ECAL =
𝐸𝑑𝑒𝑝. EC-inner+𝐸𝑑𝑒𝑝. EC-outer before the RG-A PID cuts. The black dotted lines indicate
the 70 MeV threshold to exclude the 𝜋−, which looks redundant after the exclusivity
cuts.
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Figure 2-10: The histogram of vertex 𝑧 position of the electron candidate, 𝑣𝑧𝑒′ before
the RG-A PID cuts for the inbending data set. The horizontal axis is the number of
photoelectrons (𝑛𝑝ℎ𝑒.) with bin width 1. The vertical axis is the normalized density
of the experimental data (black) and the simulation (red).
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Figure 2-11: The 2D histograms of the fractional SF’s 𝐸𝑑𝑒𝑝. PCAL/𝑝𝑒′ vs.
𝐸𝑑𝑒𝑝. EC-inner/𝑝𝑒′ before the RG-A PID cuts. The black arrows in each plot repre-
sent the selected region resulting from this cut.
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2.4.2 Proton Identification

The proton candidate can be defined from the proton characteristics—a positively

charged particle with mass of 938.3 MeV/c2. As described in Section 2.3, 𝜒 ≡
Δ𝑡𝑝′, 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑−Δ𝑡𝑝′, 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑(𝑝)

𝜎𝑇𝑂𝐹
is the well-defined signed distance from the theoretical par-

ticle identification curve. The proton is the heaviest among the hadrons 𝜋, 𝐾, 𝑝,

which are the most abundant in the RG-A environment. The timing differences origi-

nate from the mass differences of 𝐾 (𝑚𝐾 ∼ 500 MeV) and 𝑝 (𝑚𝑝 ∼ 938 MeV) and can

effectively identify the proton in the DVCS proton kinematics. Ideally, the positive 𝜒

ensures the correct choice of protons because the expected flight times of kaons and

pions are always shorter than the proton1.

The instrumentation articles report that the CTOF can separate 𝑝/𝐾 up to 0.93

GeV/c at to 3𝜎 level [152], and the FTOF can achieve this performance up to 4.8

GeV/c [139]. As this work analyzes the data with protons up to 1.6 GeV/c momentum

level, we do not require a 𝜒 cut on the forward detectors. As for the CTOF, we also

use the 𝜒 cut from the EB service without the additional refinement. The 𝜒 cut is

adaptively refined by the EB service.
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Figure 2-12: The 2D histograms of 𝜒 and 𝑝𝑝′ of the proton candidates for the inbending
data set (a: FD, b: CD). Note that the adaptive cuts were already applied by the EB
service.

The proton fiducial cuts can be defined in the trackers—DC and CVT. The DC

fiducial cuts were developed by the common analysis effort for all three layers and for

all polarities, likewise with the electrons (Figs. 2-13–2-14).

1The 𝜋+,− with the negative 𝜒 can be regarded as pure for the same reasons.
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Figure 2-13: The 2D histograms of 𝑝′ hit positions 𝑦DC and 𝑥DC of the proton can-
didate (a) before the RG-A PID cuts and (b) after the cuts for the inbending data
set.
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Figure 2-14: The 2D histograms of 𝑝′ hit positions 𝑦DC and 𝑥DC of the proton can-
didate (a) before the RG-A PID cuts and (b) after the cuts for the outbending data
set.

The proton selection was enhanced by the fiducial cuts on CVT, the 3𝜎 cuts on

𝜒 and 3𝜎 cuts on the 𝑣𝑧 differences from electron (𝑣𝑧𝑒′ − 𝑣𝑧𝑝′). These are related

to improving the determination of the normalization and succeeds the momentum

post-processing procedure in Chapter 4. Thus, these selection cuts will be described

in Section 5.2.

2.4.3 Photon Identification

The photon is a neutral particle that travels at the speed of light. The most impor-

tant signature of a photon is that it lacks the associated tracks in the tracker as it

has a neutral charge. The nominal photon 𝛽 is 1 by definition, but we take a con-

servative limit of 0.9< 𝛽 <1.1. The lower limit was set up to rule out the neutrons

from reactions such as 𝑒𝑝 → 𝑒𝑛𝜋+. The photon fiducial cuts can be defined in the
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calorimeters—ECAL and FT-Cal. Likewise with the electron, the photon fiducial

cuts were set by 𝑙𝑉,𝑊 with a tighter lower bound of 14 cm as determined in the RG-A

common analysis effort. The PCAL fiducial cut was reinforced by the hit position-

based boundary estimation [156]. The effects of the photon fiducial cuts are presented

in Figs. 2-15.

−450 −300 −150 0 150 300 450
xPCAL (cm)

−450

−300

−150

0

150

300

450

y P
C

A
L

(c
m

)

(a) γ PCAL Hits, Pre-fiducial

1

10

102

103

104

−400 −200 0 200 400
xPCAL (cm)

−250

0

250

y P
C

A
L

(c
m

)

(b) γ PCAL Hits, Post-fiducial

1

10

102

103

104

Figure 2-15: The 2D histograms of 𝑝′ hit positions 𝑦PCAL and 𝑥PCAL of the photon
candidate (a) before the RG-A PID cuts and (b) after the cuts for the concatenated
data set of inbending and outbending polarities.

As with the electrons, the photons associated with the inefficient regions in PCAL

were excluded. The inefficient regions in FT-Cal were also eliminated. These proce-

dures will be introduced in Section 5.2.

2.5 Data Processing

During RG-A data taking, the event was triggered in parallel by three physics trigger

systems: (1) the electron trigger, (2) photoproduction trigger and (3) opposite sector

trigger. This analysis focuses on the (inclusive) electron trigger that is designed to

record events with FD electron candidates with minimum 𝑛𝑝ℎ𝑒, 𝐸𝑑𝑒𝑝., 𝐸𝑑𝑒𝑝. PCAL

conditions and the geometrical matching between detector subsystems. The electron

trigger search was adjusted and performed in parallel for each sector. The electron

trigger system is highly efficient with 99.5% trigger efficiency and 95% DAQ livetime

for trigger electrons of momentum above 2 GeV/c. The desired event rate for the

RG-A experiment is about 20 kHz, which was estimated using the simulation. This

can be easily achieved by the CLAS12 trigger logic with the effective performance
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level up to 200 kHz [157]. The events triggered by the electron trigger has trigger

bits “1” (True) in any of bits 0 to 6, where the bits 1–6 stan for each sector and 0 is

their OR. The trigger bits can be accessed offline.

Processing all saved inclusive events is not efficient in many aspects. There are a

lot more inclusive events than the exclusive channels of interest, namely DVCS and

DV𝜋0P. The RG-A has a few skimming modes, trains and wagons, to be commonly

used for some specific channels. A train is a coarse skimming, such as the inclusive

skim, which requires an electron-proton pair in one event. A wagon is a relatively

finer skimming, such as the DVCS wagon, which requires one electron-proton-photon

set with some level of DVCS exclusivity. The series of skimming processes is called

data cooking. In this analysis, for the base data set we take the DVCS wagon that

selects the DVCS candidates with loose exclusivity cuts, and require at least one 𝑒′𝑝′𝛾

set in the event[158] (see Section 3.3 for the cut conditions).

The raw data is stored in the HIPO format [151] for the enitre CLAS collabora-

tion. The HIPO format has the advantages of fast Input/Output (I/O) speed, and

compatibility with the Event I/O (EVIO) format that is commonly used for the Jef-

ferson Lab event storage [159]. For this analysis, the python program with pandas

library was taken as the main analysis tool in that python is supported by modern

statistical packages [160, 161] that are well maintained. This motivates operation of

a custom pipeline to convert the data format to pickle, which is the python standard

data format [162]. We use the CLAS12ROOT [163], a software package to read the

HIPO format in C++ and store the related information in ROOT format [164]. The

ROOT formated data is once again converted to pickle format, using the uproot li-

brary [165]. By doing so, the data are reduced into 𝑀 × 𝑁 dimensionality, where

𝑀 is the number of events, and 𝑁 is the number of physical quantities and other

information that are related (Fig. 2-16).

Different data formats have advantages in different stages of data processing. We

filter the base data with the PID cuts introduced at Section 2.4 and save in another

HIPO format, because the base data contains all detector responses. The filtered

HIPO files are converted into ROOT format. Finally, we execute the python script
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to select DVCS and DV𝜋0P events with tighter Event Selection criteria that will be

described at 3.3 and save them in the pickle format.

Cooked
HIPO

Filtered
HIPO

Converted
ROOT

Exclusive
PICKLE

PID cuts Converting DVEP cuts

Figure 2-16: The schematic drawing depicting the data processing pipeline.

57



58



Chapter 3

Methods

The analysis methods are described in this chapter. This analysis involves detailed

consideration of a number of issues: event selection, resolution smearing, momentum

corrections and background estimation. A simple example can be found in the miss-

ing energy of the entire 𝑒′𝑝′𝛾 data set. Ideally, the missing energy, defined as the

difference of initial and final state total energies, is zero. The experimental 𝑒′𝑝′𝛾 will

produce a blurred distribution around zero due to the finite detector resolution even

for the ideal detector. The major background occurs when 𝜋0 events are misidentified

as 𝑒′𝑝′𝛾 by missing the second photon 𝛾2 from 𝜋0 → 𝛾1𝛾2. The major background

contributions will push the missing energy distribution to the positive side. Another

process to modify the distribution is the emission of radiative photons. The missing

energy distribution is subject to the energy of radiative photons that are stochastic

and greater than or equal to zero. Finally, there is a reconstruction bias that under-

estimates or overestimates the particle energies. This effect generates a translation

of the missing energy distribution. These convoluted effects must be corrected to

minimize the systematic uncertainty in the final cross section determination. We

introduce the general principle of the analysis technique and describe in detail the

analysis steps in this chapter.
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3.1 Deep Exclusive Meson Production as an Irre-

ducible Source of Background

As stated in the introduction, the DVCS scattering amplitude is completely coherent

with the BH scattering amplitude. We regard both BH and DVCS as a true signal of

𝑒𝑝 → 𝑒′𝑝′𝛾 in this chapter. Thanks to the large acceptance of the CLAS12 detector,

all three final states 𝑒′𝑝′𝛾 are detected within the exclusivity ranges. This advan-

tage, especially in detecting the recoil proton, significantly rules out the SIDIS and

resonance decays, as studied in the HERMES experiment [166].

Still, the excluisvie 𝜋0 production is the major source of background because the

exclusive event selection is not discriminating enough to distinguish the 𝜋0 misiden-

tified events. It is possible to remove the events with a 𝜋0 when the 𝜋0-decay is

correctly identified with two photons. However, it is not uncommon to miss one of

the two photons, which is usually inside the BH-DVCS event selection. The mass of

the 𝜋0 is 134.9768±0.005 MeV/c2 [1], and its square is only 0.0182 (MeV/c2)2, which

can never be distinguished by a 𝑒′𝑝′ missing mass squared, 𝑀𝑀2
𝑒′𝑝′ cut. Therefore,

many previous experiments considered the DV𝜋0P as the most significant source of

backgrounds [107, 111, 118] albeit with slightly different techniques.

Exclusive 𝜋0 production in the DIS region is called Deeply Virtual 𝜋0 Production

(DV𝜋0P), which is another major channel to access CFFs and an active research topic

[167]. The Feynman diagram for the DV𝜋0P reaction can be found in Fig. 1-7.

The 𝜋0 background is prevalent not because of the narrow opening angle 𝜃𝛾1𝛾2
below the detector resolution, but because the secondary photon escapes the detector

(Fig. 3-1). The simulation in the plot refers to the DV𝜋0P simulation with selection

of events where one photon passes BH-DVCS event selection, and the other is missing

in the reconstructed event.
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Figure 3-1: The origin of 𝜋0 background events. The left plot contains the normalized
histograms that show that the opening angle from the event generator (black) has a
minimum around 0.02 rad (∼1.14∘) -these are well contained in the experimental data
(red, green). The right 2D histogram shows the angular coordinates of the missing
photons from the simulation. The plot implies that the missing photon is usually
directed towards the region outside the detector fiducial volume. The plot also shows
that the photon can be missed inside the detector volume due to detector inefficiency.

3.2 General Analysis Technique

The DVCS analysis involves treating the irreducible background from DV𝜋0P back-

ground as stated in the introduction. Ignoring negligible backgrounds from the acci-

dentals and other physical processes like DV𝜂P and SIDIS, the 1-dimensional distri-

bution of any physical variable X of a BH-DVCS candidate is expressed as follows:

P(X)e
′p′𝛾
exp. = (1−𝑐) × P(X)BH−DVCS

exp. + 𝑐× P(X)DV𝜋0P,mis.
exp. (3.1)

P(X)e
′p′𝛾
sim. = (1−𝑐) × P(X)BH−DVCS

sim. + 𝑐× P(X)DV𝜋0P,mis.
sim. (3.2)

where P(X) is the Probability Distribution Function of X with its subscript describing

the source of the data set (exp.:experiment, sim.: simulation) and its superscript

describing the process involved, along with the contamination ratio 𝑐. The superscript

of the right hand side 𝑒′𝑝′𝛾 denotes all processes that pass BH-DVCS event selections

including the backgrounds. In reality, instead of the PDF, the sample distribution

is known for both the experimental data, and for the MC simulated data set. Up to
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statistical fluctuation, the expression

𝑛𝑖(X)𝑒
′𝑝′𝛾
exp. = (1 − 𝑐) × 𝑛𝑖(X)BH−DVCS

exp. + 𝑐× 𝑛𝑖(X)DV𝜋0P
exp. (3.3)

should hold where 𝑛𝑖 denotes the 𝑖-th bin entry in the histogram of X.

The estimation of the contamination ratio 𝑐 is directly related to extraction of the

signal yields, and thus to the cross section. In this work, the background ratio, or

the contamination ratio 𝑐 = 𝐵/(𝑆 + 𝐵) is estimated by using the event count ratio

of DV𝜋0P to BH-DVCS either in all bins, or in a certain bin. From the eqn. 3.1,

𝑐 = 𝑁(𝑒′𝑝′𝛾)DV𝜋0P
exp. /𝑁(𝑒′𝑝′𝛾)𝑒

′𝑝′𝛾
exp. (3.4)

= [𝑁(𝑒′𝑝′2𝛾)DV𝜋0P
exp. × 𝑁(𝑒′𝑝′𝛾)DV𝜋0P

sim.

𝑁(𝑒′𝑝′𝛾)DV𝜋0P
sim.

]/𝑁(𝑒′𝑝′𝛾)𝑒
′𝑝′𝛾
exp. (3.5)

where 𝑁 =
∑︀
𝑖

𝑛𝑖 stands for the total sum of entries. This principle of estimating the

contamination was used in the previous CLAS12 DVCS analyses [107, 108]. The first

term inside the square bracket is the misidentified DV𝜋0P events that have passed

the BH-DVCS event selection. The sub- and super- script scheme is the same with

the PDF case. The eqn. 3.2 requires that the ratio of 𝑒′𝑝′𝛾 to 𝑒′𝑝′2𝛾 acceptances is

the same for both the simulation and the experimental data. i.e,

𝑁(𝑒′𝑝′𝛾)DV𝜋0P
exp.

𝑁(𝑒′𝑝′𝛾)DV𝜋0P
exp.

=
𝑁(𝑒′𝑝′𝛾)DV𝜋0P

sim.

𝑁(𝑒′𝑝′𝛾)DV𝜋0P
sim.

. (3.6)

The following is not a requirement, but the bin to bin matching of the simulated

to the experimental data is desired:

P(X)𝑒
′𝑝′𝛾
exp. =P(X)𝑒

′𝑝′𝛾
sim. (3.7)

P(X)DV𝜋0P
exp. =P(X)DV𝜋0P

sim. (3.8)

P(X)BH−DVCS
exp. =P(X)BH−DVCS

sim. . (3.9)

Ideally, it is best to ensure the validity of eqn. 3.9 by achieving eqns. 3.7–3.8. This

issue will be discussed in Section 4.2 in detail.
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3.3 Event Selection

Unlike for the simulation data, where the origin of the events could be controlled, the

experimental data was inclusive, i.e., a mixture of all possible channels. Matching the

inclusive simulation to the data unnecessarily involves larger systematic uncertainties

from the theoretical calculations of total cross sections. This analysis narrows down

the selection window of BH-DVCS events that allows irreducible DV𝜋0P backgrounds.

To validate this two-channel matching, the window must be defined to exclude other

backgrounds.

We define the exclusive variables with the four momentum algebra:

𝑀𝐸𝑒′𝑝′𝛾 =𝐸𝑏𝑒𝑎𝑚 +𝑀 − 𝐸𝑒′ − 𝐸𝑝′ − 𝐸𝛾 (3.10)

𝑀𝑀2
𝑒′𝑝′𝛾 =(𝑝𝑏𝑒𝑎𝑚 + 𝑝𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑝𝑒′ − 𝑝𝑝′ − 𝑝𝛾)2 (3.11)

𝑀𝑀2
𝑒′𝑝′ =(𝑝𝑏𝑒𝑎𝑚 + 𝑝𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑝𝑒′ − 𝑝𝑝′)

2 (3.12)

𝑀𝑀2
𝑒′𝛾 =(𝑝𝑏𝑒𝑎𝑚 + 𝑝𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑝𝑒′ − 𝑝𝛾)2 (3.13)

𝑀𝑃𝑡𝑒′𝑝′𝛾 =
√︁

(𝑝𝑏𝑒𝑎𝑚 + 𝑝𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑝𝑒′ − 𝑝𝑝′ − 𝑝𝛾)2𝑥 + (𝑝𝑏𝑒𝑎𝑚 + 𝑝𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑝𝑒′ − 𝑝𝑝′ − 𝑝𝛾)2𝑦

(3.14)

𝜃𝛾𝑑𝑒𝑡.𝛾𝑟𝑒𝑐. =∠(𝑝𝛾, 𝑝𝑏𝑒𝑎𝑚 + 𝑝𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑝𝑒′ − 𝑝𝑝′) (3.15)

𝜑𝐻Γ =∠(�⃗�, Γ⃗), (3.16)

where the hadronic scattering plane is defined as �⃗� =
𝑝𝑒′×𝑝𝑝′
|𝑝𝑒′ ||𝑝𝑝′ |

, and the photon pro-

duction plane is defined as Γ⃗ =
𝑝𝑒′×𝑝𝛾
|𝑝𝑒′ ||𝑝𝛾 |

. In the absence of radiative photons, �⃗� ‖ Γ⃗.

The angular variables 𝜃𝛾𝑑𝑒𝑡.𝛾𝑟𝑒𝑐. and 𝜑𝐻Γ are often referred to as the cone angle and

coplanarity, respectively. Generally, 𝑀𝐸, 𝑀𝑀2 and 𝑀𝑃𝑡 stands for the missing

energy, the missing mass squared and the missing transverse momentum, respec-

tively. It is trivial to expect the exclusivity variables for the nonradiated events recon-

structed at the perfect resolution: 𝑀𝐸𝑒′𝑝′𝛾,𝑀𝑀2
𝑒′𝑝′𝛾, 𝑀𝑀2

𝑒′𝑝′ ,𝑀𝑃𝑡𝑒′𝑝′𝛾, 𝜃𝛾𝑑𝑒𝑡.𝛾𝑟𝑒𝑐., 𝜑𝐻Γ

= 0 and 𝑀𝑀2
𝑒′𝛾 = 𝑚2

𝑝. Another useful variable to control the DVCS kinematics is

𝜃𝑒′𝛾 = ∠(𝑝𝑒′ , 𝑝𝛾), the angle between the 𝑒′ and 𝛾, which is used to remove the radiative

photon from the electron side.
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The first level BH-DVCS event selection was primarily designed by the DVCS

wagon service [158] with the following conditions:

∙ at least one electron, one proton, one photon in the final state.

∙ 𝐸𝑝′ > 0.94358 GeV

∙ −1 GeV < 𝑀𝐸𝑒′𝑝′𝛾 < 2 GeV

∙ 0.25 GeV < 𝑀𝐸𝑒′𝛾 < 2 GeV

∙ |𝑀𝑀2
𝑒′𝑝′𝛾| < 0.1 GeV2

∙ 𝑀𝑃𝑡2𝑒′𝑝′𝛾 < 0.75 (GeV/c)2

∙ 𝜃𝛾𝑑𝑒𝑡.𝛾𝑟𝑒𝑐. < 7.5∘.

We added several conditions to the DVCS wagon. As discussed in Section 1.2,

there are a couple of theoretical constraints on the kinematic regions. We require the

events to be in the DIS region, 𝑄2 > 1 (GeV/c)2 and 𝑊 > 2 GeV. The CFF input

for the event generation was provided for −𝑡 < 1.79 GeV2, so we have a hard cut at

−𝑡 < 1.72 GeV2. This is equivalent to 𝑝𝑝′ < 1.65 GeV/c. We set up the thresholds of

𝑒′ and 𝑝′ momenta to ensure the reconstruction qualities as 𝑝𝑒′ > 2 GeV/c, 𝑝𝑝′ > 0.3

GeV/c (CD), 0.42 GeV/c (FD, inbending data set), 0.5 GeV/c (FD, outbending data

set). The DVCS photon is produced with high momentum. To ensure that the photon

threshold does not limit the phase space more than 𝑊 > 2, we take the consevative

limit of 𝑝𝛾 > 2 GeV/c. We also constrain the trigger bits to have at least one “1”

∈ {1, 2, 3, 4, 5, 6}, to select the events triggered by the inclusive electron trigger.

This operation can be done by the bitwise operation (trigger bit & 1<< 𝑛 ), where

𝑛 ∈ 1, 2, 3, 4, 5, 6. Finally, we refine the PID as we discussed the PID techniques at

Section 2.4.

We define the DV𝜋0P exclusivity variables very similar to the DVCS, but with the

two photons 𝜋0 → 𝛾1𝛾2. We keep the convention of 𝑝𝛾1 > 𝑝𝛾2 to avoid any duplication

issue.
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𝐼𝑀𝜋0 =
√︁
𝑝2𝜋0 =

√︁
(𝑝𝛾1 + 𝑝𝛾2)

2 (3.17)

𝑀𝐸𝑒′𝑝′𝜋0 =𝐸𝑏𝑒𝑎𝑚 +𝑀 − 𝐸𝑒′ − 𝐸𝑝′ − 𝐸𝛾1𝐸𝛾2 (3.18)

𝑀𝑀2
𝑒′𝑝′𝜋0 =(𝑝𝑏𝑒𝑎𝑚 + 𝑝𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑝𝑒′ − 𝑝𝑝′ − 𝑝𝛾1 − 𝑝𝛾2)

2 (3.19)

𝑀𝑀2
𝑒′𝑝′ =(𝑝𝑏𝑒𝑎𝑚 + 𝑝𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑝𝑒′ − 𝑝𝑝′)

2 (3.20)

𝑀𝑀2
𝑒′𝜋0 =(𝑝𝑏𝑒𝑎𝑚 + 𝑝𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑝𝑒′ − 𝑝𝛾1 − 𝑝𝛾2)

2 (3.21)

𝑀𝑃𝑡𝑒′𝑝′𝜋0 =
√︁

(𝑝𝑏𝑒𝑎𝑚 + 𝑝𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑝𝑒′ − 𝑝𝛾1 − 𝑝𝛾2)
2
𝑥 + (𝑝𝑏𝑒𝑎𝑚 + 𝑝𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑝𝑒′ − 𝑝𝛾1 − 𝑝𝛾2)

2
𝑦

(3.22)

𝜃𝜋0
𝑑𝑒𝑡.𝜋

0
𝑟𝑒𝑐.

=∠(𝑝𝛾1 + 𝑝𝛾2 , 𝑝𝑏𝑒𝑎𝑚 + 𝑝𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑝𝑒′ − 𝑝𝑝′) (3.23)

𝜑𝐻Π =∠(�⃗�, Π⃗), (3.24)

where the 𝜋0 production plane Π⃗ was defined as = 𝑝𝑒′×𝑝𝜋0

|𝑝𝑒′ ||𝑝𝜋0 | , just like for the photon

production plane. The invariant mass 𝐼𝑀𝜋0 is a strong constraint to define the 𝜋0

events. In the limit of perfect resolution, similarly to the DVCS case, 𝐼𝑀𝜋0 = 𝑚𝜋0 ,

𝑀𝐸𝑒′𝑝′𝜋0 ,𝑀𝑀2
𝑒′𝑝′𝜋0 ,𝑀𝑀2

𝑒′𝑝′ , 𝑀𝑃𝑡𝑒′𝑝′𝜋0 , 𝜃𝜋0
𝑑𝑒𝑡.𝜋

0
𝑟𝑒𝑐.
, 𝜑𝐻Π = 0 and 𝑀𝑀2

𝑒′𝛾 = 𝑚2
𝑝.

Similarly, as with DVCS, the first level DV𝜋0P event selection was achieved using

the DV𝜋0P wagon service [168] with the following conditions:

∙ at least one electron, one proton, two photon in the final state.

∙ 𝐸𝑝′ > 0.94358 GeV

∙ 𝜃𝑒′𝛾1 , 𝜃𝑒′𝛾2 > 4∘

∙ 𝐸𝛾1 , 𝐸𝛾2 > 0.15 GeV

∙ 𝜃𝛾1𝛾2 > 1∘

∙ −1.5 GeV < 𝑀𝐸𝑒′𝑝′𝜋0 < 2 GeV

∙ 0 GeV < 𝑀𝐸𝑒′𝜋0 < 2.5 GeV

∙ |𝑀𝑀2
𝑒′𝑝′𝜋0| < 0.1 GeV2

∙ 𝑀𝑃𝑡2𝑒′𝑝′𝜋0 < 1.0 (GeV/c)2
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∙ 0.05 GeV< 𝐼𝑀𝜋0 < 1 GeV

∙ 𝜃𝜋0
𝑑𝑒𝑡.𝜋

0
𝑟𝑒𝑐.

< 7.5∘.

We also require 𝑄2 > 1 (GeV/c)2 and 𝑊 > 2 GeV to study the background in the

DIS region. We demand the DVCS kinematic range, 𝑝𝑝 < 1.6 GeV/c, 𝑝𝑒′ > 2 GeV/c,

𝑝𝑝′ > 0.3 (CD), 0.42 (FD, inbending data set), (FD, outbending data set). The trigger

bits were also constrained to have one “1” ∈ {1, 2, 3, 4, 5, 6}, to select the events

triggered by the inclusive electron trigger. The PID conditions at Section 2.4 were also

applied to the 𝜋0 event selection as well. The 3𝜎 windows of exclusivity variables of

DV𝜋0P events can be determined without considering the background channel thanks

to the very strong experimental trace, 𝐼𝑀𝜋0 . The exclusivity variables were fitted for

each polarity and topology, just as in the DVCS case.

The next level BH-DVCS event selection was defined by the narrower exclusivity

windows for each torus polarity and detector topology. A standard approach is to

select 3𝜎 regions of individual exclusivity variables from the MC data set. The MC

data set must be a mixture of DVCS and DV𝜋0P to encompass a reasonable amount

of 𝜋0 background, to satisfy the condition eqn. 3.7 with a reasonable value of 𝑐. The

next level DV𝜋0P event conditions require a good matching of the simulation to the

experimental data to ensure eqn. 3.7. Setting the next level exclusivity selections

was in practice carried out in an iterative process involving smearing the simulation

data resolution and correcting the experimental data at the particle kinematics. The

events were selected by smearing the simulation distribution using Gaussian kernels

of appropriate effective resolutions. The details of this procedure will be discussed

in Section 4.2. The 3𝜎 windows were surveyed by fitting the data set after the

momentum post-processing. The final exclusivity cuts will be introduced in Section

5.2.

3.4 Configuration and Kinematics Region

The first level event selections are defined in wider windows than 3𝜎 ranges to avoid

excluding good events. This provides a broad outline of the kinematic region before

66



narrowing down the data selection conditions. The major topologies related to DVCS

are (FD, FD), (CD, FD), (CD, FT) where each tuple denote the detector subsystem

where each particle (𝑝′, 𝛾) were reconstructed. Even though the (FD, FT) topology

was totally excluded, Fig. 3-2 shows that the (FD, FT) configuration does not have

sufficient statistics to be considered in this analysis.
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Figure 3-2: The 2D histogram of 𝜃𝑝′ and 𝜃𝛾 in the concatenated data set for the
inbending and the outbending configurations in first level BH-DVCS event selection.
There is a correlation that 𝜃𝑝′ increases when 𝜃𝛾 decreases. This has the consequence
that the BH-DVCS data set is concentrated in the three major topologies (FD, FD),
(CD, FD), (CD, FT) but not in (FD, FT). The colorbar scale is logarithmic to com-
pensate for the drastic statistics differences in different topologies.

There are six configurations in total because each topology has data for two dif-

ferent torus polarities. The 2D distributions of events in 𝑄2−𝑥𝐵 and −𝑡−𝜑 for each

configuration are presented in Figs. 3-3–3-4. It is conventional to define 𝑡𝑚𝑖𝑛 and 𝑡𝑐𝑜𝑙.,

which are the minimum proton momentum transfer and proton momentum transfer

at the collinear limit [76, 82], respectively:

−𝑡𝑚𝑖𝑛 =𝑄22(1 − 𝑥𝐵)(1 −
√

1 + 𝜖2) + 𝜖2

4𝑥𝐵(1 − 𝑥𝐵) + 𝜖2
(3.25)

−𝑡𝑐𝑜𝑙. = −𝑄2(𝑄2 − 𝑥𝐵𝑠)/(𝑥𝐵(𝑄2 − 𝑠)), (3.26)

with other variables defined in Chapter 1. These reference momentum transfers are

subject to 𝑥𝐵 and 𝑄2, and it is convenient to visualize them in the 𝑄2 − 𝑥𝐵 plane

(Figs. 3-5–3-6).

The copious radiative photons emitted in the direction of the scattered photons
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Figure 3-3: The 2D histograms of events in 𝑄2 and 𝑥𝐵 for each configuration of first
level BH-DVCS events. The color bar scale is logarithmic.
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Figure 3-4: The 2D histograms of events in −𝑡 and 𝜑 for each configuration of first
level BH-DVCS events. The color bar scale is logarithmic.

can be controlled by inserting a threshold for the cone angle between the scattered

electron and the photon 𝜃𝑒′𝛾. The 2D histograms of 𝜃𝑒′𝛾 − 𝜃𝑒′ are shown in Fig. 3-8

without any regulation. The outbending data set contains especially many events

with the p-peak events with low 𝜃𝑒′𝛾. This corresponds to the collinear limit, where

the 𝑢-channel propagator 𝒫1(𝜑) in eqn. 1.42 is peaked at 𝜑 = 0 or 2𝜋. In the BMK
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Figure 3-5: The 2D heatmap visualizing −𝑡𝑚𝑖𝑛 in 𝑄2 and 𝑥𝐵 plane for each configu-
ration of first level BH-DVCS events. The color bar scale is logarithmic.
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Figure 3-6: The 2D heatmap visualizing −𝑡𝑐𝑜𝑙 in 𝑄2 and 𝑥𝐵 plane for each configura-
tion of first level BH-DVCS events. The color bar scale is logarithmic.

approximation [76], the azimuthal angle 𝜑BMK is related to 𝜑 as follows:

𝜑BMK = 𝜋 − 𝜑. (3.27)

The 𝑢-channel propagator singularity corresponds to 𝜑BMK=𝜋. While following the
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BMK model conserves the sign convention in the original paper, we choose to express

the cross section in the Trento convention, which is consistent with the previously

published experimental results, and also with many SIDIS papers.

The current detector reconstruction performance is not guaranteed when there are

electron and photon signals in the same sector of the FD ECAL [169]. After the sectors

of 𝑒′ and 𝛾 are required to be different in FD or reconstructed in different subsystems

(i.e. 𝛾’s in FT), the 2D histograms of 𝜃𝑒′𝛾 − 𝜃𝑒′ remove a significant amount of events

at low 𝜃𝑒′𝛾 (Fig. 3-8). The dotted curves define the 3𝜎 region around the peaks w.r.t.

𝜃𝑒′ . The events with 𝑒′ and 𝛾 in the same sectors, that have been removed, have 𝜑

around 0 and 2𝜋, as expected (Fig. 3-9). The (CD, FT) configuration accommodates

abundant low 𝜃𝑒′𝛾 events, especially in the outbending data. The 3𝜎 window for such

events was separately defined and these events were incorporated into the (CD, FT)

configuration.
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Figure 3-7: The 2D histograms of events in 𝜃𝑒′𝛾 and 𝜃𝑒′ for each configuration of first
level BH-DVCS events without regulation of 𝜃𝑒′𝛾. The color bar scale is logarithmic.
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Figure 3-8: The 2D histograms of events in 𝜃𝑒′𝛾 and 𝜃𝑒′ for each configuration of first
level BH-DVCS events with the condition that the sectors of 𝑒′ and 𝛾 are different.
The color bar scale is logarithmic.
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Figure 3-9: The 1D histogram of events vs. 𝜑 in (𝑝, 𝛾, polarity) = (CD, FD, +1) of
first level BH-DVCS events when the electrons and the photons were reconstructed
in the same sector.

3.5 Cross Section Extraction

The entire analysis chain process can be summarized as the inverse problem, which is

the transformation of the observed event counts to the number of physical BH − DVCS

events. Had the number of reconstructed events been only 10% of the number of the

generated events in the simulation chain, the signal yield in reality must then be

ten times the observed event counts. The probability distribution that the observed

event counts follows is deformed by the emission of the radiated photons, which is
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taken into account by the radiative corrections. The extracted cross section is the

differential cross section in one specific bin, not for the one fixed kinematics. To be

directly compared with the BH prediction, either the data, or the fixed kinematics of

the BH curve must be corrected.

3.5.1 Simulation Pipeline

The simulation technique uses the standard Monte-Carlo (MC) simulation, or MC in

short. The simulation data was used to estimate the proton energy loss and improve

the data quality by matching the simulation to data.

The simulation follows the standard procedure to generate events and simulate the

effects arising from the detector and the reconstruction process. The event generators

used in this work are the dvcsgen [170] for the BH-DVCS simulation and and aao_gen

[171] for the DV𝜋0P. The working principles of both generators have been proven

previously [107, 167]. The dvcsgen was firstly developed in the early CFF paper

[172] following the development of the BMK approximation [76]. The VGG CFF

grid was updated for the dvcsgen code later [109]. The aao_gen program generates

DV𝜋0P events with the structure function tuned to agree with recent measurements

[173, 174]. The generated events are rejection-sampled based on the multidimensional

probability distribution, which is the normalized differential cross section.

The generated events were detector simulated using GEANT4 [175] with the

GEANT4 Monte-Carlo (GEMC), the CLAS12-friendly API of the GEANT4 [176].

The code GEMC simulates the interactions and secondary particle generations using

the seed of the generated particles. GEMC saves the detector responses in the same

format as used for the experimental data. These responses are processed in the same

way as the experimental data processing and are provided as an input to reconstruct

particles using the CLAS12 event Reconstruction and Analyses (CLARA) [177]. The

trigger bit is fixed to ‘0’ for the simulated events.

The raw reconstruction efficiency in the simulation chain is much higher compared

to that in the real experiment. This is because the copious background prevalent

in the real experimental environment increases the DC occupancy especially in the
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region 1 (the innermost layers) and significantly drops the efficiency. The reduction

in efficiency is estimated using the multiplicities 𝑛± = 𝑁±/𝑁𝑒′ , where 𝑁± are the

number of the positive (+) and the negative (-) particles, and 𝑁𝑒′ is the total number

of electron events in the run. The efficiency 𝜂(𝐼) is defined as the ratio of multiplicity

at the beam current 𝐼 to the extrapolated multiplicity at 𝐼 = 0. The study [178]

shows that the efficiency decreases with increasing beam current as -0.32% and -

0.37% per nA for both positively and negatively charged particles. The background

detector responses from the randomly triggered experimental data were mixed with

the GEMC signal detector responses to include this effect. The random trigger is

not related to any physics-related trigger logic, but takes data at random frequency

[157]. The mixing procedure with the random trigger events is called the background

merging. The background merging was developed for different currents that were

requested for the actual experiments. The inbending data set has the background

merging configuration of 45, 50 and 55 nA, and the outbending data set has 40 nA

and 50 nA. The initial outbending data with +1.00796 times higher torus current

than the nominal current can be simulated with the 40 nA background merging.

In this analysis, we simulate the “production” simulation with 50 nA background

merging of 500M generated BH-DVCS events and 300M DV𝜋0P events. To study

the systematic effects arising from the reconstruction inefficiency, we simulated 100M

vents for other configurations with background merging of different currents, and also

without background merging.

3.5.2 Acceptance Correction

The purpose of the acceptance correction is to convert the number of observed events

to the number of physical events at the vertex. If the detector efficiency is 100%, only

the geometric factors define the acceptances. While it is conventional to distinguish

the effect of the detector efficiency 𝜀 from the geometric factor, it is elusive in practice.

The common method uses the detector simulation by GEANT4 to extract the detector
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acceptance 𝐴𝑐𝑐. as follows:

𝐴𝑐𝑐.(𝑥𝐵, 𝑄
2,−𝑡, 𝜑) =

𝑁𝑟𝑒𝑐.(𝑥𝐵, 𝑄
2,−𝑡, 𝜑)

𝑁𝑔𝑒𝑛.(𝑥𝐵, 𝑄2,−𝑡, 𝜑)
, (3.28)

where 𝑁𝑟𝑒𝑐. is the event count of the reconstructed events, and 𝑁𝑔𝑒𝑛. is the number

of generated events from the event generator. The caveat is that the reconstructed

kinematic coordinates (𝑥𝐵, 𝑄
2,−𝑡, 𝜑) differ from the true values (𝑥𝐵, 𝑄

2,−𝑡, 𝜑). It is

indeed problematic when the encoded bin number from the generated (𝑥𝐵, 𝑄
2,−𝑡, 𝜑) is

different from the bin number from reconstructed (𝑥𝐵, 𝑄
2,−𝑡, 𝜑). This effect is called

bin migration. To cope with bin migration, several high energy experiments devised

the computational method known as matrix unfolding. In our case, the bin purity, the

conditional probability to occupy the same bin number as the generated bin number,

is high enough that the acceptances cane be used to determine the reconstruction

efficiency at simulation. To trust the 𝐴𝑐𝑐. and to minimize the uncertainty from the

bin migration, it is required to ensure that the distribution of reconstructed events

both from the simulation and from the experiment are in reasonable agreement. The

BH-DVCS total cross section roughly follows the BH profile. To complete this method,

there must be a study to compare the efficiency using GEANT4 to the actual value

in the experiment.

The experiment uses the three detector configurations for both polarities. To

merge the counts from the three subsystems, we strictly divide the detector subsys-

tems into four domains: (0) 𝜃𝑝′ < 40∘ and 𝜃𝛾 < 5∘, (1) 𝜃𝑝′ < 40∘ and 𝜃𝛾 ≥ 5∘, (2)

𝜃𝑝′ ≥ 40∘ and 𝜃𝛾 ≥ 5∘, (3) 𝜃𝑝′ ≥ 40∘ and 𝜃𝛾 ≥ 5∘. The configurations (0), (1), (2), and

(3) are likely to be detected in (FD, FT), (FD ,FD), (CD, FD) and (CD, FT) config-

urations, respectively. As mentioned in Section 3.4, there are not enough statistics in

the (FD, FT) configuration to define the event selection at the reconstructed phase

space. Another remark is that there is an overlap in 𝜃 range of the FD protons and CD

protons due to the overlap in geometry of the CVT-CTOF and DC-FTOF2. In lieu

of counting all marginal statistics in the overlapped fiducial regions, we strictly divide

the CD proton and FD proton polar angle regions at 40∘ so that the acceptances can
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be quantified per configuration.

3.6 Radiative Corrections

The Radiative Correction (RC) is an essential aspect of any QFT to match the the-

oretical cross section to the experimental one. The RC was initially developed to

cancel the infrared (IR) divergence in physical quantities, e.g. cross sections. In

short, any experiment cannot detect the Born cross section of tree-level processes as

is, because this diagram is in interference with the next order diagrams that include

the soft Bremsstrahlung and vertex corrections [3].

The soft photon emission in the direction of the incoming or outgoing electron

dominates in the typical electron scattering experiment. The early calculation was

carried out with the inclusive electron scattering propagator, treating the peaking

approximation carefully [179]. We take the 𝑠-peak as the soft photon emission in the

direction of the beam, and the 𝑝-peak in the direction of 𝑒′.

In 2018, the RC study for the exclusive BH-DVCS reaction was carried out within

the peaking approximation [180]. There are many advantages to using the results of

this study. Firstly, the MC code the authors used has the same technical structure as

dvcsgen [172]. Secondly, unlike for the inclusive electron RC that inevitably changes

𝑥𝐵 and 𝑄2, the RC factors and the peaking approximations were carried out at fixed

𝑥𝐵 and 𝑄2, which is extremely convenient for the experimentalist. Formally,

𝑄2 ≡(𝑝𝑒′ − 𝑝𝑏𝑒𝑎𝑚)2 (3.29)

𝑥𝐵 ≡ 𝑄2

2𝑀𝜈
, (3.30)

where 𝑄2 is no longer identical with −𝑞2 in the presence of the radiative photon 𝛾′.

The RC code was implemented to use the existing dvcsgen that was designed for the

CLAS12 environment [170].

The RC impacts the experiment significantly in three ways. Firstly, it transforms

(corrects) the differential cross section that the sampled MC distribution follows.
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M2
2γ¼

X6

i¼1

½Mll
i ðMlh

1 þMlh
2 Þ†þðMlh

1 þMlh
2 ÞM

ll†
i &: ð17Þ

Six matrix elements of the process with the emission
of the additional photon correspond to graphs in
Figs. 2(a)–2(c): Mll

1–6 ¼ e4t−1JhμJ1–6;μ. The quantities
J1–6;μ are defined by Eq. (22) of [9]:

J1μ ¼ ū2γμ
k̂1 − κ̂ þm
−2κk1 þ V2

ϵ̂2
k̂1 − κ̂1 þm
−2k1κ1

ϵ̂1u1;

J2μ ¼ ū2γμ
k̂1 − κ̂ þm
−2κk1 þ V2

ϵ̂1
k̂1 − κ̂2 þm
−2k1κ2

ϵ̂2u1;

J3μ ¼ ū2ϵ̂2
k̂2 þ κ̂2 þm

2k2κ2
ϵ̂1
k̂2 þ κ̂ þm
2κk2 þ V2

γμu1;

J4μ ¼ ū2ϵ̂1
k̂2 þ κ̂1 þm

2k2κ1
ϵ̂2
k̂2 þ κ̂ þm
2κk2 þ V2

γμu1;

J5μ ¼ ū2ϵ̂1
k̂2 þ κ̂1 þm

2k2κ1
γμ

k̂1 − κ̂2 þm
−2k1κ2

ϵ̂2u1;

J6μ ¼ ū2ϵ̂2
k̂2 þ κ̂2 þm

2k2κ2
γμ

k̂1 − κ̂1 þm
−2k1κ1

ϵ̂1u1; ð18Þ

where V2 ¼ κ2 ¼ ðκ1 þ κ2Þ2. The quantity V2 has the
meaning of missing mass squared in the experimental design
when only charge particles (electron and proton) are detected
and/or used for reconstruction of kinematical variables.
Matrix elements with emissions of one photon from the

lepton line and one photon from the hadron line [Figs. 2(d)
and 2(e)] are

Mlh
1 þMlh

2 ¼ e4ϵα1ϵ
β
2

!
JBHμα ðk1; k2; κ1ÞTβμðκ2Þ

Q2 þ 2qκ1

þ
JBHμβ ðk1; k2; κ2ÞTαμðκ1Þ

Q2 þ 2qκ2

"
: ð19Þ

The matrix element squares (17) has four terms with
denominators containing κ1;2k1 (s-peak) and κ1;2k2 (p-
peak):

M2
2γ ¼ M2

1s þM2
1p þM2

2s þM2
2p; ð20Þ

where indices correspond to the unobserved photon, e.g., 1s
means that the photonwithmomentum κ1 is unobserved and
in the s-peak. Just these four terms contribute to the cross
section in the leading approximation. Each of them (i.e.,
1=k1κ1, 1=k1κ2, 1=k2κ1, or 1=k2κ2) contains the first order
pole which can be extracted if to put vectors κ1 and κ2 in the
peak and use m → 0 in the coefficient at each respective
pole. Practically the terms are calculated by using the
following substitution: κ1¼ð1− z1Þk1, κ1 ¼ ð1=z2 − 1Þk2,
κ2 ¼ ð1 − z1Þk1 and κ2 ¼ ð1=z2 − 1Þk2 for M2

1s, M2
1p,

M2
2s and M2

2p, respectively. The use of these formulas
means putting the angular components of the vectors κ1 and
κ2 to be equal of respective angular components of vectors k1
and k2 in numerators of all terms in the right-hand side of
(20)M2

1;2s;p, keeping the last component (i.e., energy of κ1
and κ2) unfixed. The variables z1;2 represent the energy-
related components of the vectors and can be related toV2 as

z1 ¼ 1 −
V2

w
; z2 ¼

u
uþ V2

; ð21Þ

where w ¼ 2k1ðpþ q − p0Þ and u ¼ 2k2ðpþ q − p0Þ.
The calculation ofM2

1s is similar to that considered in [9]
but there are new technical issues because of the different
structure of thematrix element squared. OnlyMll

1 ,M
ll
6 , and

Mlh
1 can have the pole 1=k1κ1 through contributions from

J1μ, J6μ and JBH1μα that are reduced to

J1μ ≈
k1ϵ1

2ðk1κ2Þðk1κ1Þ
ū2γμðz1k̂1 − κ̂2Þϵ̂2u1;

J6μ ≈ −
z1k1ϵ1

2ðk2κ2Þðk1κ1Þ
ū2ϵ̂2ðk̂2 þ κ̂2Þγμu1;

JBH1μα ðk1; κ1Þ ≈ −
z1k1α
k1κ1

ū2γμu1: ð22Þ

The convolution of the sum Mll
1 þMll

6 with Mlh
2

contains the infrared divergence,

ðMll
1 þMll

6 ÞM
lh†
2 þMlh

2 ðMll
1 þMll

6 Þ†

¼ 4πα
ð1 − z1Þκ1k1

M2
1γðz1k1; k2; κ2Þ; ð23Þ

at z1 → 1, while the convolution of this sum with Mlh
1 ,

ðMll
1 þMll

6 ÞM
lh†
1 þMlh

1 ðMll
1 þMll

6 Þ†

¼ 4παð1 − z1Þ
z1κ1k1

M2
1γðz1k1; k2; κ2Þ; ð24Þ

does not.

k1

κ1
κ2

k2

p p ,

(a) (b) (c)

(d) (e)

FIG. 2. Feynman graphs with two real photons in the final state:
both photons produced by leptons (a), (b), and (c) and by leptons
and hadrons (d) and (e).
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canceled by adding the contribution of loops and soft
photon emission [8] represented by the Feynman graphs in
Figs. 4(a)–4(h) and 4(k). The result for the infrared free
contribution is

α
π
ðδinf þ δfinÞσ1γ þ σFs þ σFp þ σadd; ð33Þ

where

δfin ¼
L
4
(zm1 ð2þ zm1 Þ þ zm2 ð2þ zm2 Þ);

δinf ¼ L( logð1 − zm1 Þ þ logð1 − zm2 Þ) ð34Þ

and

σFs ¼ αL
2π

Z1

zm1

dz1
1þ z21
1 − z1

(Ksðz1Þσ1γðz1Þ − σ1γ);

σFp ¼ αL
2π

Z1

zm2

dz2
1þ z22
1 − z2

(Kpðz2Þσ1γðz2Þ − σ1γ): ð35Þ

The experimental cuts on missing mass squared V2
cut or

maximal photon energy can be incorporated by the follow-
ing replacements:

Ks;pðz1;2Þ → θðz1;2 − zc1;2ÞKs;pðz1;2Þ: ð36Þ

Here zc1;2 reflect the restrictions on the energy of the hard
photon or missing mass squared. The relation between
these variables are given in Eq. (A6) of the Appendix.
The total lowest order RC is

σRC ¼ α
π
ðδvac þ δinf þ δfinÞσ1γ þ σFs þ σFp þ σadd: ð37Þ

Here δvac reflects the contribution of vacuum polarization,
i.e., the Feynman graphs in Figs. 4(i), 4(j), and 4(l).
Specifically, ΠðtÞ ¼ α=ð2πÞδvac and δvac is the contribution
of vacuum polarization by leptons and hadrons calculated as
in [12] [see Eq. (21) and discussion before Eq. (20)].
Formally, the expression for the observed cross section
coincides with the cross section for the BH process obtained
in [9] [expression (48)]. The higher order corrections can be
included in the style of (51) or (52) of Ref. [9].
The behavior of the cross section for t close to kinematical

bounds (i.e., in the region where t ∼ t1 and t ∼ t2) deserves
special attention. The quantity δinf in (34) becomes infinite
when t → t1 or t → t2. In this limit zm1 ¼ 1 and zm2 ¼ 1. The
source of the occurrence of the divergence is known [13].
The divergence is canceled by taking into account multiple
soft photon emission. We follow the so-called exponentia-
tion procedure suggested in [14]:

!
1þ α

π
ðδvac þ δinf þ δfinÞ

"

→ exp
#
α
π
δinf

$!
1þ α

π
ðδvac þ δfinÞ

"
; ð38Þ

such that the observed cross section becomes

σobs ¼ exp
#
α
π
δinf

$#
1þ α

π
ðδvac þ δfinÞ

$
σ1γ

þ σFs þ σFp þ σadd: ð39Þ

After this procedure the observed cross section vanishes at
the kinematical bounds on t.
This result allows us to construct a Monte Carlo generator

of the eventswith one or two photons in the final state. Such a
generator is reasonable to construct for the total cross section
that contains three contributions coming from a pure BH
process (BH amplitude squared), pure DVCS process
(DVCS amplitude squared), and the interference between
BH and DVCS amplitudes. RC given by Eqs. (28)–(35) and
(A1) is applicable for the interference term and pure BH
process [9]. The derived formulas are also applicable for pure
DVCS contribution, so, alternatively, the pure DVCS term
can be optionally included in event generation. Although the
result for the pure DVCS contribution is not proved, we can
provide some arguments why the formulas are valid for this
contribution aswell. The amplitudes contributed to theRC to
the pure DVCS cross section include one photon radiated by
leptons and one photon radiated by hadrons: the standard
leading log in the case of one photon was calculated many
times resulting in the same z1;2-dependent coefficient exactly
as in (28) and the remaining coefficients came from two-
photon phase space parametrization.
To have an opportunity to simulate the specific contri-

butions we must represent the observed cross section as a
sum of positively definite contributions. Because of the last
terms in (35), i.e., the terms containing σ1γ, the contribu-
tions σFs;p are not positively definite. These terms can be
decomposed using

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIG. 4. The one-loop Feynman graphs for the BH (a-h) and
DVCS (k) amplitudes containing the infrared divergence and the
graphs for the vacuum polarization (i), (j), and (l).
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Figure 3-10: The next order Feynman diagrams related to RC calculations. The
original image was imported from [180].

Secondly, it really generates the radiative photons at 𝑠-peak or 𝑝-peak. Especially,

the 𝑝-peak photon can affect the reconstruction quality of 𝑒′. Lastly, the extracted

cross section must be RC corrected to the Born cross section and compared with the

theoretical calculation. The RC factor 𝐹𝑟𝑎𝑑 is defined as 𝑑𝜎𝑜𝑏𝑠.

𝑑𝜎𝐵𝑜𝑟𝑛
[181], where 𝑑𝜎𝑜𝑏𝑠. is

the observed cross section and 𝑑𝜎𝐵𝑜𝑟𝑛 is the tree-level cross section.

The dvcsgen and aao_gen generators stochastically generate the radiative soft

photons 𝛾′ at 𝑠-peak and 𝑝-peak. The event without the soft photon is dubbed as

the “nonradiated” event. The partial cross section for the nonradiated event is not

the same with 𝑑𝜎𝐵𝑜𝑟𝑛 due to the virtual correction. The differential cross section and

RC factor at specific (𝑥𝐵, 𝑄2, −𝑡, 𝜑) can be calculated using dvcsgen with or without

performing event generation.

3.6.1 Monte Carlo Estimators

The extracted cross section data will be compared with the theoretical prediction at

the fixed kinematics. The experimentally determined cross section is the integrated

cross section in the bin. The mean value theorem for integrals states that there can

exist a kinematics within the bin volume that has

𝑑𝜎((𝑥𝐵)*, (𝑄2)*, (−𝑡)*, (𝜑)*) =< 𝑑𝜎(𝑥𝐵, 𝑄
2,−𝑡, 𝜑) > |𝑏𝑖𝑛 . (3.31)
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However, it does not provide the specific values of ((𝑥𝐵)*, (𝑄2)*, (−𝑡)*, (𝜑)*). Tra-

ditionally, the RC factors are calculated within the bin, which contributes another

uncertainty when performing the corrections for the binned data. The Monte Carlo

Estimator (Horvitz–Thompson estimator) 𝐹𝑁 , which is defined for estimating the in-

tegration
∫︀
𝑑𝐴𝑓(𝑥𝐵, 𝑄

2,−𝑡, 𝜑) using the MC sample, is defined as follows [182, 183].

𝐹𝑁 =
1

𝑁

𝑁∑︁

𝑖=1

𝑓(𝑥𝐵, 𝑄
2,−𝑡, 𝜑)

𝑝(𝑥𝐵, 𝑄2,−𝑡, 𝜑)
. (3.32)

The subscript 𝑁 is to denote the number of samples in the MC data set. The mean

value of 𝐹𝑁 is the estimator for the integration, i.e.,

< 𝐹𝑁 >=𝐸

[︃
1

𝑁

𝑁∑︁

𝑖=1

𝑓(𝑥𝐵, 𝑄
2,−𝑡, 𝜑)

𝑝(𝑥𝐵, 𝑄2,−𝑡, 𝜑)

]︃
∼

∫︁
𝑑𝐴𝑓(𝑥𝐵, 𝑄

2,−𝑡, 𝜑). (3.33)

The differential volume 𝑑𝐴 is given as 𝑑𝑥𝐵𝑑𝑄2𝑑(−𝑡)𝑑𝜑. In this analysis, the PDF

𝑝(𝑥𝐵, 𝑄
2,−𝑡, 𝜑) is unknown, but is proportional to 𝑑𝜎𝑀𝐶,𝑜𝑏𝑠.(𝑥𝐵, 𝑄

2,−𝑡, 𝜑).

𝑝(𝑥𝐵, 𝑄
2,−𝑡, 𝜑) =

𝑑𝜎𝑀𝐶,𝑜𝑏𝑠.

𝑑𝑥𝐵𝑑𝑄2𝑑|𝑡|𝑑𝜑(𝑥𝐵, 𝑄
2,−𝑡, 𝜑)

∫︀
𝑑𝐴

𝑑𝜎𝑀𝐶,𝑜𝑏𝑠.

𝑑𝑥𝐵𝑑𝑄2𝑑|𝑡|𝑑𝜑(𝑥𝐵, 𝑄2,−𝑡, 𝜑)
. (3.34)

The average of the variable 𝑘 is

< 𝑘 >=

∫︁
𝑑𝐴𝑝(𝑥𝐵, 𝑄

2,−𝑡, 𝜑)𝑘 =

∫︀
𝑑𝐴

𝑑𝜎𝑀𝐶,𝑜𝑏𝑠.

𝑑𝑥𝐵𝑑𝑄2𝑑|𝑡|𝑑𝜑(𝑥𝐵, 𝑄
2,−𝑡, 𝜑)𝑘

∫︀
𝑑𝐴

𝑑𝜎𝑀𝐶,𝑜𝑏𝑠.

𝑑𝑥𝐵𝑑𝑄2𝑑|𝑡|𝑑𝜑(𝑥𝐵, 𝑄2,−𝑡, 𝜑)
. (3.35)

Each integration in the eqn. 3.35 can be estimated by eqn. 3.33, and eqn. 3.35 is

reduced to

< 𝑘 >=
𝑁∑︁

𝑖=1

𝑘𝑖/𝑁 +𝑂(1/
√
𝑁). (3.36)
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The average weight (cross section) 𝑑𝜎 is

𝑑𝜎 =

∫︀
𝑑𝐴

𝑑𝜎𝑀𝐶,𝑜𝑏𝑠.

𝑑𝑥𝐵𝑑𝑄2𝑑|𝑡|𝑑𝜑(𝑥𝐵, 𝑄
2,−𝑡, 𝜑)

∫︀
𝑑𝐴

(3.37)

=𝑁/

[︃
𝑁∑︁

𝑖=1

1/
𝑑𝜎𝑀𝐶,𝑜𝑏𝑠.

𝑑𝑥𝐵𝑑𝑄2𝑑|𝑡|𝑑𝜑 𝑖

]︃
. (3.38)

The estimation of the Born cross section is,

𝑑𝜎

𝑑𝑥𝐵𝑑𝑄2𝑑|𝑡|𝑑𝜑 =
𝑁(𝑒′𝑝′𝛾)𝑒

′𝑝′𝛾
exp. −𝑁(𝑒′𝑝′𝛾)DV𝜋0P

sim.

𝐴𝑐𝑐.× 𝐹𝑟𝑎𝑑 × 𝐹𝑏𝑖𝑛 × 𝐹𝑒𝑓𝑓. × 𝐿
, (3.39)

where the last correction 𝐹𝑏𝑖𝑛 is introduced for the finite bin size correction to con-

vert the average cross section (observed) to the cross section at fixed kinematics.

The global efficiency 𝐹𝑒𝑓𝑓. is the detector performance compared to that determined

in the simulation using GEANT4. The integrated luminosity 𝐿 can be estimated

by the Faraday cup data. The radiative corrections and the finite bin size cor-

rections have been done independently. We take advantage of the dvcsgen that

saves the observed cross section 𝑑𝜎𝑀𝐶,𝑜𝑏𝑠.

𝑑𝑥𝐵𝑑𝑄2𝑑|𝑡|𝑑𝜑(𝑥𝐵, 𝑄
2,−𝑡, 𝜑), and the Born cross sec-

tion 𝑑𝜎𝑀𝐶,𝐵𝑜𝑟𝑛

𝑑𝑥𝐵𝑑𝑄2𝑑|𝑡|𝑑𝜑(𝑥𝐵, 𝑄
2,−𝑡, 𝜑) at the same time. In principle,

𝐹𝑟𝑎𝑑 =
𝑑𝜎𝑜𝑏𝑠.

𝑑𝜎𝐵𝑜𝑟𝑛.

(3.40)

𝐹𝑏𝑖𝑛 =
𝑑𝜎𝐵𝑜𝑟𝑛.

𝑑𝜎𝐵𝑜𝑟𝑛.(< 𝑥𝐵 >,< 𝑄2 >,< −𝑡 >, 𝜑)
(3.41)

𝐹𝑟𝑎𝑑 × 𝐹𝑏𝑖𝑛 =
𝑑𝜎𝑜𝑏𝑠.

𝑑𝜎𝐵𝑜𝑟𝑛.(< 𝑥𝐵 >,< 𝑄2 >,< −𝑡 >, 𝜑)
. (3.42)

It is important to have a good estimate of 𝑑𝜎𝑀𝐶,𝑜𝑏𝑠.

𝑑𝑥𝐵𝑑𝑄2𝑑|𝑡|𝑑𝜑(𝑥𝐵, 𝑄
2,−𝑡, 𝜑) in the event

generator to minimize the bias from choosing an unrealistic model.
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Chapter 4

Data Post-Processing

In this chapter, we describe the post-processing of the data based on the simulation.

We first corrected the energy loss of the proton using the simulation data. After

applying the proton loss corrections to the experimental data and the simulation, we

reduced the reconstruction bias by correcting the single particle kinematics in the

experimental data. To match the resolution, the kinematics of the simulated data

was smeared.

4.1 Energy Loss Correction for Charged Particles

A charged particle loses its energy through its passage through material via ionization

and radiation [1]. This causes an underestimation of the individual charged parti-

cle energy, a shift in the polar angle, and further affects the event selection on the

exclusive channels.

We followed convention to define the deviation 𝛿 as the reconstructed value sub-

tracted from the generated, or the true value, i.e. 𝛿𝑝 ≡ 𝑝𝑔𝑒𝑛. − 𝑝𝑟𝑒𝑐.. In this way,

we could simply add 𝛿 values to the original reconstructed values, i.e. the corrected

momentum is simply, 𝑝𝑟𝑒𝑐. + 𝛿𝑝. The configuration used for the simulation is rga

fall 2018 for both gemc and reconstruction. The polarity was defined over the elec-

tron trajectory so that the inbending and the outbending corresponded to a toroidal

magnetic field of -100% and +100% respectively. Also, if not denoted, 𝑝 means the
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reconstructed momentum.

4.1.1 Electron Energy Loss

The deviation of electron momentum variable due to energy loss is smaller and more

centered than that for the proton energy loss. Thus, we focus on the proton energy

loss. The distributions of variables of the electrons are presented below.
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Figure 4-1: The distributions of reconstructed momenta from the generated momenta
𝛿𝑝 vs. the reconstructed momentum 𝑝 of the electrons for the inbending polarity. Each
panel corresponds to electrons in the selected polar angle range, which is specified in
each title.
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Figure 4-2: The distributions of reconstructed momenta from the generated momenta
𝛿𝑝′𝑠 vs. the reconstructed momentum 𝑝’s of the electrons for the outbending polarity.
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Figure 4-3: The distributions of reconstructed polar angles from the generated po-
lar angles 𝛿𝜃’s vs. the reconstructed momenta 𝑝’s of the electrons for the inbending
polarity.
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Figure 4-4: The distributions of reconstructed polar angle from the generated po-
lar angle 𝛿𝜃 vs. the reconstructed momenta 𝑝’s of the electrons for the outbending
polarity.
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Figure 4-5: The distributions of reconstructed azimuthal angle from the generated
azimuthal angle 𝛿𝜑’s vs. the reconstructed momenta 𝑝’s of the electrons for the in-
bending polarity.
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Figure 4-6: The distributions of reconstructed azimuthal angle from the generated
azimuthal angle 𝛿𝜑’s vs. the reconstructed momenta 𝑝’s of the electrons for the out-
bending polarity.
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4.1.2 Detector Regions for Proton Energy Loss Correction

The proton energy loss can be effectively characterized by the reconstructed momen-

tum, polar angle and azimuthal angle. This is because proton energy loss depends

on its trajectories. As the protons are independently reconstructed in FD and CD,

the proton data set is firstly divided into the FD and CD protons for the energy loss

correction. The FD protons are further divided into two categories. The outer tra-

jectories penetrate the CVT material, which is thicker than for the case of the inner

trajectories. This results in the ambiguous overlap of two bands at 𝛿𝑝− 𝑝 for the FD

protons as shown in the Fig. 4-7-a. The two bands will be called the upper and lower

band, where the upper band has the higher 𝛿𝑝 values at the low 𝑝 region.
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Figure 4-7: The distributions of reconstructed momenta from the generated momenta
𝛿𝑝’s vs. the reconstructed momenta 𝑝’s of the protons in all polarity configurations.
The protons can be reconstructed from the forward detector hits in (a) the inbending
polarity and (b) the outbending polarity, and from the central detector hits in the (c)
inbending polarity, and the (d) outbending polarity.

The simulation data points (𝑝, 𝛿𝑝) at 𝛿𝑝− 𝑝 plane are roughly split by the curve

𝛿𝑝 = 0.088
𝑝1.5𝑟𝑒𝑐.

for the FD protons. This type of classification is presented in Fig. 4-8. The

top and bottom row plots in Fig. 4-8 show the upper and lower band respectively.

This curve is not retrieved at the experimental data set as 𝑝𝑔𝑒𝑛. is not accessible, and

neither is 𝛿𝑝. Each band raises the possibility that they are alternatively separated

by either 𝜃𝑟𝑒𝑐., or by the local hit position, 𝜃DC,region1. The fundamental reason that

these bands appear is that the tracks lose energy in the CVT (See Section 4.1.3).

Thus, it is more reasonable to use the most sensitive detector to CVT energy loss,
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i.e., DC region 1, the closest to the central detector. The following condition is used

to make a separation by 𝜃DC,region1 presented in Fig. 4-9.

𝜃DC,region1

⎧
⎪⎨
⎪⎩
< −53.1468 + 79.6131 × (𝑝− 0.3)0.05739 (lower band)

≥ −53.1468 + 79.6131 × (𝑝− 0.3)0.05739 (upper band) ,
(4.1)

where 𝜃DC,region1 is defined by tan−1(
√

𝑥2+𝑦2

𝑧
) in degrees, and 𝑥, 𝑦, 𝑧 are the hit posi-

tions of the DC 1 (layer 6).
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Figure 4-8: The plots in the first column: 𝛿𝑝 vs. 𝑝, the middle column: 𝜃DC,region1 vs.
𝑝, and the last column: 𝜃𝑟𝑒𝑐. vs. 𝑝. The top row plots are from the lower band and
the bottom row plots are from the upper band where the band is defined over the
curve in 𝛿𝑝 vs. 𝑝 plot.
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Figure 4-9: The plots in the first column: 𝛿𝑝 vs. 𝑝, the middle column: 𝜃DC,region1 vs.
𝑝, and the last column: 𝜃𝑟𝑒𝑐. vs. 𝑝. The top row plots are from the lower band and
the bottom row plots are from the upper band where the band is defined over the
curve in 𝜃DC,region1 vs. 𝑝 plot.

4.1.3 Details of the Two-Band Issue

A follow-up study has been performed with the aim of understanding the reason

for the two reconstruction bands appear. From Fig. 4-9, the differences in 𝛿𝑝 can

originate either from the differences in the energy loss in material thickness or from

the reconstruction bias. The configuration files used for the GEMC [176] called the

gcards have been set up for each experimental configuration [184]. Each detector

component like the CVT is encoded in the gcards as an xml format. By deleting the

correponding lines, the interested detector can be removed in the geant4 simulation.

A simulation of 500 MeV/c momentum protons, where the band issue is the most

prominent, has been carried out in the forward detector region for inbending polarity.

The possible origins of the two bands in the central detectors are selectively turned

on and off. They include the CTOF, CND, CVT. In conclusion, removing CTOF

or CND did not produce any significant changes from the reference result. However,

removing CVT resolved the two band issue. This effect is a sum of energy loss from

the BMT and the SVT (Fig. 4-10).
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Another possibility is that the bands can be due to a reconstruction bias. This

was studied by removing the central detector in a yaml file, another configuration file

for the CLARA, reconstruction software suite [177]. It was found that there was no

difference from the reference.
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Figure 4-10: The distributions of reconstructed polar angle from the generated polar
angle 𝛿𝜃’s vs. the reconstructed momenta 𝑝’s of the protons for inbending polarity
for the various detector configurations (see each plot’s title). The top left corner,
which is the reproduced rga fall 2018 configuration as a reference has three broad
regions. The flat band near the polar angle 20∘ and 0.02 GeV/c is the lower band of
Fig. 4-7. Then, the upper band appears at around 0.05 GeV/c at higher polar angle.
The vertical shape around 40∘ results from the protons reconstructed at the central
detectors, which does not show when the CTOF or CVT is not present.

4.1.4 Proton Energy Loss Correction

The correction procedure consists of roughly three steps: (a) fitting the deviations

for the data in a certain polar angle range with specific functions, (b) fitting the

coefficients with regard to the polar angle, (c) applying corrections with the fitted

coefficients for the quality assessment. The examples of (a), (b), and (c) are presented

in Fig. 4-11 for the protons reconstructed in the lower band of the inbending polarity,
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Figure 4-11: The procedures of correction: (a) fitting the proton momentum deviation
of each polar angle range, (b) fitting the coefficients w.r.t. the polar angle, and (c)
applying the coefficients fitted in the step (b).

forward detector. The functional forms of correction models are as follows.

𝑝new =𝑝+ 𝐴𝑝 +𝐵𝑝/𝑝 (4.2)

𝜃new =

⎧
⎪⎨
⎪⎩
𝜃 + 𝐴𝜃 +𝐵𝜃 × exp(𝐶𝜃𝑝)

𝜃 +𝐷𝜃 + 𝐸𝜃/𝑝
2

(4.3)

𝜑new =

⎧
⎪⎨
⎪⎩
𝜑+ 𝐴𝜑 +𝐵𝜑 × exp(𝐶𝜑𝑝)

𝜑+𝐷𝜑 + 𝐸𝜑/𝑝
2.

(4.4)
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The momentum variables with the subscript ‘new’ are the result of the energy loss

corrections. Note that the polar angle and azimuthal angle can have different func-

tions in some cases. The distinctive symbols are used to differentiate the function

forms. i.e., if 𝐷𝜑, 𝐸𝜑 are used, eqn. 4.4 is used. The rest of this subsection lays out

each coefficient as a function of (𝑝, 𝜃). The decimals are truncated for simplicity.

Similar plots to the electron corrections in Section 4.1.1 are presented with correction

results in dotted curves. Captions are simplified to improve readability.

1. The FD protons in the lower band were corrected with the following coefficients

for the inbending polarity. The correction of momentum, polar angle, azimuthal an-

gles can be found in Figs. 4-11-c, 4-12 and 4-15. The fitting results in Fig. 4-11-b

were reproduced with the latest simulation data set that was analyzed in Chapter 5.

The fitted results are slightly different from eqns. 4.5–4.6 that had been studied with

the simulation data set. The existing fitting results introduced in this section were

applied to the data sets used for the analysis since the differences were minor.

𝐴𝑝 = − 5.19×10−4 − 1.81×10−4 × 𝜃 (4.5)

𝐵𝑝 =3.29×10−3 + 5.74×10−4 × 𝜃 − 1.41×10−5 × 𝜃2 (4.6)

𝐷𝜃 = − 1.67×10−1 + 6.98×10−3×𝜃 (4.7)

𝐸𝜃 =2.34×10−1 − 1.34×10−2×𝜃 (4.8)

𝐷𝜑 =2.12×10−1 − 1.15×10−2×𝜃 (4.9)

𝐸𝜑 = − 8.94×10−1 + 1.66×10−1×𝜃 − 8.91×10−3×𝜃2 + 1.65×10−4×𝜃3. (4.10)

2. The FD protons in the upper band were corrected with the following coefficients for

the inbending polarity. The corresponding correction plots can be found in Figs. 4-

14–4-16.
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𝐴𝑝 = − 3.03×10−1 + 1.83×10−2×𝜃 − 2.86×10−4×𝜃2 (4.11)

𝐵𝑝 =2.01×10−1 − 1.13×10−2×𝜃 + 1.82×10−4×𝜃2. (4.12)

𝐷𝜃 =2.04×10 − 1.81×𝜃 + 5.33×10−2×𝜃2 − 5.23×10−4×𝜃3 (4.13)

𝐸𝜃 =8.74 − 7.64×10−1×𝜃 + 2.22×10−2×𝜃2 − 2.16×10−4×𝜃3 (4.14)

𝐴𝜑 =5.47×10−1 − 4.90×10−2×𝜃 + 1.11×10−3×𝜃2 (4.15)

𝐵𝜑 = − 4.07×102 + 2.44×10×𝜃 − 3.36×10−1×𝜃2 (4.16)

𝐶𝜑 =2.06×10 − 1.43×𝜃 + 2.01×10−2×𝜃2. (4.17)

3. The CD protons were corrected with the following coefficients for the inbending

polarity. The corresponding correction plots can be found in Figs. 4-17–4-19.

𝐴𝑝 =1.94 − 1.16×10−1×𝜃 + 2.24×10−3×𝜃2 − 1.41×10−5 × 𝜃3 (4.18)

𝐵𝑝 = − 7.38×10−1 + 4.43×10−2 × 𝜃 − 8.51×10−4×𝜃2 + 5.37×10−6×𝜃3 (4.19)

𝐴𝜃 = − 1.10×102 + 8.87×𝜃 − 0.27 × 𝜃2 + 3.54×10−3×𝜃3 − 1.75×10−5×𝜃4 (4.20)

𝐵𝜃 =9.52×102 − 5.75×10×𝜃 + 1.15×𝜃2 − 7.58×10−3×𝜃3 (4.21)

𝐶𝜃 = − 2.00×102 + 1.19×10×𝜃 − 2.38×10−1×𝜃2 + 1.55×10−3 × 𝜃3 (4.22)

𝐴𝜑 =4.95 − 3.27×10−1×𝜃 + 7.39×10−3×𝜃2 − 6.84×10−5×𝜃3 + 2.12×10−7×𝜃4 (4.23)

𝐵𝜑 =1.72×105 − 1.37×104×𝜃 + 4.01×102×𝜃2 − 5.13×𝜃3 + 2.42×10−2×𝜃4 (4.24)

𝐶𝜑 =1.20×102 − 5.87×𝜃 + 7.44×10−2×𝜃2 − 2.43×10−4×𝜃3. (4.25)

4. The FD protons in the lower band were corrected with the following coefficients

for the outbending polarity. The corresponding correction plots can be found in
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Figs. 4-20–4-22.

𝐴𝑝 =5.08×10−2 − 4.70×10−3×𝜃 + 1.08×10−4×𝜃2 (4.26)

𝐵𝑝 = − 1.47×10−2 + 1.58×10−3×𝜃 − 3.19×10−5×𝜃2 (4.27)

𝐷𝜃 = − 2.56×10 + 3.30×𝜃 − 1.43×10−1×𝜃2 + 2.08×10−3×𝜃3 (4.28)

𝐸𝜃 =9.13×10 − 1.20×10×𝜃 + 5.28×10−1×𝜃2 − 7.73×10−3×𝜃3 (4.29)

𝐷𝜑 = − 2.05×10 + 1.67×𝜃 − 3.42×10−2×𝜃2 (4.30)

𝐸𝜑 =3.50×10 − 2.91×𝜃 + 6.04×10−2×𝜃2. (4.31)

5. The FD protons in the upper band were corrected with the following coefficients

for the outbending polarity. The corresponding correction plots can be found in

Figs. 4-23–4-25.

𝐴𝑝 =9.83×10−2 − 6.65×10−3×𝜃 + 1.03×10−4×𝜃2 (4.32)

𝐵𝑝 = − 9.61×10−2 + 6.86×10−3×𝜃 − 9.76×10−5×𝜃2 (4.33)

𝐷𝜃 = − 1.69 + 9.57×10−2×𝜃 − 1.44×10−3×𝜃2 (4.34)

𝐸𝜃 =1.50×10 − 1.40×𝜃 + 4.39×10−2×𝜃2 − 4.58×10−4×𝜃3 (4.35)

𝐷𝜑 =6.75 − 4.3×10−1×𝜃 + 6.90×10−3×𝜃2 (4.36)

𝐸𝜑 = − 1.69 + 1.06×10−1×𝜃 − 1.50×10−3×𝜃2. (4.37)
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6. The CD protons were corrected with the following coefficients for the outbending

polarity. The corresponding correction plots can be found in Figs. 4-26–4-28.

𝐴𝑝 =1.93 − 1.14×10−1×𝜃 + 2.15×10−3×𝜃2 − 1.33×10−5×𝜃3 (4.38)

𝐵𝑝 = − 7.56×10−1 + 4.46×10−2×𝜃 − 8.38×10−4×𝜃×𝜃 + 5.17×10−6×𝜃3 (4.39)

𝐴𝜃 = − 5.79×10 + 4.67×𝜃 − 0.14×𝜃2 + 1.86×10−3×𝜃3 − 9.20×10−6×𝜃4 (4.40)

𝐵𝜃 =3.00×103 − 2.18×102×𝜃 + 5.85×𝜃2 − 6.80×10−2×𝜃3 + 2.89×10−4×𝜃4 (4.41)

𝐶𝜃 = − 1.82×102 + 1.10×10×𝜃 − 2.25×10−1×𝜃2 + 1.49×10−3 × 𝜃3 (4.42)

𝐴𝜑 =7.59 − 5.28×10−1×𝜃 + 1.32×10−2×𝜃2 − 1.42×10−4×𝜃3 + 5.63×10−7×𝜃4 (4.43)

𝐵𝜑 =1.08×105 − 8.68×103×𝜃 + 2.57×102×𝜃2 − 3.31×𝜃3 + 1.57×10−2×𝜃4 (4.44)

𝐶𝜑 =1.92×102 − 1.01×10×𝜃 + 1.57×10−1×𝜃2 − 7.71×10−4×𝜃3 (4.45)
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Figure 4-12: The 𝛿𝜃 vs. 𝑝’s of protons for the inbending polarity, lower band of FD,
in the selected polar angle ranges described in each title.
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Figure 4-13: The 𝛿𝜑 vs. 𝑝 of protons for the inbending polarity, lower band of FD, in
the selected polar angle ranges described in each title.
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Figure 4-14: The 𝛿𝑝 vs. 𝑝 of protons for the inbending polarity, upper band of FD, in
the selected polar angle ranges described in each title.
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Figure 4-15: The 𝛿𝜃 vs. 𝑝 of protons for the inbending polarity, upper band of FD, in
the selected polar angle ranges described in each title.

92



0 1 2
p [GeV/c]

−10

−5

0

5

10

δφ
[◦

]

23◦ ≤ θrec. < 25◦

0 1 2
p [GeV/c]

−10

−5

0

5

10

δφ
[◦

]

25◦ ≤ θrec. < 27◦

0 1 2
p [GeV/c]

−10

−5

0

5

10

δφ
[◦

]

27◦ ≤ θrec. < 29◦

0 1 2
p [GeV/c]

−10

−5

0

5

10

δφ
[◦

]

29◦ ≤ θrec. < 31◦

0 1 2
p [GeV/c]

−10

−5

0

5

10

δφ
[◦

]

31◦ ≤ θrec. < 33◦

0 1 2
p [GeV/c]

−10

−5

0

5

10
δφ

[◦
]

33◦ ≤ θrec. < 35◦

0 1 2
p [GeV/c]

−10

−5

0

5

10

δφ
[◦

]

35◦ ≤ θrec. < 37◦

0 1 2
p [GeV/c]

−10

−5

0

5

10

δφ
[◦

]

37◦ ≤ θrec. < 39◦

0 1 2
p [GeV/c]

−10

−5

0

5

10

δφ
[◦

]

39◦ ≤ θrec. < 41◦

0 1 2
p [GeV/c]

−10

−5

0

5

10

δφ
[◦

]

41◦ ≤ θrec. < 43◦

1

10

102

3×102

1

10

102

3×102

1

10

102

3×102

1

10

102

3×102

1

10

102

3×102

1

10

102

3×102

1

10

102

3×102

1

10

102

3×102

1

10

102

3×102

1

10

102

3×102

Figure 4-16: The 𝛿𝜑 vs. 𝑝’s of protons for the inbending polarity, upper band of FD
in the selected polar angle ranges described in each title.
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Figure 4-17: The 𝛿𝑝 vs. 𝑝 of protons for the inbending polarity, CD, in the selected
polar angle ranges described in each title.
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Figure 4-18: The 𝛿𝜃 vs. 𝑝 of protons for the inbending polarity, CD, in the selected
polar angle ranges described in each title.
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Figure 4-19: The 𝛿𝜑 vs. 𝑝’s of protons for the inbending polarity, CD in the selected
polar angle ranges described in each title.
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Figure 4-20: The 𝛿𝑝 vs. 𝑝’s of protons for the outbending polarity, lower band of FD,
in the selected polar angle ranges described in each title.
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Figure 4-21: The 𝛿𝜃 vs. 𝑝’s of protons for the outbending polarity, lower band of FD,
in the selected polar angle ranges described in each title.
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Figure 4-22: The 𝛿𝜑 vs. 𝑝’s of protons for the outbending polarity, lower band of FD,
in the selected polar angle ranges described in each title.
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Figure 4-23: The 𝛿𝑝 vs. 𝑝’s of protons for the outbending polarity, upper band of FD,
in the selected polar angle ranges described in each title.
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Figure 4-24: The 𝛿𝜃 vs. 𝑝’s of protons for the outbending polarity, upper band of FD,
in the selected polar angle ranges described in each title.
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Figure 4-25: The 𝛿𝜑 vs. 𝑝’s of protons for the outbending polarity, upper band of FD,
in the selected polar angle ranges described in each title.
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Figure 4-26: The 𝛿𝑝 vs. 𝑝 of protons for the outbending polarity, CD, in the selected
polar angle ranges described in each title.
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Figure 4-27: The 𝛿𝜃 vs. 𝑝 of protons for the outbending polarity, CD, in the selected
polar angle ranges described in each title.
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Figure 4-28: The 𝛿𝜑 vs. 𝑝’s of protons for the outbending polarity, CD in the selected
polar angle ranges described in each title.

4.1.5 Biases for Higher Momentum Protons

The proton energy loss corrections in this chapter were developed for the BH-DVCS

events that are dominated by low momentum protons of 𝑝 < 1 GeV/c. Another set

of corrections was developed independently, for the FD protons [185]. The correction

is as follows:

𝑝new = 𝑝+ exp(𝐴−𝐵 × 𝑝) + 𝐶 , (4.46)

with (𝐴,𝐵,𝐶) = (-2.739, -3.932, 2.907×10−3), (-1.2, -4.228, 7.502×10−3), (-2.739,

-3.932, 2.907×10−3), (-1.871, -3.063, 7.517×10−3) for the inbending lower band, in-

bending upper band, outbending lower band, and inbending upper band, respectively.

Even though this correction was developed for all proton momenta, we selectively take

this correction for 𝑝 > 1 GeV/c. In conclusion, we use eqn. 4.2 for FD protons with

𝑝 > 1 GeV/c.

4.1.6 Benchmarks for corrections

The benchmark plots after the corrections have been applied are shown in Fig. 4-29.

Each plot shows that the correction both improves the central position and reduces

the widths of the distributions of 𝑀𝑀2
𝑒′𝑝′ , 𝛿𝑝, 𝛿𝜃 and 𝛿𝜑.
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Figure 4-29: Benchmark plots of (a) exclusivity variables 𝑀𝑀2
𝑒′𝑝′ (4 plots of top left),

(b) momentum (𝛿𝑝) (4 plots of top right), (c) polar angle (𝛿𝜃) (4 plots of bottom
left), and (d) azimuthal angle (𝛿𝜑) (4 plots of bottom right). The red and blue curves
show the variables before and after the corrections respectively.
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4.2 Resolution Matching

The detector responses in the GEMC simulation are designed to reflect the nominal

resolutions, rather conservatively. If the distributions of kinematic variables in the

simulation were wider than the experimental data in some part of phase space, it

would be difficult to deconvolute the smearing effect. As the CLAS12 experiment is

in its early stage, work is underway to reduce the reconstruction bias and to improve

the detector resolution matching. In this analysis, we use the post-processing of

the reconstructed data by smearing the reconstructed momentum variables using

the gaussian kernels, and correct the experimental momentum variables with simple

models.

This section describes three categories: kinematic correction of experimental data,

smearing of simulation data and final level event selection. The three steps are con-

voluted; they were updated concurrently and iteratively.

4.2.1 Kinematics Correction of Experimental Data

We performed the correction of the kinematics of 𝑝′ and 𝛾 as follows and assumed

the proton energy loss correction was already applied. In this section 𝑝𝑝′ , 𝜃𝑝′ , 𝑝𝛾, 𝜃𝛾
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denotes the corrected momentum.

𝑝𝑝′ =𝑝𝑝′ +

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0.01 (CD)

0 (FD, Inb.)

−0.02 (FD, Outb.)

(4.47)

𝜃𝑝′ =𝜃𝑝′ +

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−2.13×10−3𝜃2𝑝′ + 1.98×10−1𝜃𝑝′ − 4.76 − 0.2
(1+exp(−20(𝑝𝑝′−0.55))

(CD)

min(1.671𝑝3𝑝′ − 4.918𝑝2𝑝′ + 5.151𝑝𝑝′ − 2.434, 0) (FD, Inb.)

max(0.1(𝜃𝑝′ − 27∘), 0) (FD, Outb.)

(4.48)

𝑝𝛾 =𝑝𝛾 +

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(−4.67 × 10−3𝑝2𝛾 + 8.02 × 10−2𝑝𝛾 − 0.352) + 0.25 (FT, Outb.)

𝑓(𝑝𝛾, 𝑠) (FD, Inb.)

𝑔(𝑝𝛾, 𝑠) (FD, Outb.),

(4.49)

where the functions 𝑓(𝑝𝛾, 𝑠) and 𝑔(𝑝𝛾, 𝑠) are defined as follows.

𝑓(𝑝𝛾, 𝑠) =𝑓1(𝑓2(𝑝𝛾, (𝑎2,𝑠, 𝑎1,𝑠, 𝑎0,𝑠]), [𝑏2,𝑠, 𝑏1,𝑠, 𝑏0,𝑠]) (4.50)

𝑔(𝑝𝛾, 𝑠) =𝑔1(𝑝𝛾, [𝑐2,𝑠, 𝑐1,𝑠, 𝑐0,𝑠])𝑟(𝑝𝛾) (4.51)

𝑓2(𝑥, [𝑎2,𝑠, 𝑎1,𝑠, 𝑎0,𝑠]) =

⎧
⎪⎨
⎪⎩
𝑎2,𝑠𝑝𝛾(𝑝𝛾 − 𝑎1,𝑠)

3(𝑝𝛾 − 𝑎0,𝑠) (𝑠 = 1, 2, 3, 6)

𝑎2,𝑠𝑝
3
𝛾 + 𝑎1,𝑠𝑝

2
𝛾 + 𝑎0,𝑠𝑝𝛾 (𝑠 = 4, 5)

(4.52)

𝑓1(𝑥, [𝑏2,𝑠, 𝑏1,𝑠, 𝑏0,𝑠]) =

⎧
⎪⎨
⎪⎩
𝑏2,𝑠𝑝𝛾(𝑝𝛾 − 𝑏1,𝑠)

3(𝑝𝛾 − 𝑏0,𝑠) (𝑠 = 1, 2, 3)

𝑏2,𝑠𝑝
3
𝛾 + 𝑏1,𝑠𝑝

2
𝛾 + 𝑏0,𝑠𝑝𝛾 (𝑠 = 4, 5, 6)

(4.53)

𝑔1(𝑥, [𝑐3,𝑠, 𝑐2,𝑠, 𝑐1,𝑠, 𝑐0,𝑠]) =𝑐3,𝑠𝑝
3
𝛾 + 𝑐2,𝑠𝑝

2
𝛾 + 𝑐1,𝑠𝑝𝛾 + 𝑐0,𝑠 (4.54)

𝑟(𝑝𝛾) =1/(1 + 𝑒−(𝑝𝛾−2.2)/0.15) , (4.55)

with the fitting parameters [𝑎2,𝑠, 𝑎1,𝑠, 𝑎0,𝑠], [𝑏2,𝑠, 𝑏1,𝑠, 𝑏0,𝑠], and [𝑐3,𝑠, 𝑐2,𝑠, 𝑐1,𝑠, 𝑐0,𝑠] that

are sorted at Table 4.1.
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Table 4.1: Fitting parameters 𝑎, 𝑏 and 𝑐 for each sectors that were used for kinematics
correction.

Sector 1 Sector 2 Sector 3 Sector 4 Sector 5 Sector 6
𝑎2,𝑠 -7.32×10−5 1.35×10−4 -4.37×10−5 -4.28×10−5 2.50×10−4 -4.54×10−5

𝑎1,𝑠 1.480 3.070 7.19×10−1 2.34×10−3 -3.14×10−3 5.17×10−1

𝑎0,𝑠 9.344 9.248 9.873 1.03×10−2 2.32×10−2 9.447
𝑏2,𝑠 -1.68×10−5 -3.40×10−5 -6.20×10−5 1.32×10−4 -1.35×10−4 2.63×10−4

𝑏1,𝑠 8.21×10−1 2.720 2.793 -1.62×10−3 2.82×10−4 -2.93×10−3

𝑏0,𝑠 8.894 8.419 8.865 9.78×10−3 6.50×10−3 1.39×10−2

𝑐3,𝑠 -6.15×10−4 -3.34×10−4 -9.11×10−4 1.17×10−4 -1.19×10−4 -8.93×10−4

𝑐2,𝑠 1.13×10−2 6.56×10−3 1.57×10−2 -9.05×10−4 9.79×10−4 1.31×10−2

𝑐1,𝑠 -6.00×10−2 -3.83×10−2 -8.06×10−2 2.15×10−3 -4.00×10−3 -5.80×10−2

𝑐0,𝑠 1.15×10−1 9.34×10−2 1.54×10−1 3.31×10−2 4.99×10−2 1.11×10−1

4.2.2 Smearing the Simulation Data

As discussed earlier in this chapter, it is best to have the simulation data set with

reconstructed particles, whose resolutions are the same as the experimental data set.

Failure in doing so propagates to the exclusivity variables mismatches and disturbs

the precise cross section analysis. It is ideal to adjust the lowest level detector prop-

erties to achieve resolution matching. This is a complex task for a large detector like

CLAS12 and is a work in progress. Instead, the smearing procedure was applied to the

reconstructed momentum variables to compensate for overestimated reconstruction

quality, effectively. The multiplicative and additive models were applied to momen-

tum magnitude variables and angular variables respectively. The smearing scales were

regulated by sigmoid functions, denoted by 𝑅 if needed to prevent excessive smearing

near the threshold.

𝑝𝑝′ =𝑝𝑝′ ×𝐺𝑎𝑢𝑠𝑠(1, 𝜎𝑝𝑝′ ×𝑅𝑝𝑝′
) (4.56)

𝜃𝑝′ =𝜃𝑝′ +𝐺𝑎𝑢𝑠𝑠(0, 𝜎𝜃𝑝′ ) (4.57)

𝜑𝑝′ =𝜑𝑝′ +𝐺𝑎𝑢𝑠𝑠(0, 𝜎0, 𝜑𝑝′
+ 𝜎1, 𝜑𝑝′

×𝑅𝜑𝑝′
) (4.58)

𝑝𝛾 =𝑝𝛾 ×𝐺𝑎𝑢𝑠𝑠(1, 𝜎0,𝑝𝛾 + 𝜎1,𝑝𝛾 ×𝑅𝑝𝛾 ) (4.59)
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The momentum smearing parameters of CD protons are as follows.

𝜎𝑝𝑝′ =

⎧
⎪⎨
⎪⎩

9.26×10−2𝑝3𝑝′ + 1.37×10−1𝑝2𝑝′ − 2.30×10−1𝑝𝑝′ + 1.39×10−1 (𝑝𝑝′ < 0.85)

0.1 (𝑝𝑝′ ≥ 0.85)

(4.60)

The FD proton momentum smearing parameters in eqn. 4.56 are expressed as the

following functional form for the inbending polarity.

𝜎𝑝𝑝′ =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝐴4,𝑠𝑝
4
𝑝′ + 𝐴3,𝑠𝑝

3
𝑝′ + 𝐴2,𝑠𝑝

2
𝑝′ + 𝐴1,𝑠𝑝𝑝′ + 𝐴0,𝑠 (0.55 < 𝑝𝑝′ ≤ 1.55)

𝐴4,𝑠0.554 + 𝐴3,𝑠0.553 + 𝐴2,𝑠0.552 + 𝐴1,𝑠0.55 + 𝐴0,𝑠 (𝑝𝑝′ < 0.55)

𝐴4,𝑠1.554 + 𝐴3,𝑠1.553 + 𝐴2,𝑠1.552 + 𝐴1,𝑠1.55 + 𝐴0,𝑠 (𝑝𝑝′ ≥ 1.55),

(4.61)

where each coefficient 𝐴𝑖,𝑠’s can be found in Table 4.2.

Table 4.2: Smearing parameters 𝐴4,𝑠, 𝐴3,𝑠, 𝐴2,𝑠, 𝐴1,𝑠 and 𝐴0,𝑠 for each sectors.
Sector 1 Sector 2 Sector 3 Sector 4 Sector 5 Sector 6

𝐴4,𝑠 -0.233 0.277 0.0728 -0.204 0.277 -0.219
𝐴3,𝑠 1.216 -1.366 -0.223 0.977 -1.059 1.132
𝐴2,𝑠 -2.279 2.318 0.0888 -1.766 1.362 -2.153
𝐴1,𝑠 1.812 -1.619 0.225 1.411 -0.641 1.763
𝐴0,𝑠 -0.445 0.466 -0.0889 -0.342 0.1377 -0.447

The FD proton momentum smearing parameters in eqn. 4.56 for the outbending

polarity are as follows.

𝜎𝑝𝑝′ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.1 (𝑝𝑝′ < 0.95)

0.045(1.2 − 𝑥)/(1.2 − 0.95) + 0.055 (0.95 ≤ 𝑝𝑝′ < 1.2)

0.055 (1.2 ≤ 𝑝𝑝′ < 1.575)

0.015(1.9 − 𝑥)/(1.9 − 1.575) + 0.04 (1.575 ≤ 𝑝𝑝′ < 1.9)

0.04 (𝑝𝑝′ ≥ 1.9).

(4.62)
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The CD proton angular variables were smeared with the following factors and additive

model (eqns. 4.57 and 4.58).

𝜎𝜃𝑝′ =

⎧
⎪⎨
⎪⎩
−2.797𝑝3𝑝′ + 9.351𝑝2𝑝′ − 9.488𝑝𝑝′ + 3.503 (𝑝𝑝′ < 1.34 GeV/c)

0.85 (𝑝𝑝′ ≥ 1.34 GeV/c)
(4.63)

𝜎0,𝜑𝑝′
=0.8 (4.64)

𝜎1,𝜑𝑝′
=2.2, (4.65)

whereas the FD angular variables were not smeared out. The photon momentum

variables were smeared with multiplicative model (eqn. 4.59) as follows.

𝜎0,𝑝𝛾 =

⎧
⎪⎨
⎪⎩

0.013 (FT)

0 (FD)
𝜎1,𝑝𝛾 =

⎧
⎪⎨
⎪⎩

0.003 (FT)

0.0395 (FD).
(4.66)

Finally, the regulators applied to the smearing factors (eqns. 4.56, 4.58 and 4.59) are

paramterized as follows.

𝑅𝑝𝑝′
=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2(1/(1 + exp(−(𝑝𝑝′ − 0.3)/0.01)) − 0.5) (CD)

1/(1 + exp(−(𝑝𝑝′ − 0.5)/0.05)) (FD, Inb.)

1/(1 + exp(−(𝑝𝑝′ − 0.6)/0.05)) (FD, Outb.)

(4.67)

𝑅𝜑𝑝′
=

⎧
⎪⎨
⎪⎩

1/(1 + exp(5.518(𝑝𝑝′ − 0.625))) (CD)

0 (FD)
(4.68)

𝑅𝑝𝛾 =

⎧
⎪⎨
⎪⎩

1/(1 + exp(0.761(𝑝𝛾 − 6))) (FT)

1/(1 + exp(5.308(𝑝𝛾 − 8.005))) (FD).
(4.69)
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Chapter 5

Results

5.1 CLAS12 Quality Assurance

To minimize large systematic effects from data with quality issues, Quality Assurance

(QA) was performed in this analysis. The CLAS12 QA has been developed for the

RG-A data, and the database is saved in the dedicated github repository [186]. A

run is a time unit of data taking that shares the same detector setting such as the

trigger configuration and the requested beam current. A typical run approximately

records 100M triggered events and is taken in about 4 hours. The run properties

are accessible from the run condition dataBase (RCDB1). The inbending data set

consists of 174 runs from 5032–5419, and the outbending data set consists of 186

runs from 5422–5666. The initial run period 5422–5476 for the outbending data set

has a slightly larger toroid current +1.00796 that had a marginal effect on the data

analysis.

The number of exclusive events 𝑒𝑝→ 𝑒′𝑝′𝛾 that were defined with the exclusivity

cuts (𝑁(𝑒′𝑝′𝛾)𝑒
′𝑝′𝛾
exp. ) was normalized to the QA passed beam charge (𝑄) as an additional

quality check for each run. The number of events per charge is stable for the data

that passed the ‘golden cut’ of the QA (Fig. 5-1). The run ranges are charaterized

by beam currents delivered to the beamline; the 45, 50, 55 nA for inbending and 40,

50 nA for outbending.

1https://clasweb.jlab.org/rcdb/runs/5032-5666
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Figure 5-1: The number of exclusivity events 𝑁(𝑒′𝑝′𝛾)𝑒
′𝑝′𝛾
exp. normalized to beam charge

in nC. The dotted lines roughly separates the run ranges with different beam currents.
Especially, the green dotted line is the border between the inbending and outbending
run periods.

5.2 Event Selection Revisited

The 3𝜎 window for exclusivity variables for DV𝜋0P events can be determined without

considering the background channel thanks to the very strong experimental trace,

𝐼𝑀𝜋0 . The exclusivity variables were fitted for each polarity and event topology.

The 𝜋0 photon energy threshold is constrained to reduce the random coincidence rate

between the prevalent radiative photons and fake neutral signals; but this limit need

not be as high as the 2 GeV for DVCS events. The threshold in the DV𝜋0P wagon is

150 MeV. From the 2D histogram of 𝐼𝑀𝜋0 vs 𝑝𝛾2 , we decided to increase this threshold

to 400 MeV.

Finally, the 3𝜎 ranges of exclusivity variables are set for each detector configura-

tion. For the DVCS events, the variable cuts are defined by a set of upper bounds 𝑢𝑏

and lower bounds 𝑙𝑏 as follows:

∙ 𝑙𝑏𝑀𝑀2
𝑒′𝑝′

≤𝑀𝑀2
𝑒′𝑝′ < 𝑢𝑏𝑀𝑀2

𝑒′𝑝′

∙ 𝑙𝑏𝑀𝑀2
𝑒′𝛾

≤𝑀𝑀2
𝑒′𝛾 < 𝑢𝑏𝑀𝑀2

𝑒′𝛾

∙ 𝑙𝑏𝑀𝑀2
𝑒′𝑝′𝛾

≤𝑀𝑀2
𝑒′𝑝′𝛾 < 𝑢𝑏𝑀𝑀2

𝑒′𝑝′𝛾

∙ 𝑙𝑏𝑀𝐸𝑒′𝑝′𝛾
≤𝑀𝐸𝑒′𝑝′𝛾 < 𝑢𝑏𝑀𝐸𝑒′𝑝′𝛾

∙ 𝑙𝑏𝑀𝑃𝑡𝑒′𝑝′𝛾
≤𝑀𝑃𝑡𝑒′𝑝′𝛾 < 𝑢𝑏𝑀𝑃𝑡𝑒′𝑝′𝛾

∙ 𝜃𝛾𝑑𝑒𝑡.𝛾𝑟𝑒𝑐. < 𝑢𝑏𝜃𝛾𝑑𝑒𝑡.𝛾𝑟𝑒𝑐.
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∙ 𝜑𝐻Γ < 𝑢𝑏𝜑𝐻Γ

∙ 𝑎2𝜃
2
𝑒′ + 𝑎1𝜃𝑒′ + 𝑎0 ≤ 𝜃𝑒′𝛾 < 𝑏2𝜃

2
𝑒′ + 𝑏1𝜃𝑒′ + 𝑏0 .

The unit of variables are GeV2 for 𝑀𝑀2
𝑒′𝑝′ , 𝑀𝑀2

𝑒′𝛾, 𝑀𝑀2
𝑒′𝑝′𝛾, GeV for 𝑀𝐸𝑒′𝑝′𝛾, GeV/c

for 𝑀𝑃𝑡𝑒′𝑝′𝛾 and ∘ for angular variables 𝜃𝛾𝑑𝑒𝑡.𝛾𝑟𝑒𝑐. , 𝜑𝐻Γ, 𝜃𝑒′𝛾 and 𝜃𝑒′ . The lower and

upper bounds are summarized in Table 5.1.

Likewise, the DV𝜋0P event selection is also refined with the following cuts on the

exclusivity variables:

∙ 𝑙𝑏𝐼𝑀𝜋0 < 𝐼𝑀𝜋0 < 𝑢𝑏𝐼𝑀𝜋0

∙ 𝑙𝑏𝑀𝑀2
𝑒′𝑝′

< 𝑀𝑀2
𝑒′𝑝′ < 𝑢𝑏𝑀𝑀2

𝑒′𝑝′

∙ 𝑙𝑏𝑀𝑀2
𝑒′𝜋0

< 𝑀𝑀2
𝑒′𝜋0 < 𝑢𝑏𝑀𝑀2

𝑒′𝜋0

∙ 𝑙𝑏𝑀𝑀2
𝑒′𝑝′𝜋0

< 𝑀𝑀2
𝑒′𝑝′𝜋0 < 𝑢𝑏𝑀𝑀2

𝑒′𝑝′𝜋0

∙ 𝑙𝑏𝑀𝐸𝑒′𝑝′𝜋0 < 𝑀𝐸𝑒′𝑝′𝜋0 < 𝑢𝑏𝑀𝐸𝑒′𝑝′𝜋0

∙ 𝑙𝑏𝑀𝑃𝑡𝑒′𝑝′𝜋0 < 𝑀𝑃𝑡𝑒′𝑝′𝜋0 < 𝑢𝑏𝑀𝑃𝑡𝑒′𝑝′𝜋0

∙ 𝜃𝜋0
𝑑𝑒𝑡.𝜋

0
𝑟𝑒𝑐.

< 𝑢𝑏𝜃
𝜋0
𝑑𝑒𝑡.

𝜋0
𝑟𝑒𝑐.

∙ 𝜑𝐻Π < 𝑢𝑏𝜑𝐻Π
.

Similarly, the units are GeV2 for 𝑀𝑀2
𝑒′𝑝′ , 𝑀𝑀2

𝑒′𝜋0 , 𝑀𝑀2
𝑒′𝑝′𝜋0 , GeV for 𝐼𝑀𝜋0 and

𝑀𝐸𝑒′𝑝′𝜋0 , GeV/c for 𝑀𝑃𝑡𝑒′𝑝′𝜋0 and ∘ for angular variables 𝜃𝜋0
𝑑𝑒𝑡.𝜋

0
𝑟𝑒𝑐.

, 𝜑𝐻Π, 𝜃𝑒′𝜋0 and

𝜃𝑒′ . The lower and upper bounds are summarized in Table 5.1.

The distributions of the exclusivity variables are presented at Figs. 5-2–5-13 with

red curves for the experimental distributions and the blue curves for the simula-

tion distributions. For the BH-DVCS candidates that contain copious DV𝜋0P back-

grounds, the simulation distribution is a mixture of two distributions, the DVCS and

the DV𝜋0P misidentified events with a reasonable estimation of the 𝜋0 contamination.

The 𝑒𝑝 → 𝑒′𝑝′𝛾 and 𝑒𝑝 → 𝑒′𝑝′𝛾𝛾 exclusive sets are defined as sets of individual

particles that satisfy 3𝜎 cuts on exclusivity variables in Tables 5.1 and 5.2 respec-

tively. The 𝑒𝑝 → 𝑒′𝑝′𝛾 or 𝑒𝑝 → 𝑒′𝑝′𝛾𝛾 exclusive events are accordingly defined as

one that possess at least one 𝑒𝑝 → 𝑒′𝑝′𝛾 or 𝑒𝑝 → 𝑒′𝑝′𝛾𝛾 exclusive event. There is a
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Table 5.1: The lower and upper bounds for the 𝑒𝑝 → 𝑒′𝑝′𝛾 event selection within 3𝜎
window. The 3𝜎 curves of 𝜃𝑒′𝛾 − 𝜃𝑒′ are identical for the inbending and outbending
BH-DVCS selection. The lower 𝜃𝑒′𝛾 regions in (CD, FT) configuration were included
as discussed in Section 3.3, and presented in this table at the bottom row of (CD,
FT) columns.

Inb. Inb. Inb. Outb. Outb. Outb.
(FD, FD) (CD, FD) (CD, FT) (FD, FD) (CD, FD) (CD, FT)

𝑙𝑏𝑀𝑀2
𝑒′𝑝′

-0.144 -0.272 -0.365 -0.174 0.226 -0.244
𝑢𝑏𝑀𝑀2

𝑒′𝑝′
0.190 0.294 0.391 0.225 -0.196 0.321

𝑙𝑏𝑀𝑀2
𝑒′𝛾

0.0505 0.166 0.322 1.940 0.0356 0.418
𝑢𝑏𝑀𝑀2

𝑒′𝛾
1.989 1.790 1.479 0.160 1.902 1.352

𝑙𝑏𝑀𝑀2
𝑒′𝑝′𝛾

-0.0177 -0.0161 -0.0108 -0.0202 -0.0163 -8.84×10−3

𝑢𝑏𝑀𝑀2
𝑒′𝑝′𝛾

0.0142 0.0139 0.008 0.0162 0.0138 6.53×10−3

𝑙𝑏𝑀𝐸𝑒′𝑝′𝛾
-0.740 -0.557 -0.387 -0.519 -0.631 -0.275

𝑢𝑏𝑀𝐸𝑒′𝑝′𝛾
0.976 0.672 0.360 0.772 0.755 0.299

𝑢𝑏𝑀𝑃𝑡𝑒′𝑝′𝛾
0.291 0.0919 0.0844 0.340 0.147 0.0627

𝑢𝑏𝜃𝛾𝑑𝑒𝑡.𝛾𝑟𝑒𝑐. 1.487 0.654 0.582 1.645 0.839 0.578
𝑢𝑏𝜑𝐻Γ

8.36 5.034 5.633 6.342 5.181 4.742

𝑎2
0.0214 0.0164 0.0267 0.0214 0.0164 0.0267

0.051 0.051

𝑎1
-0.379 0.408 -0.0625 -0.379 0.408 -0.0625

-0.047 -0.047

𝑎0
21.998 4.901 7.73 21.998 4.901 7.73

-0.492 -0.492

𝑏2
0.028 0.047 -2.21×10−3 0.028 0.047 -2.21×10−3

-3.82×10−4 -3.82×10−4

𝑏1
-1.001 -1.677 0.863 -1.001 -1.677 0.863

0.777 0.777

𝑏0
49.895 46.014 10.287 49.895 46.014 10.287

0.867 0.867
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Table 5.2: The lower and upper bounds for the DV𝜋0P exclusivity variables within
3𝜎 window.

Inb. Inb. Inb. Outb. Outb. Outb.
(FD, FD) (CD, FD) (CD, FT) (FD, FD) (CD, FD) (CD, FT)

𝑙𝑏𝐼𝑀𝜋0 0.0910 0.107 0.126 0.105 0.106 0.124
𝑢𝑏𝐼𝑀𝜋0 0.178 0.162 0.149 0.164 0.163 0.151
𝑙𝑏𝑀𝑀2

𝑒′𝑝′
-0.271 -0.283 -0.384 -0.256 -0.218 -0.378

𝑢𝑏𝑀𝑀2
𝑒′𝑝′

0.335 0.354 0.610 0.323 0.294 0.575
𝑙𝑏𝑀𝑀2

𝑒′𝜋
0.117 0.007 0.0974 0.0491 -0.0142 0.107

𝑢𝑏𝑀𝑀2
𝑒′𝜋

1.762 1.922 1.641 1.828 1.876 1.665
𝑙𝑏𝑀𝑀2

𝑒′𝑝′𝜋
-0.0224 -0.0250 -0.02944 -0.0240 -0.0219 -0.035

𝑢𝑏𝑀𝑀2
𝑒′𝑝′𝜋

0.0189 0.0208 0.02564 0.0195 0.0182 0.0324
𝑙𝑏𝑀𝐸𝑒′𝑝′𝜋

-0.685 -0.677 -0.474 -0.583 -0.597 -0.476
𝑢𝑏𝑀𝐸𝑒′𝑝′𝜋

0.816 0.822 0.481 0.754 0.700 0.514
𝑢𝑏𝑀𝑃𝑡𝑒′𝑝′𝜋

0.180 0.176 0.1272 0.177 0.194 0.146
𝑢𝑏𝜃

𝜋0
𝑑𝑒𝑡.

𝜋0
𝑟𝑒𝑐.

1.363 1.476 0.955 1.940 1.761 1.114
𝑢𝑏𝜑𝐻Π

9.190 10.203 9.259 7.498 9.530 10.69
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Figure 5-2: The kinematic and exclusivity variables of BH-DVCS candidates with
(FD, FD) topology and inbending polarity configuration. The blue curves are the
experimental distributions and the red curves are the simulation distributions.
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Figure 5-3: The kinematic and exclusivity variables of BH-DVCS candidates with
(CD, FD) topology and inbending polarity configuration. The blue curves are the
experimental distributions and the red curves are the simulation distributions.
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Figure 5-4: The kinematic and exclusivity variables for BH-DVCS candidates with
(CD, FT) topology and inbending polarity configuration. The blue curves are the
experimental distributions and the red curves are the simulation distributions.
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Figure 5-5: The kinematic and exclusivity variables of BH-DVCS candidates with
(FD, FD) topology and outbending polarity configuration. The blue curves are the
experimental distributions and the red curves are the simulation distributions.
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Figure 5-6: The kinematic and exclusivity variables of BH-DVCS candidates with
(CD, FD) topology and outbending polarity configuration. The blue curves are the
experimental distributions and the red curves are the simulation distributions.
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Figure 5-7: The kinematic and exclusivity variables of BH-DVCS candidates with
(CD, FT) topology and outbending polarity configuration. The blue curves are the
experimental distributions and the red curves are the simulation distributions.
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Figure 5-8: The kinematic and exclusivity variables of DV𝜋0P candidates with (FD,
FD) topology and inbending polarity configuration. The blue curves are the experi-
mental distributions and the red curves are the simulation distributions.
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Figure 5-9: The kinematic and exclusivity variables of DV𝜋0P candidates with (CD,
FD) topology and inbending polarity configuration. The blue curves are the experi-
mental distributions and the red curves are the simulation distributions.
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Figure 5-10: The kinematic and exclusivity variables of DV𝜋0P candidates with (CD,
FT) topology and inbending polarity configuration. The blue curves are the experi-
mental distributions and the red curves are the simulation distributions.
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Figure 5-11: The kinematics and exclusivity variables of DV𝜋0P candidates with
(FD, FD) topology and outbending polarity configuration. The blue curves are the
experimental distributions and the red curves are the simulation distributions.
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Figure 5-12: The kinematic and exclusivity variables of DV𝜋0P candidates with (CD,
FD) topology and outbending polarity configuration. The blue curves are the exper-
imental distributions and the red curves are the simulation distributions.
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Figure 5-13: The kinematic and exclusivity variables of DV𝜋0P candidates with (CD,
FT) topology and outbending polarity configuration. The blue curves are the exper-
imental distributions and the red curves are the simulation distributions.

113



Table 5.3: The excluded regions in PCAL for the electrons and photon reconstruction.
The unit of 𝑙𝑈 , 𝑙𝑉 , 𝑙𝑊 is in cm.

1 2 3 4 6
74< 𝑙𝑊 <79.8 111.2< 𝑙𝑈 <119.3 𝑙𝑊 <14 𝑙𝑉 <14 170< 𝑙𝑊 <192

83.6< 𝑙𝑊 <92.2 113< 𝑙𝑉 <118.7 229.4< 𝑙𝑉 <240.7
212.5< 𝑙𝑊 <230 𝑙𝑊 <14 135< 𝑙𝑊 <150

possibility that multiple 𝑒′𝑝′𝛾 or 𝑒′𝑝′𝛾𝛾 exclusive sets in one exclusive event. But, the

multiple exclusive sets do not result in large uncertainties for following reasons. First,

the number of exclusive events are not augmented by counting multiple exclusive sets

in the same event because they are still in the same event. Second, the number of

exclusive events that contain multiple exclusive sets are negligible. The estimates

of such events in 𝑒𝑝 → 𝑒′𝑝′𝛾 channel are 1.7%, 0.2%, 1.5% and 0.2% for inbending

experimental, inbending simulation, outbending experimental and outbending sim-

ulation data respectively. However, the existence of multiple exclusive sets in one

event complicate connecting the survival rates of individual PID cut to its effect on

the number of exclusive events.

The remaining part of this section describes the additional PID cuts to those

introduced in Chapter 2. The PID cuts in Chapter 2 were mostly developed for the

BSA studies without meticulous discussions regarding the inefficiencies. To improve

the data quality, some inefficient regions at detector local coordinates were further

surveyed and removed.

The electrons and photons in the experimental data sets were not properly recon-

structed when they were recorded in certain PCAL regions. As these inefficient zones

were not excluded in the simulation, the electrons and photons that are associated

with the (𝑙𝑈 , 𝑙𝑉 , 𝑙𝑊 ) coordinates in Table 5.3 were excluded.

The CVT has 12 layers in total with the 6 inner layers of SVT and the other

6 outer layers of BMT. The 2D histogram of two polar angles, the reconstructed

𝜃𝑝′ at vertex and the polar angle coordinate of the detector hit position 𝜃CVT, is

presented in Fig. 5-14. The plot implies that the reconstruction quality drops at

the detector borders, which can be confirmed at the 1D histograms of 𝜃𝑝′ and 𝜃CVT.
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Here, we propose a quadrangle-shaped fiducial cut in the 𝜃−𝜃CVT plane, and excluding

three 𝜑CVT regions, (-95∘, -80∘), (25∘, 40∘) and (143∘, 158∘). The boundaries of the

quadrangle were inferred by the experimental data distribution and the experimental

data to simulation ratio of normalized distributions (Figs. 5-15–5-17). The sides of

the quadrangle were similarly determined by collecting the edges of 𝜃CVT for a 1∘

window of 𝜃𝑝′ ∈ (45∘, 65∘). The edges were defined as the intersections of 50% height

of the peak and the distribution, i.e., the bin with bin contents ∼ 1/2 peak, or the Full

Width at Half Maximum (FWHM). Explicitly, the quadrangle is defined as follows.

𝜃𝑝′ ≤ 64.23∘ (5.1)

𝜃CVT ≥ 44.5∘ (5.2)

𝜃CVT ≤− 2.924 + 1.274 × 𝜃𝑝′ (5.3)

𝜃CVT ≥− 3.523 + 1.046 × 𝜃𝑝′ . (5.4)

Note that the reconstructed polar angle cut (eqn. 5.1) was applied after the momen-

tum post-processing procedure introduced in Chapter 4. Similarly, the borders on

𝜑CVT (-95∘, -80∘), (25∘, 40∘) and (143∘, 158∘) were determined by investigating the

density ratio of experimental data to the simulation data.
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Figure 5-14: The proton fiducial cuts in the Central Detectors used in this analysis.
Presented are (a) the 2D histogram of 𝜃CVT and 𝜃𝑝′ and (b) the 2d histogram of 𝜃CVT

and 𝜑CVT. The red dotted lines define the fiducial cuts developed for this analysis.

In addition to the CVT fiducial cuts, the protons have 3𝜎 cuts on 𝜒 and 𝑣𝑧𝑒′ −𝑣𝑧𝑝′
that are separately defined for each data set: inbending and outbending experimental

data, and inbending and outbending simulation data. These 3𝜎 windows are defined
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Figure 5-15: The proton polar angle (𝜃𝑝′) to determine the maximum polar angle
value. Panel (a) shows the 1D distribution of the 𝜃𝑝′ that behaves irregularly above
some limits. Panel (b) shows the limit of 𝜃𝑝′ determined by the ratio of the experi-
mental distribution (normalized density) to the simulation distribution.
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Figure 5-16: The proton polar angle (𝜃𝑝′) to determine the maximum polar angle
value. Panel (a) shows the 1D distribution of the 𝜃CVT that behaves irregularly
below some limits. Panel (b) shows the limit of 𝜃CVT determined by the ratio of the
experimental distribution (normalized density) to the simulation distribution.
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Figure 5-17: The proton CVT hit azimuthal coordinate (𝜑CVT) to determine the
fiducial regions. Panel (a) shows the 1D distribution of the 𝜑CVT that shows the poorly
reconstructed regions. Panel (b) shows the exact boundaries determined by the ratio
of the experimental distribution (normalized density) to the simulation distribution.
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Table 5.4: 3𝜎 windows of proton 𝜒 that are defined for each data set and detector
configuration. The column heads use the abbreviations “Exp.” for experimental data,
“Sim.” for simulation data, “Inb.” for inbending, and “Outb.” for outbending.

Exp. Inb. Sim. Inb. Exp. Outb. Sim. Outb.
CD (-5.00, 6.345) (-5.47, 6.273) (-5.592,6.785) (-5.629, 6.404)

FD Sector 1 (-3.296, 3.508) (-3.362, 3.403) (-3.905 4.088) (-4.110, 4.150)
FD Sector 2 (-3.552, 4.000) (-4.051, 3.907) (-3.411 3.939) (-4.554, 4.708)
FD Sector 3 (-3.446, 3.937) (-3.697, 3.702) (-4.042 5.954) (-3.934, 4.170)
FD Sector 4 (-2.747, 3.190) (-3.837, 3.792) (-3.820 5.065) (-4.062, 4.346)
FD Sector 5 (-2.851, 3.418) (-3.756, 3.672) (-3.384 4.232) (-4.404, 4.457)
FD Sector 6 (-3.174, 3.514) (-3.402, 3.351) (-5.077 5.100) (-4.222, 4.000)

Table 5.5: 3𝜎 windows of proton 𝑣𝑧𝑒′ − 𝑣𝑧𝑝′ that are defined for each data set and de-
tector configuration. The column heads use the abbreviations “Exp.” for experimental
data, “Sim.” for simulation data, “Inb.” for inbending, and “Outb.” for outbending.

Exp. Inb. Sim. Inb. Exp. Outb. Sim. Outb.
CD (-2.011, 2.314) (-1.268, 1.478) (-2.737, 2.096) (-1.473, 1.657)

FD Sector 1 (-3.209, 4.017) (-3.398, 3.611) (-4.435, 3.429) (-3.407, 3.015)
FD Sector 2 (-3.612, 4.139) (-3.633, 3.756) (-4.646, 2.978) (-3.389, 2.971)
FD Sector 3 (-3.328, 4.287) (-3.714, 3.831) (-3.922, 3.040) (-3.480, 3.054)
FD Sector 4 (-3.411, 4.108) (-3.406, 3.548) (-4.646, 3.493) (-3.387, 2.972)
FD Sector 5 (-3.607, 4.246) (-3.289, 3.519) (-3.901, 3.750) (-3.383, 2.960)
FD Sector 6 (-2.999, 3.927) (-3.561, 3.748) (-3.846, 3.623) (-3.573, 3.088)

by performing the gaussian cuts on the CD, and each sector of FD and described at

Tables 5.4–5.5.

The additional FT-Cal fiducial cuts were defined for 4 small perforations that are

marked in Fig. 5-18. The covers were designed as circles that include the perforation

with the smallest possible size. The locations and radii of circles are as follows.

𝑟 = 1.60 cm center =(−8.42, 9.89) cm (circle 1) (5.5)

𝑟 = 1.60 cm center =(−9.89, − 5.33) cm (circle 2) (5.6)

𝑟 = 2.30 cm center =(−6.15, 13.00) cm (circle 3) (5.7)

𝑟 = 2.00 cm center =(−6.50, 3.70) cm (circle 4) (5.8)

The effects of the PID cuts on the exclusive channel can be estimated by the
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Figure 5-18: The 2D histograms of 𝑝′ hit positions 𝑦FT and 𝑥FT of the photon can-
didate (a) before the RG-A PID cuts and (b) after the FT fiducial cuts for the
concatenated data set of inbending and outbending polarities.

number of exclusive event after each cut. Table 5.6 list the survival rate for each

particle by each PID cut. Here, the survival rate was defined as the ratio of the number

survived relevant exclusive events after each PID cuts to the number of exclusive

events with EB PID. By relevant, it means that the cuts on specific configuration

must be defined over the configuration. For example, the survival rate by the proton

DC fiducial cut should be surveyed for the FD protons.

The final level event selections are defined as follows.

1. 𝑝𝑒′ > 2 GeV/c

2. 𝑝𝛾 > 2 GeV/c (BH-DVCS), 𝑝𝛾2 > 0.4 GeV/c (DV𝜋0P)

3. 𝑝𝑝′ > 0.3 GeV/c (CD), 0.42 GeV/c (FD, Inb.), 0.5 GeV/c (FD, Outb.)

4. 𝑄2 > 1 (GeV/c)2

5. 𝑊 > 2 GeV

6. The electrons reconstructed in the same sector with photons were excluded.

7. The protons reconstructed in the same sector with photons were excluded when

the protons have associated hits in the FD ECAL.

8. The PID cuts defined in Section 2.4 and this section were applied.

9. The 3𝜎 exclusivity cuts described in this section were applied.

118



Table 5.6: The survival rates of each fiducial cut on the electrons, protons and photons
that are marked at the row headers. The last three rows show the survival rates
applied to the corresponding detector configuration. The columns ‘Exp. Inb.’, ‘Sim.
Inb.’, ‘Exp. Outb.’ and ‘Sim. Outb.’ list the survival rates themselves at the
corresponding configuration. The other columns ‘Exp.:Sim. Inb.’ and ‘Exp.:Sim.
Outb.’ show the double ratio of the ratio of the survival rates at experimental data
to the survival rates at simulation data.

Exp. Sim. Exp.:Sim. Exp. Sim. Exp.:Sim.
Inb. Inb. Inb. Outb. Outb. Outb.

𝑒′ PCAL 86.3% 76.0% 113.6% 95.4% 94.4% 101.1%
𝑒′ DC 96.3% 90.2% 106.8% 89.1% 82.8% 107.7%
𝑒′ SF 90.6% 83.1% 109.1% 99.0% 98.9% 100.1%
𝑒′ 𝑣𝑧 99.9% 99.9% 100.0% 99.9% 99.9% 100.0%
𝑒′ 𝐸𝑑𝑒𝑝. 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
𝑒′ anti-𝜋− 93.9% 93.5% 100.4% 97.5% 98.5% 99.0%
𝑝′ DC 99.6% 98.6% 101.1% 97.3% 95.1% 102.3%
𝑝′ CVT 83.0% 76.8% 108.1% 65.2% 65.5% 99.5%
𝑝′ 𝜒 96.0% 96.4% 99.5% 96.3% 97.2% 99.1%
𝑝′ 𝑣𝑧𝑒′ − 𝑣𝑧𝑝′ 91.8% 94.7% 96.9% 91.6% 94.5% 97.0%
𝛾 𝛽 99.7% 100.0% 99.7% 99.9% 100.0% 99.9%
𝛾 PCAL 94.1% 90.8% 103.5% 92.1% 89.8% 99.6%
𝛾 FT 98.5% 94.8% 103.9% 98.7% 94.7% 104.2%
(FD, FD) 62.8% 60.4% 104.1% 60.3% 55.6% 108.4%
(CD, FD) 54.8% 45.5% 120.6% 54.3% 49.1% 110.6%
(CD, FT) 59.9% 49.1% 122.0% 38.9% 34.7% 112.1%
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5.3 Multidimensional Binning

It is important to choose an optimal multidimensional binning scheme for the cross

section extraction. In this thesis, the bin shape was designed to be a four dimensional

box. Some bins are not well fitted into the box due to the phase space condition. For

example, Fig. 5-19 shows several triangular bins in the 𝑄2−𝑥𝐵 plane at the left side,

whose hypotenuse is determined by 𝑝𝑒′ > 2 GeV/c.

The advantage of finer binning is to provide improved density estimation. The

acceptance corrections and the finite bin width effects should increase with the bin

size. However, the bin size cannot be narrower than the effective resolutions in the

binning variables to minimize bin migration. Extremely small bins would not have

any statistical significance in each bin, which would lead to an invalid analysis. It is

important to determine the optimal binning.

The different proton momentum thresholds were considered for the |𝑡| binning.

The momentum thresholds required for the proton momentum reconstruction, 0.3

GeV/c for CD, 0.42 GeV/c for FD inbending, 0.5 GeV/c for FD outbending lead to

|𝑡| threhsold of 0.09, 0.17 and 0.23 GeV2 respectively. To consider the bin migration

effect, the |𝑡| bin was loosely set as [0.110, 0.150, 0.250, 0.400, 0.600, 0.800, 1.000]

GeV2. The number of events in the first bin was estimated with CD protons only.

Likewise, the FD outbending data was not used for the second bin event counting.

There are not enough statistics above |t|=1 GeV2 to determine the cross sections with

reasonable precision from the RG-A fall 2018 data alone.

The 𝑄2−𝑥𝐵 phase space was evenly divided by the bin edges [1.000, 1.200, 1.456,

1.912, 2.510, 3.295, 4.326, 5.761, 7.000] (GeV/c)2 and [0.062, 0.090, 0.118, 0.155,

0.204, 0.268, 0.357, 0.446, 0.581]. The 𝑄2 − 𝑥𝐵 bin boundaries are presented in

𝑄2 − 𝑥𝐵 plane with the 2D histogram of entire experimental data set in Fig. 5-19

with an explanation of the kinematics boundaries at the caption.

The 𝜑 distributions are binned in equal width bins of width 15∘. Other possible

binning schemes include (1) the adjusted equal width binning to widen the bin width

at the central region to compensate for low statistics, and (2) the equal frequency
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Figure 5-19: The 2D histograms of events in 𝑄2 and 𝑥𝐵 for each configuration of final
level BH-DVCS events. The kinematic regions are bordered by the certain required
conditions: (1) 𝑝𝑒′ > 2 GeV/c (green), (2) 𝑄2 > 1 (GeV/c)2 (blue) and (3) 𝑊 > 2
GeV (red).

binning. The chosen binning scheme has three advantages; (1) the binning scheme is

symmetric with respect to 𝜑 = 180∘, (2) the frequency is directly translated into the

probability distribution in the same 𝑄2 − 𝑥𝐵 − |𝑡| bin, and (3) it was used by other

experiments [107, 129].

The radiative events in BH-DVCS and DV𝜋0P channels are simulated with the

following condition with leeway to allow for the bin migration.

1. -5.5 cm< 𝑣𝑧𝑒′ <-0.5 cm

2. 𝑊 >1.9 GeV

3. 𝐸𝑏𝑒𝑎𝑚 = 10.604 GeV

4. 0.9 (GeV/c)2 < 𝑄2 <14 (GeV/c)2

5. 0.05< 𝑥𝐵 <0.85

6. 𝑝𝛾′ > 0.1 GeV/c

The last condition on 𝑝𝛾′ should be applied to the radiated photons 𝛾′. The dvcsgen

requires the upper bound of |𝑀𝑀2
𝑒′𝑝′ | for the radiative event generation [180], which

was set as 0.6 GeV2 for this work.

The BH-DVCS events, once simulated without any thresholds of 𝑄2 and |𝑡|, mostly

end up simulated in the low 𝑄2 and |𝑡| regions as the cross sections are the highest in
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such region. The lower limits of 𝑄2 and |𝑡| were reinforced to skirt this issue in a way

that does not harm the interested kinematic bins. The thresholds were surveyed with

sample simulation without the 𝑄2 and |𝑡| thresholds. The inbending data set extends

up to 𝑄2 ∼1.4 (GeV/c)2 at reconstructed momentum. To avoid bin migration, the

𝑄2 threshold at the event generation was set to 𝑄2 > 1.2 (GeV/c)2 for the inbending

polarity. The outbending data set extends to 𝑄2 ∼1 (GeV/c)2, so the threshold was

set to be 0.9 (GeV/c)2. The proton momentum reconstruction threshold is the lowest

in the CD at 0.3 GeV/c, which leads to a |𝑡| threshold as 0.085 GeV2. As discussed in

Section 3.3, the BH-DVCS |𝑡| upper limit is 1.79 GeV2, well above the |𝑡| bin volume

edge of |𝑡|=1 GeV2. The BH-DVCS event generation has an additional constraint on

𝑦: 0.19< 𝑦 <0.85. This cut on 𝑦 was placed to be consistent with the reconstructed

electron momentum 𝑝𝑒′ > 2 GeV/c.

The large statistics simulation was performed on the CLAS12 off-site simulation

system that efficiently carries out the simulation using available cycles at computing

centers worldwide including the MIT High Performance Research Computing Facility

(HPRCF) at the Bates Research and Engineering Center through the Open Science

Grid (OSG) [187, 188]. The simulation size was determined to be large enough to

contain about 10 times the statistics of the experimental data in each topology to

reduce the statistical uncertainty on one hand. On the other hand, the size was

constrained by the fact that the computing resources and the storage quota assigned

to the CLAS collaboration at the Jefferson Lab computing farm are shared among all

users in the collaboration. The genearated events before the detector simulation are

in Table 5.7.
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Table 5.7: Statistics of the generated events before the detector simulation. The first
three column headers indicate the simulated exclusive channels. The last column is
the background merging currents that were used for the simulation. The row headers
show the torus polarity. The last row is the simulation of the early outbending run
with the torus current at +1.00796 times the nominal value.

BH BH-DVCS DV𝜋0P Bkg. Merging

Inb.

200M 200M 100M 45 nA
200M 200M 300M 50 nA
200M 200M 100M 55 nA

0 0 100M Not used
600M 600M 600M Subtotal

Outb.

300M 300M 300M 50 nA
300M 300M 100M 40 nA

0 0 100M Not used
300M 300M 100M 40 nA (+1.00796)
900M 900M 600M Subtotal

5.4 Signal Yields and Acceptance Corrections

The raw yields are defined as the event counts in each bin before the background

subtraction and the acceptance corrections. The CLAS12 detector has the three

event topologies as discussed in Chapter 3. The event topologies are principally

defined by the proton and photon angles. There is a small overlap between the FD

and the CD detectors so that the same proton can be reconstructed in both detector

system. However, the uncertainty from the duplicated measurement can be ignored

as discussed in Section 5.2.

Typically, the acceptances are defined as 𝑛𝑟𝑒𝑐./𝑛𝑔𝑒𝑛. in the simulation, where 𝑛𝑟𝑒𝑐.

is the number of reconstructed events in the detector system. The acceptances

were regarded as the probability to record the event in the detector. The caveat

is that the simulation and the experimental data set can differ in the relative ef-

ficiencies among the detector subsystems. Matching the MC simulation with the

experimental data set in terms of the resolution and the efficiency is a significant

ongoing effort within the CLAS12 collaboration while this thesis is being written. To

avoid this factor, the detector specific acceptance correction were performed. The

sub-acceptances were defined as 𝑛𝑟𝑒𝑐.,(𝐹𝐷,𝐹𝐷)/𝑛𝑔𝑒𝑛.,(𝐹𝐷,𝐹𝐷), 𝑛𝑟𝑒𝑐.,(𝐶𝐷,𝐹𝐷)/𝑛𝑔𝑒𝑛.,(𝐶𝐷,𝐹𝐷),
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and 𝑛𝑟𝑒𝑐.,(𝐶𝐷,𝐹𝑇 )/𝑛𝑔𝑒𝑛.,(𝐶𝐷,𝐹𝑇 ) to invert the detected event counts. The denomina-

tors 𝑛𝑔𝑒𝑛.,𝑗 are the event candidates that can be reconstructed in the corresponding

topology 𝑗. Simply,

𝑗 =(FD, FD) (𝜃𝛾 ≥ 5∘, 𝜃𝑝′ < 40∘) (5.9)

𝑗 =(CD, FD) (𝜃𝛾 ≥ 5∘, 𝜃𝑝′ < 40∘) (5.10)

𝑗 =(CD, FT) (𝜃𝛾 < 5∘, 𝜃𝑝′ ≥ 40∘) (5.11)

This method should consider the ratio of 𝑛𝑔𝑒𝑛.,(𝐹𝐷,𝐹𝐷) +𝑛𝑔𝑒𝑛.,(𝐶𝐷,𝐹𝐷) +𝑛𝑔𝑒𝑛.,(𝐶𝐷,𝐹𝑇 ) to

𝑛𝑔𝑒𝑛., which is usually 1. After the acceptance correction, the two data sets, inbending

and outbending, were merged into common bins. The cross sections at the lowest two

𝑄2 bins are only filled by the outbending polarity data set.

The detector specific acceptance correction method stated above is referred to as

“Acc. Separately” in Fig. 5-20. The figures of merit related to acceptance with the en-

tire detector configuration, i.e., (𝑛𝑟𝑒𝑐.,(𝐹𝐷,𝐹𝐷)+𝑛𝑟𝑒𝑐.,(𝐶𝐷,𝐹𝐷)+𝑛𝑟𝑒𝑐.,(𝐶𝐷,𝐹𝑇 ))/(𝑛𝑔𝑒𝑛.,(𝐹𝐷,𝐹𝐷)

+ 𝑛𝑔𝑒𝑛.,(𝐶𝐷,𝐹𝐷)+𝑛𝑔𝑒𝑛.,(𝐶𝐷,𝐹𝑇 )) is presented as “Acc. Entirely”. The systematic effect

from using the different cross section models for the event generation was considered

by simulating the pure BH and the BH-DVCS based on the VGG model. For the

detector specific acceptance correction method, the effective acceptance was defined

as the ratio of acceptance corrected yields to the number of generated events.

The reconstruction efficiencies drop in the measurements with higher beam cur-

rent as discussed in Section 3.5.1. To consider this effect, the detector simulation was

performed with various background merging currents (Table 5.7). The drops in recon-

struction efficiency by the beam current was appproximately global for the entire bin.

So, the data sets associated with various beam currents and background merging cur-

rents were merged for increasing statistics. The small deviation from nominal beam

current was considered as the source of systematic uncertainty. The raw yields in the

interested bin volume that passed the final level BH-DVCS and DV𝜋0P selections are

in Table 5.8.

The background estimation was performed for each detector subsystem by us-
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Figure 5-20: The raw yields and the acceptance correction steps in 0.204< 𝑥𝐵 <0.268,
1.912 (GeV/c)2 < 𝑄2 <2.510 (GeV/c)2, 0.25 GeV2 < |𝑡| <0.40 GeV2. Panel (a) shows
the raw yields detected at (FD, FD) and (CD, FD) that are shown as black and
red histograms. Panels (b) and (c) show the accepted corrected yields and effective
acceptances, which are shown as bar graphs. The colors of bar graphs are black,
red and green for the detector specific acceptance method with pure BH simulation,
the entire acceptance correction method with pure BH simulation and the detector
specific acceptance method with BH-DVCS simulation respectively.

Table 5.8: Statistics of the generated events after the detector simulation. The column
headers indicates the polarities and the detector configuration.

Configuration BH BH-DVCS DV𝜋0P DV𝜋0P Misidentified

Inb.

Sim. (FD, FD) 95K 306K 207K 96K
Sim. (CD, FD) 442K 607K 139K 27K
Sim. (CD, FT) 1751K 1514K 197K 3K
Exp. (FD, FD) N/A 20K 21K N/A
Exp. (CD, FD) N/A 45K 19K N/A
Exp. (CD, FT) N/A 138K 3K N/A

Outb.

Sim. (FD, FD) 12K 94K 142K 75K
Sim. (CD, FD) 397K 735K 521K 132K
Sim. (CD, FT) 748K 651K 35K 4K
Exp. (FD, FD) N/A 27K 28K N/A
Exp. (CD, FD) N/A 167K 105K N/A
Exp. (CD, FT) N/A 188K 6K N/A
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Figure 5-21: The raw yields and the background contamination. Presented bins
are (a) 0.118< 𝑥𝐵 <0.155, 1.912 (GeV/c)2 < 𝑄2 <2.510 (GeV/c)2, 0.250 GeV2 <
|𝑡| <0.400 GeV2 and (b) 0.204< 𝑥𝐵 <0.268, 1.912 (GeV/c)2 < 𝑄2 <2.510 (GeV/c)2,
0.25 GeV2 < |𝑡| <0.40 GeV2.

ing the DV𝜋0P simulation (Fig. 5-21). Practically, the contamination ratio 𝑐 =
𝑁(𝑒′𝑝′𝛾)DV𝜋0P

exp.

𝑁(𝑒′𝑝′𝛾)𝑒
′𝑝′𝛾

exp.

was assigned event by event after the background estimation in the ar-

bitrary binning scheme. The statistical uncertainty in the contamination ratio was

also assigned at this step. The background estimation binning scheme is not neces-

sarily the same with the binning scheme for the cross section extraction. The total

contamination is defined as the weighted event counts when the weight is the con-

tamination ratio. The differences between the total contamination from the binning

scheme results in the systematic uncertainties.

5.5 Radiative Corrections

The radiative corrections were performed using the method described in Section 3.6.1.

There were two steps; The first step is the conversion of the integrated radiative cross

section to the integrated Born cross section, and the next step is the conversion of

the integrated Born cross section to the Born cross sections at one fixed kinematics as

stated in Section 3.6. Even though the two steps are correlated, it is useful to separate

them to study the systematic effects from using different cross section models. The

one bin examples of radiative correction and the finite bin size correction using the

pure BH are presented in Fig. 5-22.

The phase spaces are shared among the Born and radiative cross sections and the

four dimensional kinematic distributions over (𝑥𝐵, 𝑄2, −𝑡, 𝜑) are slightly different.
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Figure 5-22: The two steps in applying radiative corrections. The radiative correction
(a) and the finite bin size correction (b) using the pure BH are presented at the bin
0.118< 𝑥𝐵 <0.155, 1.912 (GeV/c)2 < 𝑄2 <2.510 (GeV/c)2, 0.150 GeV2 < |𝑡| <0.250
GeV2.

To estimate the RC factors and finite bin size correction factors efficiently, the dvcsgen

were programmed to print out the exact value of Born and radiative cross sections at

the same kinematic points. Even though the MC data set follows the radiative cross

sections as the probability distribution, the RC factors from this method are consistent

within small uncertainty limits. The averaged Born cross sections is canceled when

the RC factors and finite bin size correction were calculated based on the correct

cross section model. Therefore, 𝐹𝑟𝑎𝑑 × 𝐹𝑏𝑖𝑛 were taken as the correction factors for

the analysis, and the model uncertainties were estimating by 𝐹𝑟𝑎𝑑 and 𝐹𝑏𝑖𝑛 for the

pure BH and BH-DVCS with VGG model.

5.6 Normalization and the Modified Cross Sections

The accumulated beam charges for BH-DVCS candidates are 30.40 mC for the in-

bending and 32.09 mC for the outbending polarities . The integrated charge 1 mC

leads to 1.324 fb−1 for the 5 cm LH2 target. Accordingly, the integrated luminosities

are 40.25 fb−1 for the inbending and 42.49 fb−1 for the outbending, respectively. The

charge is used to normalize the acceptance-corrected event counts.

The discrepancies between the detector efficiencies of the experimental apparatus

and those in the MC simulation generate the detector efficiency corrections. While

these are studied in the software work in the collaboration, the following strategy

is used in this thesis to estimate the global normalization factor. The BH contribu-
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tion to the unpolarized cross section is expected to be dominant at sufficiently high

𝑥𝐵, 𝑄2, 𝑦 and sufficiently low |𝑡| at 𝜑 = 0, 360 ∘. The unpolarized cross sections

𝑑𝜎𝑢𝑛𝑝𝑜𝑙. can be decomposed into the pure BH, the pure DVCS and the interference

contributions 𝑑𝜎𝑢𝑛𝑝𝑜𝑙.,𝐵𝐻2 , 𝑑𝜎𝑢𝑛𝑝𝑜𝑙.,𝐷𝑉 𝐶𝑆2 , 𝑑𝜎𝑢𝑛𝑝𝑜𝑙.,𝐼𝑛𝑡. that can be expressed with the

kinematics prefactor and cosine series of 𝜑.

𝑑𝜎𝑢𝑛𝑝𝑜𝑙.,𝐵𝐻2 =Γ
1

𝑥2𝐵𝑦
2(1 + 𝜖2)2𝑡𝒫1(𝜑)𝒫2(𝜑)

(𝑐BH
0 + 𝑐BH

1 cos(𝜑) + 𝑐BH
2 cos(2𝜑)) (5.12)

𝑑𝜎𝑢𝑛𝑝𝑜𝑙.,𝐷𝑉 𝐶𝑆2 =Γ
1

𝑦2𝑄2
(𝑐DVCS

0 + 𝑐DVCS
1 cos(𝜑) + 𝑐DVCS

2 cos(2𝜑)) (5.13)

𝑑𝜎𝑢𝑛𝑝𝑜𝑙.,𝐼𝑛𝑡. =Γ
1

𝑥𝐵𝑦3𝑡𝒫1(𝜑)𝒫2(𝜑)
(𝑐ℐ0 + 𝑐ℐ1 cos(𝜑) + 𝑐ℐ2 cos(2𝜑) + 𝑐ℐ3 cos(3𝜑)). (5.14)

The 𝜑 dependence in the BH prefactor follows the behavior of 1/𝒫1𝒫2 as other

terms are related to 𝑥𝐵, 𝑄2, and |𝑡|. This motivates the study of modified cross

sections 𝒫1(𝜑)𝒫2(𝜑)𝑑𝜎 [131] 2.

The raw unpolarized cross section was fitted with the following fitting function.

𝐴+𝐵 cos(𝜑) + 𝐶 cos(2𝜑). (5.15)

Results of the fitting of the reduced cross section are presented in Fig. 5-23. The

normalization was derived from the ratio of 𝒫1(0)𝒫2(0)𝑑𝜎(0) of the experimental

data to the pure BH. The survey of the normalization factors in the bin at sufficiently

high 𝑥𝐵, 𝑄2, 𝑦 and sufficiently low |𝑡| is 75 ± 10 %.

2The reference defined the modified cross section as 𝒫1(𝜑)𝒫2(𝜑)(𝑑𝜎𝑢𝑛𝑝𝑜𝑙.,𝐷𝑉 𝐶𝑆2 + 𝑑𝜎𝑢𝑛𝑝𝑜𝑙.,𝐼𝑛𝑡.)
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Figure 5-23: The modified cross sections (a) before the normalization and (b) after
the normalization in 0.204< 𝑥𝐵 <0.268, 2.929 (GeV/c)2 < 𝑄2 <2.510 (GeV/c)2, 0.25
GeV2 < |𝑡| <0.40 GeV2.

5.7 Error Analysis

The statistical uncertainty estimation can be determined using the following formulae:

𝑑𝜎

𝑑𝑄2𝑑𝑥𝐵𝑑|𝑡|𝑑𝜑
∝ 𝑁(𝑒′𝑝′𝛾)BH−DVCS

exp. /𝐴𝑐𝑐. (5.16)

𝑁(𝑒′𝑝′𝛾)BH−DVCS
exp. = 𝑁(𝑒′𝑝′𝛾)𝑒

′𝑝′𝛾
exp. −𝑁(𝑒′𝑝′𝛾)DV𝜋0P

exp. (5.17)

𝑁(𝑒′𝑝′𝛾)DV𝜋0P
exp. = 𝑁(𝑒′𝑝′2𝛾)DV𝜋0P

exp. × 𝑁(𝑒′𝑝′𝛾)DV𝜋0P
sim.

𝑁(𝑒′𝑝′2𝛾)DV𝜋0P
sim.

(5.18)

𝛿𝑁(𝑒′𝑝′𝛾)BH−DVCS
exp. =

√︁
(𝛿𝑁(𝑒′𝑝′𝛾)𝑒

′𝑝′𝛾
exp. )2 + (𝛿𝑁(𝑒′𝑝′𝛾)DV𝜋0P

exp. )2 (5.19)

𝛿𝑁(𝑒′𝑝′𝛾)𝑒
′𝑝′𝛾
exp. =

√︁
𝑁(𝑒′𝑝′𝛾)𝑒

′𝑝′𝛾
exp. (5.20)

𝛿𝑁(𝑒′𝑝′𝛾)DV𝜋0P
exp. = 𝑁(𝑒′𝑝′𝛾)DV𝜋0P

exp. (5.21)

×
√︁

1/𝑁(𝑒′𝑝′2𝛾)DV𝜋0P
exp. + 1/𝑁(𝑒′𝑝′2𝛾)DV𝜋0P

sim. + 1/𝑁(𝑒′𝑝′𝛾)DV𝜋0P
sim.

(5.22)

𝐴𝑐𝑐. =
𝑛𝑟𝑒𝑐.

𝑛𝑔𝑒𝑛.

(5.23)

𝛿𝐴𝑐𝑐.

𝐴𝑐𝑐.
∼

√︂
1

𝑛𝑟𝑒𝑐.

(5.24)

𝜎𝑠𝑡𝑎𝑡. =
𝑑𝜎

𝑑𝑄2𝑑𝑥𝐵𝑑|𝑡|𝑑𝜑

⎯⎸⎸⎸⎸⎸⎷

1

𝑁𝑟𝑒𝑐.

+
1

𝑁(𝑒′𝑝′𝛾)𝑒
′𝑝′𝛾
exp.

+ (
𝑁(𝑒′𝑝′𝛾)DV𝜋0P

exp.

𝑁(𝑒′𝑝′𝛾)𝑒
′𝑝′𝛾
exp.

)2(1/𝑁(𝑒′𝑝′2𝛾)DV𝜋0P
exp.

+ 1/𝑁(𝑒′𝑝′2𝛾)DV𝜋0P
sim. + 1/𝑁(𝑒′𝑝′𝛾)DV𝜋0P

sim. )

.

(5.25)
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Eqn. 5.24 assumed that the statistical uncertainty from generated events is negli-

gible. The statistical uncertainty for the background estimation was assigned to the

contamination ratio 𝑐, as discussed in Section 5.4.

The major sources of systematic uncertainties include the inefficiency drop as a

function of increasing beam current, over- or underestimation of the smearing param-

eter, over- or underestimation of the 𝜋0 background, and the radiative corrections.

Alternative exclusivity cuts at 2𝜎 (Table 5.9) and 4𝜎 ranges (Table 5.10) were ap-

plied to investigate the systematic uncertainties. Additionally, the individual particle

selection cuts can have different impacts in the experimental data and the simulation

data. The most unstable cuts are the CD proton polar angle ceiling cut (64.23∘), and

the electron sampling fraction cut. The CD proton ceiling was adjusted to 59.23∘

and the electron sampling fraction cut of 3.5𝜎 range was refined to 3𝜎 to test the

systematic effects. The resolution matching quality can affect the systematics, so the

smearing parameter adjusted by 90% and 110% was applied to the total cross section

contributions. The systematic uncertainty due to the 𝜋0 background can be deter-

mined by estimating 𝑁(𝑒′𝑝′2𝛾)DV𝜋0P
exp.

𝑁(𝑒′𝑝′2𝛾)DV𝜋0P
sim.

in different ways —bin-by-bin, or averaged in the

entire kinematics region. The beam current contribution was estimated by simulating

the DVCS and the DV𝜋0P events at different background merging currents.

The systematic uncertainties in the unpolarized cross sections are summarized in

Table 5.11.
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Table 5.9: The lower and upper bounds for the 𝑒𝑝 → 𝑒′𝑝′𝛾 event selection within 2𝜎
window.

Inb. Inb. Inb. Outb. Outb. Outb.
(FD, FD) (CD, FD) (CD, FT) (FD, FD) (CD, FD) (CD, FT)

𝑙𝑏𝑀𝑀2
𝑒′𝑝′

-0.111 -0.178 -0.239 -0.116 -0.126 -0.15
𝑢𝑏𝑀𝑀2

𝑒′𝑝′
0.149 0.2 0.265 0.169 0.156 0.227

𝑙𝑏𝑀𝑀2
𝑒′𝛾

0.446 0.402 0.527 0.349 0.407 0.572
𝑢𝑏𝑀𝑀2

𝑒′𝛾
1.481 1.542 1.272 1.678 1.524 1.196

𝑙𝑏𝑀𝑀2
𝑒′𝑝′𝛾

-0.00693 -0.00743 -0.00439 -0.00745 -0.00456 -0.00315
𝑢𝑏𝑀𝑀2

𝑒′𝑝′𝛾
0.005 0.00589 0.00292 0.00553 0.00324 0.00237

𝑙𝑏𝑀𝐸𝑒′𝑝′𝛾
-0.511 -0.933 -0.2232 -0.828 -0.145 -0.237

𝑢𝑏𝑀𝐸𝑒′𝑝′𝛾
0.726 1.088 0.255 1.088 0.263 0.272

𝑢𝑏𝑀𝑃𝑡𝑒′𝑝′𝛾
0.129 0.1 0.0458 0.11 0.0686 0.0487

𝑢𝑏𝜃𝛾𝑑𝑒𝑡.𝛾𝑟𝑒𝑐. 0.856 0.443 0.574 1.125 0.587 0.264
𝑢𝑏𝜑𝐻Γ

5.337 3.452 3.842 3.695 3.564 3.0

Table 5.10: The lower and upper bounds for the 𝑒𝑝→ 𝑒′𝑝′𝛾 event selection within 4𝜎
window.

Inb. Inb. Inb. Outb. Outb. Outb.
(FD, FD) (CD, FD) (CD, FT) (FD, FD) (CD, FD) (CD, FT)

𝑙𝑏𝑀𝑀2
𝑒′𝑝′

-0.241 -0.366 -0.491 -0.259 -0.267 -0.338
𝑢𝑏𝑀𝑀2

𝑒′𝑝′
0.279 0.388 0.517 0.312 0.297 0.415

𝑙𝑏𝑀𝑀2
𝑒′𝛾

-0.177 -0.12 0.128 -0.397 -0.277 0.257
𝑢𝑏𝑀𝑀2

𝑒′𝛾
2.127 2.074 1.672 2.45 2.22 1.512

𝑙𝑏𝑀𝑀2
𝑒′𝑝′𝛾

-0.0312 -0.0303 -0.0194 -0.0444 -0.0273 -0.0162
𝑢𝑏𝑀𝑀2

𝑒′𝑝′𝛾
0.027 0.027 0.0157 0.0374 0.0243 0.0132

𝑙𝑏𝑀𝐸𝑒′𝑝′𝛾
-0.881 -0.845 -0.527 -0.96 -0.898 -0.494

𝑢𝑏𝑀𝐸𝑒′𝑝′𝛾
1.056 0.99 0.551 1.192 1.023 0.516

𝑢𝑏𝑀𝑃𝑡𝑒′𝑝′𝛾
0.251 0.119 0.14 0.341 0.131 0.0968

𝑢𝑏𝜃𝛾𝑑𝑒𝑡.𝛾𝑟𝑒𝑐. 1.736 0.944 0.778 2.725 1.148 0.778
𝑢𝑏𝜑𝐻Γ

11.358 6.536 7.384 7.762 6.695 6.209
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Table 5.11: Major sources of systematic uncertainties. Each row presents the source
of systematic uncertainty and its scale.

Sources Typical Scale (%)
Event selection — exclusivity 11.8
Event selection — PID 12.9
Resolution matching 8.8
Acceptance corrections 9.3
Background estimation 12.8
Normalization 10
Radiative Correction 3.5
Finite bin width effect 3.6
Reconstruction efficiency 4
Total 27

5.8 Unpolarized Cross Sections

The unpolarized BH-DVCS cross sections for the nominal set-up uncertainties are

presented in Figs. 5-24–5-29 for 𝑄2 <4.326 (GeV/c)2, 𝑥𝐵 <0.268, and |𝑡| <1.00 GeV2.

The theoretical predictions of the BH (red) and KM15 (cyan) curves are presented

along with the data points. The BH-DVCS cross sections at higher 𝑄2 and 𝑥𝐵 are

presented for 0.250 GeV2 < |𝑡| <0.800 GeV2 in Figs. 5-30–5-32. Along with the

averaged kinematic variables 𝑥𝐵, 𝑄2 and |𝑡|, the bin numbers for them are presented

instead of the full description of the bin for a space-efficient presentation. The bin

numbers were defined in increasing order. For example, the 0-th bin of 𝑥𝐵 is 0.062<

𝑥𝐵 <0.90. The cross section data at the highest 𝑄2 bin, 5.761 (GeV/c)2 < 𝑄2 <7.000

(GeV/c)2 will optimally impose coarser binning in 𝑥𝐵 and |𝑡| for increasing statistics

and will not be presented in this thesis.

The total unpolarized cross sections 𝑑𝜎𝑢𝑛𝑝𝑜𝑙. can be decomposed into the pure

BH 𝑑𝜎𝑢𝑛𝑝𝑜𝑙.,𝐵𝐻2 , the pure DVCS 𝑑𝜎𝑢𝑛𝑝𝑜𝑙.,𝐷𝑉 𝐶𝑆2 , and the BH-DVCS interference terms

𝑑𝜎𝐼𝑛𝑡. as discussed in Section 5.6. The pure BH cross sections 𝑑𝜎𝑢𝑛𝑝𝑜𝑙.,𝐵𝐻2 are exactly

calculable up to the knowledge of the elastic form factors. The remaining terms
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𝑑𝜎𝑢𝑛𝑝𝑜𝑙.,𝐼𝑛𝑡.+𝐷𝑉 𝐶𝑆2 are given as

𝑑𝜎𝑢𝑛𝑝𝑜𝑙.,𝐼𝑛𝑡.+𝐷𝑉 𝐶𝑆2 = 𝑑𝜎𝑢𝑛𝑝𝑜𝑙. − 𝑑𝜎𝑢𝑛𝑝𝑜𝑙.,𝐵𝐻2 (5.26)

= 𝑑𝜎𝑢𝑛𝑝𝑜𝑙.,𝐼𝑛𝑡. + 𝑑𝜎𝑢𝑛𝑝𝑜𝑙.,𝐷𝑉 𝐶𝑆2 . (5.27)

This leads to the next steps for the CFF study [77]: (1) Rosenbluth-type separation

of the Interference term and the pure DVCS term and (2) CFF extraction using each

term. As a first step, it is interesting to characterize 𝑑𝜎𝑢𝑛𝑝𝑜𝑙.,𝐼𝑛𝑡.+𝐷𝑉 𝐶𝑆2 . The typical

plot of 𝑑𝜎𝑢𝑛𝑝𝑜𝑙.,𝐼𝑛𝑡.+𝐷𝑉 𝐶𝑆2 as a function of 𝜑 is shown in Fig. 5-33. The plateau region

for 𝜑 in [90∘, 270∘] is found. The collection of the plateaux for the various 𝑥𝐵 and 𝑄2

at one |𝑡| bin is presented in Fig. 5-34.

We define the following quantity 𝑋 to quantify the interference and DVCS con-

tribution using the plateau.

𝑋 ≡
∫︁ 3𝜋

2

𝜋
2

𝑑𝜑
𝑑𝜎

𝑑𝑥𝐵𝑑𝑄2𝑑|𝑡|𝑑𝜑. (5.28)

Figs. 5-35 and 5-36 show the 𝑄2 dependence of 𝑋 at one (𝑥𝐵, |𝑡|) bin and |𝑡| de-

pendence of 𝑋 at one (𝑥𝐵, 𝑄2) bin respectively. The KM15 model and experimental

data agree in 𝑋 as implied in Fig. 5-34.

The collection of 𝑄2 and |𝑡| dependence plots is presented in Figs. 5-37–5-38 for

𝑄2 <3.295 (GeV/c)2 and |𝑡| <0.800 GeV2. The qunatity 𝑋 decreases in 𝑄2 and |𝑡|
without irregular behavior. The curves can be roughly fitted by a power law in 𝑄2

and |𝑡| in Figs. 5-37–5-38, respectively. The exponents are -2.70 – -1.70 for 𝑄2 and

-0.59 – -1.70 for |𝑡|.
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Figure 5-24: The unpolarized cross section plots in 0.110 GeV2 < |𝑡| <0.150 GeV2

bins. The statistical uncertainty is represented by the crosses. The stamp sized cross
section panels are presented in the 𝑄2 and 𝑥𝐵 plane in a way that the vertical and
horizontal grids are on 𝑄2 and 𝑥𝐵 respectively. Each panel title has the average value
of the 𝑥𝐵, 𝑄2 and |𝑡|. The orange band represents the 1𝜎𝑠𝑦𝑠𝑡. range.
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Figure 5-25: The unpolarized cross section in 𝑥𝐵 < 0.268, 𝑄2 <4.326 (GeV/c)2, 0.150
GeV2 < |𝑡| <0.250 GeV2 bins.
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Figure 5-26: The unpolarized cross section in 𝑥𝐵 < 0.268, 𝑄2 <4.326 (GeV/c)2, 0.250
GeV2 < |𝑡| <0.400 GeV2 bins.
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Figure 5-27: The unpolarized cross section in 𝑥𝐵 < 0.268, 𝑄2 <4.326 (GeV/c)2, 0.400
GeV2 < |𝑡| <0.600 GeV2 bins.
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Figure 5-28: The unpolarized cross section in 𝑥𝐵 < 0.268, 𝑄2 <4.326 (GeV/c)2, 0.600
GeV2 < |𝑡| <0.800 GeV2 bins.
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Figure 5-29: The unpolarized cross section in 𝑥𝐵 < 0.268, 𝑄2 <4.326 (GeV/c)2, 0.800
GeV2 < |𝑡| <1.000 GeV2 bins.
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Figure 5-30: The unpolarized cross section in 𝑥𝐵 >0.268, 1.200 (GeV/c)2 < 𝑄2 <5.761
(GeV/c)2, 0.400 GeV2 < |𝑡| <0.600 GeV2 bins.
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Figure 5-31: The unpolarized cross section in 𝑥𝐵 >0.268, 1.200 (GeV/c)2 < 𝑄2 <5.761
(GeV/c)2, 0.600 GeV2 < |𝑡| <0.800 GeV2 bins.
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Figure 5-32: The unpolarized cross section in 𝑥𝐵 >0.268, 1.200 (GeV/c)2 < 𝑄2 <5.761
(GeV/c)2, 0.800 GeV2 < |𝑡| <1.000 GeV2 bins.
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Figure 5-33: The pure DVCS and the interference contribution 𝑑𝜎𝑢𝑛𝑝𝑜𝑙.,𝐼𝑛𝑡.+𝐷𝑉 𝐶𝑆2 as
a function of 𝜑 in one bin, 0.204< 𝑥𝐵 <0.268, 2.510 (GeV/c)2 < 𝑄2 <3.295 (GeV/c)2
and 0.250 GeV2 < |𝑡| <0.400 GeV2.
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Figure 5-34: The pure DVCS and the interference contribution 𝑑𝜎𝑢𝑛𝑝𝑜𝑙.,𝐼𝑛𝑡.+𝐷𝑉 𝐶𝑆2 as a
function of 𝜑 in𝑄2−𝑥𝐵 landscape for 0.118< 𝑥𝐵 <0.204, 1.000 (GeV/c)2 < 𝑄2 <3.295
(GeV/c)2 and 0.250 GeV2 < |𝑡| <0.400 GeV2. The 𝜑 ranges are from 90∘ to 270∘.
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Figure 5-35: The plot showing the 𝑄2 dependence of 𝑋 in 0.118< 𝑥𝐵 <0.155, 0.250
GeV2 < |𝑡| <0.400 GeV2. The black dots with vertical error bars are the experimental
data. The orange band represents the 1𝜎𝑠𝑦𝑠𝑡. range, which is consistent with the KM
prediction shown as the cyan dotted curve.
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Figure 5-36: The plot showing the 𝑄2 dependence of 𝑋 in 0.118< 𝑥𝐵 <0.155, 1.456
(GeV/c)2 < 𝑄2 <1.912 (GeV/c)2.
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Figure 5-37: The plots showing the 𝑄2 dependence of 𝑋 at (a) < 𝑥𝐵 >= 0.135 and
(b) < 𝑥𝐵 >=0.177.
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Figure 5-38: The plots showing the |𝑡| dependence of 𝑋 at (a) < 𝑥𝐵 >= 0.135 and
(b) < 𝑥𝐵 >=0.177.
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5.9 Polarized Cross Sections

The polarized cross sections in one |𝑡| bin for the nominal set-up are presented in

Fig. 5-39. The KM15 prediction is presented with the cyan curves. The systematic

uncertainties in the helicity dependent cross sections are derived in a similar way to

derivation of the unpolarized cross section systematic uncertainties. However, each

helicity state splits the number of events, and moreover the minus helicity state has

usually less statistics whereas the plus state is higher. Estimating the polarized cross

section uncertainties is thus challenging, and the statistical uncertainty is about
√

2

times the statistical uncertainty of the unpolarized cross section. To tackle this chal-

lenge, the helicity dependent cross sections will be studied with a coarser binning.

Fig. 5-39 shows the absolute polarized cross section at one bin, 0.204< 𝑥𝐵 <0.268,

2.929 (GeV/c)2 < 𝑄2 <2.510 (GeV/c)2, 0.250 GeV2 < |𝑡| <0.400 GeV2. The modified

polarized cross section is shown in Fig. 5-40 for the same bin. The BMK approxima-

tion predicts the polarized cross sections to have the following forms.

𝑑𝜎𝑝𝑜𝑙., 𝐷𝑉 𝐶𝑆2 =Γ
1

𝑦2𝑄2
𝑠DVCS
1 sin(𝜑) (5.29)

𝑑𝜎𝑝𝑜𝑙. 𝐼𝑛𝑡. =Γ
1

𝑥𝐵𝑦3𝑡𝒫1(𝜑)𝒫2(𝜑)
(𝑠ℐ1 sin(𝜑) + 𝑠ℐ2 sin(2𝜑)) (5.30)

For high 𝑄2, where the interference term is dominant, the modified polarized cross

sections is predicted to follow a sine function. The one bin result at Fig. 5-40 is fitted

to the sine function with the 𝑝-value 0.838.

145



0 90 180 270 360
φ [◦]

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03
d
σ
po
l.

d
x
B
d
Q

2
d
|t|
d
φ

[n
b/

G
eV

4
]

0.204 < xB < 0.268, < xB >=0.228
2.510 < Q2/(1 (GeV/c)2 < 3.295, < Q2 >=2.929 (GeV/c)2

0.250 < |t|/(1 GeV2) < 0.400, < |t| >=0.319 GeV2

Experimental Data
Theory (KM15)

Figure 5-39: The pure DVCS and the interference contribution 𝑑𝜎𝑢𝑛𝑝𝑜𝑙.,𝐼𝑛𝑡.+𝐷𝑉 𝐶𝑆2 as
a function of 𝜑 in 0.204< 𝑥𝐵 <0.268, 2.929 (GeV/c)2 < 𝑄2 <2.510 (GeV/c)2, 0.25
GeV2 < |𝑡| <0.40 GeV2.
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Figure 5-40: The pure DVCS and the interference contribution 𝑑𝜎𝑢𝑛𝑝𝑜𝑙.,𝐼𝑛𝑡.+𝐷𝑉 𝐶𝑆2 as
a function of 𝜑 in 0.204< 𝑥𝐵 <0.268, 2.929 (GeV/c)2 < 𝑄2 <2.510 (GeV/c)2, 0.25
GeV2 < |𝑡| <0.40 GeV2.

5.10 Conclusions

We have presented the BH-DVCS cross sections over a wide range of (𝑥𝐵, 𝑄
2, |𝑡|)

kinematics. The BH-DVCS unpolarized and polarized cross sections are in reasonable

agreement (within the 1𝜎 systematic uncertainty level) with the KM15 model that

resulted from fitting the previous experimental results from both collider and fixed-

target experiments. This conclusion is consistent with the Hall A cross section results

146



performed recently [129], even though the reference reported tension in the fitted

CFF terms. Together with the Hall A results, the measurement reported here is

one of the earliest DVCS results from the JLab 12 GeV era as well as the first cross

section determination from the CLAS12 experiment. While the Hall A measurement

provides a more precise measurement, these data cover a much wider kinematic range,

as illustrated in Fig. 5-41.

Figure 5-41: The 𝑄2 − 𝑥𝐵 kinematic reach of various fixed-target experiments. The
original image was from [189]. The colored segments show the Hall A DVCS measure-
ments after the CEBAF 12 GeV upgrade and were imported from [190] (𝑥𝐵= 0.36
(red), 0.48 (green) and 0.6 (blue). The black and red feather-shaped figures enclose
the DVCS 𝑄2 − 𝑥𝐵 regions at CLAS12 and CLAS.

The 𝑄2 and |𝑡| dependence of interference and DVCS contribution 𝑑𝜎𝑖𝑛𝑡.+𝑑𝜎𝐷𝑉 𝐶𝑆2

can be compared with the integral of unpolarized cross sections over 𝜑 ∈(90∘, 270∘).

The unpolarized cross section decreases in 𝑄2 and |𝑡|, which is consistent with the

theoretical prediction. The polarized cross section results clearly show the sine har-

monics functional form, which is also consistent with the BMK approximation [76].

Combined, the results support the idea of perturbative QCD scaling at the presented

kinematics region as discussed in [110] at higher 𝑥𝐵.

For a thorough CFF fitting with the experimental results, it is necessary to dis-

entangle the interference term 𝑑𝜎𝐼𝑛𝑡. and the pure DVCS contribution 𝑑𝜎𝐷𝑉 𝐶𝑆2 as

discussed in Chapter 1. This step is often called the generalized Rosenbluth separa-
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tion, which has been discussed in [126, 191, 192]. One method to perform this is to

utilize the differences in 𝜑 dependences at the same (𝑥𝐵, 𝑄2, |𝑡|) bin. As presented

Fig. 1-9, the interference term is predicted to be dominant at 𝜑 around 0∘ and 360∘.

However, these regions are also pure BH dominant. Thus, instead of normalizing the

unpolarized cross sections to the pure BH in this region, as done here, more detailed

studies of the CLAS12 detector efficiency will be required to achieve the final absolute

cross sections. Another method is to incorporate the measurement from the different

beam energies as performed in Hall A DVCS experiments [129, 191]. This technique

will be also available at CLAS12 by including Run Group K data with lower beam

energy (6.5 GeV and 7.5 GeV) and the unpolarized LH2 target, which are being an-

alyzed at present [193]. Processing of Run Group A data taken in spring 2019 with

10.2 GeV beam energy is ongoing. Including this data will add more statistics for the

CFF fitting.

In addition to this work, there will be much more data on GPDs forthcoming from

the CLAS12 detector. The proton DVCS BSA preliminary results are under CLAS12

internal review [194] for the same experimental set-up as reported in this thesis. The

BMK approximation predicts that the CFF dependences of both the interference

and pure DVCS terms should be slightly different when polarized targets are used.

The cross sections, TSA, and BSA results with the polarized targets at CLAS12 will

provide important data input for the global fitting program. The global fitting with

the unpolarized and polarized target data is discussed in [131]. The data taking and

processing with the longitudinally polarized NH3 target is ongoing. Measurement

of the DVCS process on the neutron is also ongoing with the CLAS12 detector.

The collaboration has already performed measurements with an unpolarized LD2

target [195]. The measurements on longitudinally polarized ND3 [196] is in progress

and will be followed by measurements on a polarized NH3 target. The installation

of longitudinally or transversely polarized 3He targets is being studied [124, 125].

The GPDs 𝐻, �̃�, 𝐸, �̃� accessible by DVCS measurements on unpolarized targets are

occasionally referred to as chiral-even GPDs. The transversity (chiral-odd) GPDs

and gluon GPDs are sensitive to DVMP channels. The analyses of RG-A data for
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these exclusive channels are ongoing with the BSA [197, 198] and the cross section

measurement [199, 200] technique. This first cross-section measurements of exclusive

channels will be a valuable benchmark for further exclusive channel studies and the

efficiency determination for the recently-built CLAS12 detector.

The GPD program addresses a number of important and fundamental scientific

questions: studying the spin [52] and mass decomposition [201] of nucleons, the dy-

namic properties of proton [86–88] and imaging of nucleons [70]. To achieve the

program goals, surveying the CFFs over a wide kinematics region is a central prereq-

uisite. In addition to including the results in global fits [95], one can also demand

consistency with lattice QCD calculations, as discussed in [96]. This measurement

will benefit the global fitting program at the fixed-target experiment kinematics, and

will also be useful in predicting DVCS results in future experiments. The fixed-target

upgrade plans in Jefferson Lab include performing measurements with positron beam

[120, 121], beam energy upgrade to 20–24 GeV [202] and installing a new detec-

tor Solenoidal Large Intensity Device (SoLID) at Hall A [203]. An upgrade of the

COMPASS, AMBER/COMPASS++ experiment [204] at Super Proton Synchrotron

(SPS), Conseil Européen pour la Recherche Nucléaire (CERN) is being discussed.

DVCS study in collider kinematics is a principal scientific thrust of EIC [68, 132].

The updated global fits using the data reported here will improve the quality of pre-

dictions for these new facilities, and will aid the design of new detectors. Continuous

studies based on the current and future measurements will make possible new insights

into the QCD structure of hadronic matter.
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